1
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
2
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
3
|
Huang Y, Zhang H, Lv B, Tang C, Du J, Jin H. Sulfur Dioxide: Endogenous Generation, Biological Effects, Detection, and Therapeutic Potential. Antioxid Redox Signal 2022; 36:256-274. [PMID: 34538110 DOI: 10.1089/ars.2021.0213] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Previously, sulfur dioxide (SO2) was recognized as an air pollutant. However, it is found to be endogenously produced in mammalian tissues. As a new gasotransmitter, SO2 is involved in regulating the structure and function of blood vessels, heart, lung, gastrointestinal tract, nervous system, etc.Recent Advances: Increasing evidence showed that endogenous SO2 regulates cardiovascular physiological processes, such as blood pressure control, vasodilation, maintenance of the normal vascular structure, and cardiac negative inotropy. Under pathological conditions including hypertension, atherosclerosis, vascular calcification, aging endothelial dysfunction, myocardial injury, myocardial hypertrophy, diabetic myocardial fibrosis, sepsis-induced cardiac dysfunction, pulmonary hypertension, acute lung injury, colitis, epilepsy-related brain injury, depression and anxiety, and addictive drug reward memory consolidation, endogenous SO2 protects against the pathological changes via different molecular mechanisms and the disturbed SO2/aspartate aminotransferase pathway is likely involved in the mechanisms for the earlier mentioned pathologic processes. Critical Issues: A comprehensive understanding of the biological effects of endogenous SO2 is extremely important for the development of novel SO2 therapy. In this review, we summarized the biological effects, mechanism of action, SO2 detection methods, and its related prodrugs. Future Directions: Further studies should be conducted to understand the effects of endogenous SO2 in various physiological and pathophysiological processes and clarify its underlying mechanisms. More efficient and accurate SO2 detection methods, as well as specific and effective SO2-releasing systems should be designed for the treatment and prevention of clinical related diseases. The translation from SO2 basic medical research to its clinical application is also worthy of further study. Antioxid. Redox Signal. 36, 256-274.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021; 19:443. [PMID: 34949202 PMCID: PMC8697457 DOI: 10.1186/s12951-021-01078-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gas therapy (GT) has attracted increasing attention in recent years as a new cancer treatment method with favorable therapeutic efficacy and reduced side effects. Several gas molecules, such as nitric oxide (NO), carbon monoxide (CO), hydrogen (H2), hydrogen sulfide (H2S) and sulfur dioxide (SO2), have been employed to treat cancers by directly killing tumor cells, enhancing drug accumulation in tumors or sensitizing tumor cells to chemotherapy, photodynamic therapy or radiotherapy. Despite the great progress of gas therapy, most gas molecules are prone to nonspecific distribution when administered systemically, resulting in strong toxicity to normal tissues. Therefore, how to deliver and release gas molecules to targeted tissues on demand is the main issue to be considered before clinical applications of gas therapy. As a specific and noninvasive stimulus with deep penetration, near-infrared (NIR) light has been widely used to trigger the cleavage and release of gas from nano-prodrugs via photothermal or photodynamic effects, achieving the on-demand release of gas molecules with high controllability. In this review, we will summarize the recent progress in cancer gas therapy triggered by NIR light. Furthermore, the prospects and challenges in this field are presented, with the hope for ongoing development.
Collapse
Affiliation(s)
- Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Yongjun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Shaojun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
5
|
Li Y, Feng Y, Ye X, Peng H, Du J, Yao X, Huang Y, Jin H, Du J. Endogenous SO 2 Controls Cell Apoptosis: The State-of-the-Art. Front Cell Dev Biol 2021; 9:729728. [PMID: 34692686 PMCID: PMC8529009 DOI: 10.3389/fcell.2021.729728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
SO2, previously known as the product of industrial waste, has recently been proven to be a novel gasotransmitter in the cardiovascular system. It is endogenously produced from the metabolism pathway of sulfur-containing amino acids in mammalians. Endogenous SO2 acts as an important controller in the regulation of many biological processes including cardiovascular physiological and pathophysiological events. Recently, the studies on the regulatory effect of endogenous SO2 on cell apoptosis and its pathophysiological significance have attracted great attention. Endogenous SO2 can regulate the apoptosis of vascular smooth muscle cells, endothelial cells, cardiomyocytes, neuron, alveolar macrophages, polymorphonuclear neutrophils and retinal photoreceptor cells, which might be involved in the pathogenesis of hypertension, pulmonary hypertension, myocardial injury, brain injury, acute lung injury, and retinal disease. Therefore, in the present study, we described the current findings on how endogenous SO2 is generated and metabolized, and we summarized its regulatory effects on cell apoptosis, underlying mechanisms, and pathophysiological relevance.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Yingjun Feng
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Xiaoyun Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoli Yao
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Lab of Molecular Cardiology, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Abstract
Sulfur dioxide (SO2) was previously known as a harmful gas in air pollution. Recently, it was reported that SO2 can be endogenously generated in cardiovascular tissues. Many studies have revealed that endogenous SO2 has important physiological and pathophysiological significance and pharmacological potential. As a novel gasotransmitter, SO2 has important regulatory effects on the heart. It has a dose-dependent negative inotropic effect on cardiac function, in which L-type calcium channels are involved. SO2 can also attenuate myocardial injury caused by various harmful stimuli and play an important role in myocardial ischemia-reperfusion injury and myocardial hypertrophy. These effects are thought to be linked to its ability to reduce inflammation and as an antioxidant. In addition, SO2 regulates cardiomyocyte apoptosis and autophagy. Therefore, endogenous SO2 plays an important role in maintaining cardiovascular system homeostasis. In the present review, the literature concerning the metabolism of endogenous SO2, its cardiac toxicological effects and physiological regulatory effects, mechanisms for SO2-mediated myocardial protection and its pharmacological applications are summarized and discussed.
Collapse
|
7
|
Wang W, Ji Z, Yuan C, Yang Y. Mechanism of Human Umbilical Cord Mesenchymal Stem Cells Derived-Extracellular Vesicle in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2020; 46:455-467. [PMID: 33258087 DOI: 10.1007/s11064-020-03179-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are implicated in cerebral ischemia reperfusion (I/R) injury process. In this study, after extraction and identification of human umbilical cord MSCs (HMCs)-derived EVs, I/R rat models were established and treated with HMC-EVs to measure pathological damage, apoptosis and inflammation in brain tissues. The differentially expressed microRNAs (miRs) in HMC-EVs and I/R rat tissues were screened. The downstream gene and pathways of miR-24 were analyzed. The gain- and loss-of function of miR-24 in HMC-EVs was performed in I/R rat models and hypoxia/reoxygenation (H/R) cell models. SH-SY5Y cells were subjected to hypoxia and biological behaviors were detected by MTT assay, colony formation experiment, EdU staining and Transwell assays, and cells were incubated with the inhibitors of downstream pathways. As expected, infarct size, brain tissue apoptosis and inflammation were decreased after HMC-EVs treatment. miR-24 overexpression in HMC-EVs reduced I/R injury, while miR-24 knockdown in HMC-EVs impaired the protective roles of HMC-EVs in I/R injury. HMC-EVs-carried miR-24 could target AQP4 to activate the P38 MAPK/ERK1/2/P13K/AKT pathway, and thus promoted the proliferation and migration of SH-SY5Y cells after H/R injury, which were reversed by LY294002 and PD98095. Taken together, HMC-EVs-carried miR-24 played protective roles in I/R injury, possibly by targeting AQP4 and activating the P38 MAPK/ERK1/2/P13K/AKT pathway. This study may offer novel perspective for I/R injury treatment.
Collapse
Affiliation(s)
- Wenlei Wang
- Department of Neurology, Qingdao Chengyang People's Hospital, No. 600 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Zhen Ji
- Department of Neurology, Qingdao Chengyang People's Hospital, No. 600 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Chunyan Yuan
- Department of Rehabilitation Medicine, Qingdao Chengyang People's Hospital, Qingdao, 266109, Shandong, People's Republic of China
| | - Yanfang Yang
- Department of Neurology, Qingdao Chengyang People's Hospital, No. 600 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Shi X, Gao Y, Song L, Zhao P, Zhang Y, Ding Y, Sun R, Du Y, Gong M, Gao Q, Shi Y, Guo Q, Shi H. Sulfur dioxide derivatives produce antidepressant- and anxiolytic-like effects in mice. Neuropharmacology 2020; 176:108252. [PMID: 32712276 DOI: 10.1016/j.neuropharm.2020.108252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Sulfur dioxide (SO2) can be endogenously generated from sulfur-containing amino acids in animals and humans. Increasing evidence shows that endogenous SO2 may act as a gaseous molecule to participate in many physiological and pathological processes. However, the role of SO2 and its derivatives in the central nervous system remains poorly understood. The present study explored the protective effects of exogenous SO2 derivatives (Na2SO3:NaHSO3, 3:1 M/M) on cellular injury in vitro by using the cell proliferation assay (MTS), cell counting kit 8 assay (CCK-8), and cyto-flow assay in the corticosterone (CORT)-induced PC12 cell injury model. We also examined the antidepressant and anxiolytic effects of SO2 derivatives on the chronic mild stress (CMS)-induced depression mouse model by using the open field test, novelty suppressed feeding test, forced swimming test, tail suspension test, and sucrose preference test. In the MTS and CCK-8 assays, we found that preexposure of SO2 derivatives significantly blocked CORT-induced decrease of cellular survival without causing any negative effects. Results from the cyto-flow assay indicated that treatment with SO2 derivatives could reverse CORT-induced early and late apoptosis of PC12 cells. Systemic treatment with SO2 derivatives produced markedly antidepressant- and anxiolytic-like activities in mice under normal condition and rapidly reversed CMS-induced depressive- and anxiety-like behaviors. In conclusion, these findings indicate that exogenous SO2 derivatives show protective properties against the detrimental effects of stress and exert antidepressant- and anxiolytic-like actions. The present study suggests that exogenous SO2 derivatives are potential therapeutic agents for the treatment of depression, anxiety, and other stress-related diseases.
Collapse
Affiliation(s)
- Xiaorui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yipu Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuanjian Ding
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ruoxuan Sun
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Shi
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Qingjun Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| |
Collapse
|
9
|
Lu Q, Lu T, Xu M, Yang L, Song Y, Li N. SO2 prodrug doped nanorattles with extra-high drug payload for “collusion inside and outside” photothermal/pH triggered - gas therapy. Biomaterials 2020; 257:120236. [DOI: 10.1016/j.biomaterials.2020.120236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023]
|
10
|
Yuan L, Yu L, Zhang J, Zhou Z, Li C, Zhou B, Hu X, Xu G, Tang Y. Long non‑coding RNA H19 protects H9c2 cells against hypoxia‑induced injury by activating the PI3K/AKT and ERK/p38 pathways. Mol Med Rep 2020; 21:1709-1716. [PMID: 32319634 PMCID: PMC7057826 DOI: 10.3892/mmr.2020.10978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
Myocardial ischemia/reperfusion injury often leads to adverse cardiovascular outcomes due to severe hypoxia. The present study aimed to evaluate the effects and mechanism of long non-coding RNA H19 (H19) on rat H9c2 cells with hypoxia-induced injury. H9c2 cells were infected with lentiviruses to express H19 or H19-targeting short hairpin RNA (shRNA), or their respective controls, at a multiplicity of infection of 1:100. H19 expression was determined by reverse transcription-quantitative PCR. Hypoxic injury was induced and assessed by analyzing the level of apoptosis, the cell cycle distribution and the mitochondrial membrane potential using flow cytometry in the different groups. The expression of the PI3K/AKT and the ERK/p38 signaling pathways were analyzed using western blotting. It was found that hypoxia stimulated apoptosis, induced G1 phase cell cycle arrest and increased the mitochondrial depolarization rate in H9c2 cells. When compared with the hypoxic model group, the H19 overexpression group had a significantly reduced rate of apoptosis (P=0.016), a smaller G1 population and a higher S phase population (P=0.018 and P=0.031, respectively), and a reduced mitochondrial depolarization rate (P=0.036). By contrast, the H19 shRNA group exhibited the opposite trends, suggesting that hypoxia-induced injury was alleviated by the overexpression of H19 and was aggravated by the knockdown of H19. The present mechanistic studies revealed that H19 may decrease hypoxia-induced cell injury by activating the PI3K/AKT and ERK/p38 pathways. The results of the present study suggested that H19 may alleviate hypoxia-induced myocardial cell injury through the activation of the PI3K/AKT and ERK/p38 pathways.
Collapse
Affiliation(s)
- Linhui Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Yu
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhidong Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanhua Tang
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Zhang Q, Lyu W, Yu M, Niu Y. Sulfur dioxide induces vascular relaxation through PI3K/Akt/eNOS and NO/cGMP signaling pathways in rats. Hum Exp Toxicol 2020; 39:1108-1117. [PMID: 32153200 DOI: 10.1177/0960327120911428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfur dioxide (SO2) is a common exogenous atmospheric pollutant. Studies have shown that SO2 can cause vasodilation as a gas signaling molecule, but the specific signaling pathways are not well understood. This study aimed to explore the underlying mechanism behind the effects of SO2 on vasodilation of isolated rat aorta. The results showed that when the dose of SO2 was 30 μM, the vasodilation of endothelium-intact rings was partially suppressed by LY294002 and NG-nitro-l-arginine methyl ester, and the protein levels of phosphoinositide 3-kinase (PI3K), p-Akt, and p-endothelial nitric oxide synthase (p-eNOS) were significantly increased. When the dose of SO2 was 300 μM or 1500 μM, the vasodilation of endothelium-denuded rings did not change after application of the inhibitor, but the protein levels of PI3K, p-Akt, and p-eNOS were significantly decreased, and the activity of NOS and the level of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were significantly increased. We speculate that the mechanism of SO2-induced vasodilatation likely involved the endothelial PI3K/Akt/eNOS and NO/cGMP signal pathways. In addition, at the concentration of 1500 μM, SO2 markedly increased the level of caspase-3 and caspase-9. The results suggest that high concentrations of SO2 may cause damage to blood vessels. This study will help to further inform the etiologies of SO2-related cardiovascular disease.
Collapse
Affiliation(s)
- Q Zhang
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - W Lyu
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - M Yu
- Institute of NBC Defence, Beijing, China
| | - Y Niu
- College of Environment and Resource, Institute of Environmental Science, Shanxi University, Taiyuan, China
| |
Collapse
|
12
|
Wu T, Jiang N, Ji Z, Shi G. The IRE1 signaling pathway is involved in the protective effect of low-dose LPS on myocardial ischemia-reperfusion injury. Life Sci 2019; 231:116569. [DOI: 10.1016/j.lfs.2019.116569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/01/2019] [Accepted: 06/12/2019] [Indexed: 01/31/2023]
|
13
|
Liu S, He Y, Shi J, Liu L, Ma H, He L, Guo Y. STAT1-avtiviated LINC00961 regulates myocardial infarction by the PI3K/AKT/GSK3β signaling pathway. J Cell Biochem 2019; 120:13226-13236. [PMID: 30887575 DOI: 10.1002/jcb.28596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 02/05/2023]
Abstract
Myocardial infarction (MI) remains a severe cardiac disease because of its high incidence and mortality worldwide. A growing body of recent investigations have confirmed that LINC00961 acts as a tumor suppressor in diverse malignancies. However, the biological significance of LINC00961 and its molecular mechanism in MI are still elusive. Hypoxia is the leading cause of MI and induces myocardial injury. In this study, we found the upregulated expression of LINC00961 in cardiomyocytes H9c2 after hypoxia treatment. Knockdown of LINC00961 ameliorated hypoxia-induced cell injury by facilitating cell viability while repressing cell apoptosis. The significant increase of signal transducer and activator of transcription 1 (STAT1) expression and phosphorylation levels was observed in hypoxia-induced cells and proved to exacerbate hypoxia injury. In addition, STAT1 transcriptionally activated LINC00961 by binding to LINC00961 promoter. Furthermore, our results validated that suppressing LINC00961 contributed to the remarkable diminution in the phosphorylation levels of phosphoinositide 3-kinases (PI3K), AKT, and glycogen synthase kinase-3β (GSK3β). Inhibition of PI3K/AKT signaling or GSK3β pathway rescued the effects of LINC00961 knockdown on the hypoxia-induced injury of cardiomyocytes. Namely, we concluded that STAT1-avtiviated LINC00961 accelerated MI via the PI3K/AKT/GSK3β pathway, which may provide clues for the treatment of patients with MI.
Collapse
Affiliation(s)
- Shengzhong Liu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Cardiac Surgery Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Ying He
- Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jun Shi
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lulu Liu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Ma
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Yang P, Zhou Y, Xia Q, Yao L, Chang X. Astragaloside IV Regulates the PI3K/Akt/HO-1 Signaling Pathway and Inhibits H9c2 Cardiomyocyte Injury Induced by Hypoxia-Reoxygenation. Biol Pharm Bull 2019; 42:721-727. [PMID: 30867343 DOI: 10.1248/bpb.b18-00854] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astragaloside IV (AS-IV) is one of the main pharmacologically active compounds found in Astragalus membranaceus. AS-IV has protective effects against ischemia-reperfusion injury (IRI), but its mechanism of action has not yet been determined. This study aims to investigate the effect of AS-IV on IRI and its effect on the phosphadylinositol 3-kinase (PI3K)/Akt/heme oxygenase (HO-1) signaling pathway through in vitro experiments. Firstly, a cell culture model of myocardiocyte hypoxia-reoxygenation (H/R) injury was replicated. After AS-IV treatment, cell viability, reactive oxygen species (ROS) levels, as well as the content or activity of the cellular factors lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), were measured to evaluate the effect of treatment with AS-IV. The effect of AS-IV on HO-1 protein expression and nuclear factor E2-related factor 2 (Nrf2) and Bach1 protein expression was determined by Western blotting. Finally, a reversal of the effect of AS-IV treatment was observed following co-incubation with a PI3K inhibitor. Our results show that AS-IV has good protective effect on H/R injury and has anti-oxidative stress and anti-inflammatory effects. It can regulate the expression of Nrf2 and Bach1 proteins in the nucleus and promote the expression of HO-1 protein, while a PI3K inhibitor can partially reverse the above effects. This study suggests that the PI3K/Akt/HO-1 signaling pathway may be a key signaling pathway for the anti-IRI effect of AS-IV.
Collapse
Affiliation(s)
| | - Yuping Zhou
- The Affiliated Hospital of Medical School of Ningbo University
| | - Qing Xia
- Ningbo College of Health Sciences
| | | | | |
Collapse
|
15
|
Yu Y, Yao S, Dong H, Ji M, Chen Z, Li G, Yao X, Wang SL, Zhang Z. Short-term effects of ambient air pollutants and myocardial infarction in Changzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22285-22293. [PMID: 29808399 DOI: 10.1007/s11356-018-2250-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 05/07/2018] [Indexed: 05/06/2023]
Abstract
Ambient air pollution had been shown strongly associated with cardiovascular diseases. However, the association between air pollution and myocardial infarction (MI) is inconsistent. In the present study, we conducted a time-series study to investigate the association between air pollution and MI. Daily air pollutants, weather data, and MI data were collected from January 2015 to December 2016 in Changzhou, China. Generalized linear model (GLM) was used to assess the immediate effects of air pollutants (PM2.5, PM10, NO2, SO2, and O3) on MI. We identified a total of 5545 cases for MI, and a 10-μg/m3 increment in concentrations of PM2.5 and PM10 was associated with respective increases of 1.636% (95% confidence interval [CI] 0.537-2.740%) and 0.805% (95% CI 0.037-1.574%) for daily MI with 2-day cumulative effects. The associations were more robust among males and in the warm season versus the cold one. No significant effect was found in SO2, NO2, or O3. This study suggested that short-term exposure to PM2.5 and PM10 was associated with the increased MI risks. Our results might be useful for the primary prevention of MI exacerbated by air pollutants.
Collapse
Affiliation(s)
- Yongquan Yu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Shen Yao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Huibin Dong
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Minghui Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Zhiyong Chen
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Guiying Li
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Xingjuan Yao
- Department of Chronic Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, 203 Taishan Road, Changzhou, Jiangsu, 213022, People's Republic of China
| | - Shou-Lin Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Zhan Zhang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
16
|
Hao YL, Fang HC, Zhao HL, Li XL, Luo Y, Wu BQ, Fu MJ, Liu W, Liang JJ, Chen XH. The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway. Am J Physiol Cell Physiol 2018; 315:C380-C388. [PMID: 29741915 DOI: 10.1152/ajpcell.00310.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have uncovered the vital roles played by microRNAs in regulating cardiac injury. Among them, the cardiac enriched microRNA-1 (miR-1) has been extensively studied and proven to be detrimental to cardiac myocytes. Hence, the current study aimed to explore whether miR-1 affects myocardial ischemia-reperfusion injury (MIRI) in rats undergoing sevoflurane preconditioning and the underlying mechanism. After successful model establishment, rats with MIRI were transfected with mimics or inhibitors of miR-1, or siRNA against MAPK3, and then were injected with sevoflurane. A luciferase reporter gene assay was conducted to evaluate the targeting relationship between miR-1 and MAPK3. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were employed to evaluate the expressions of miR-1, MAPK3, phosphatidylinositol 3-kinase (PI3K), and Akt. Additionally, the concentration of lactate dehydrogenase (LDH) was determined. Cell apoptosis and viability were assessed using TUNEL and cell counting kit-8 assays, and the ischemic area at risk and infarct size were detected using Evans blue and triphenyltetrazolium chloride staining. MAPK3 was found to be the target gene of miR-1. miR-1 expressed at a high level whereas MAPK3 expressed at a low level in MIRI rats. Overexpressing miR-1 or silencing MAPK3 blocked the PI3K/Akt pathway to increase cell apoptosis, ischemic area at risk, and infarct area but decreased cell viability and increased LDH concentration. In contrast, miR-1 downregulation abrogated the effects induced by miR-1 mimics or siRNA against MAPK3. These findings indicate that inhibition of miR-1 promotes MAPK3 to protect against MIRI in rats undergoing sevoflurane preconditioning through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yun-Ling Hao
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Hong-Cheng Fang
- Shenzhen Baoan Shajing People's Hospital of Guangzhou Medical University , Shenzhen , People's Republic of China
| | - Hong-Lei Zhao
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Xiao-Li Li
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Ying Luo
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Bao-Quan Wu
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Ming-Jie Fu
- Beijing Anzhen Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Wei Liu
- Beijing Anzhen Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Jin-Jie Liang
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| | - Xie-Hui Chen
- Department of Geriatrics and Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital , Shenzhen , People's Republic of China
| |
Collapse
|
17
|
Gao QJ, Yang B, Chen J, Shi SB, Yang HJ, Liu X. Sigma-1 Receptor Stimulation with PRE-084 Ameliorates Myocardial Ischemia-Reperfusion Injury in Rats. Chin Med J (Engl) 2018; 131:539-543. [PMID: 29483387 PMCID: PMC5850669 DOI: 10.4103/0366-6999.226076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The sigma receptors are a relatively novel receptor group with respect to knowledge of their effect on health. Although the sigma-1 receptor agonist PRE-084 exhibits a cardioprotective effect in some studies, the benefits in cases of myocardial ischemia/reperfusion (I/R) are not clear. The aim of this study was to explore the mechanism of action and assess the effect of PRE-084 on myocardial I/R injury in rats. METHODS In this study, rats were assigned randomly to three groups with computer (n = 14 for each group): a sham group, an I/R group, and a PRE-084 group. In the PRE-084 group, rats were administered PRE-084 1 h before operation. In the myocardial I/R model, the left anterior descending branch of rats was ligated and opened half an hour later. Cardiac function was assessed, and the apoptosis index was evaluated. The mechanisms of the cardioprotective effects of PRE-084 were explored. RESULTS PRE-084 pretreatment preserved cardiac function and reduced myocardial apoptosis (F = 86.0, P < 0.01) with Western blotting analysis, showing significantly reduced expression of Bax (F = 75.7, P < 0.01) and cleaved-caspase 3 (F = 44.7, P < 0.01), along with increased expression of the Bcl-2 protein (P < 0.01) and phosphorylated protein kinase B (p-Akt) (P < 0.01) and phosphorylated-endothelial nitric oxide synthase (p-eNOS; P < 0.01). CONCLUSION PRE-084 preserved cardiac function and reduced myocardial apoptosis through the activation of Akt and eNOS.
Collapse
Affiliation(s)
- Qi-Jun Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
- Department of Cardiology, First Hospital of Jingmen, Jingmen, Hubei 448000, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Shao-Bo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, China
| |
Collapse
|
18
|
Li Y, Xu H, Fu X, Ji J, Shi Y, Wang Y. Upregulation of miR-202-5p promotes cell apoptosis and suppresses cell viability of hypoxia-induced myocardial H9c2 cells by targeting SOX6 to inhibit the activation of the PI3K/AKT/FOXO3a pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8884-8894. [PMID: 31966756 PMCID: PMC6965407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/26/2017] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the potential role of microRNA-202-5p (miR-202-5p) in regulating myocardial ischemia-caused injury and to explore the underlying mechanisms. Rat embryonic ventricular cardiomyocyte-derived H9c2 cells were treated with hypoxia to generate an in vitro myocardial ischemia model, followed by the transfection with a miR-202-5p mimic and inhibitor. Subsequently, the effects of miR-202-5p on cell viability, apoptosis, migration, and invasion were analyzed. A luciferase reporter assay was used to identify the target gene of miR-202-5p. Besides, the regulatory relationship between miR-202-5p and the PI3K/AKT/FOXO3a pathway was investigated in hypoxia-induced H9c2 cells. Compared to normal H9c2 cells, the hypoxia treatment resulted in a significant damage to H9c2 cells, thereby decreasing the cell viability, migration, and invasion ability and inducing the cell apoptosis. miR-202-5p was significantly upregulated in hypoxia-induced H9c2 cells. After cell transfection, the suppression of miR-202-5p significantly alleviated the hypoxia-induced damage in H9c2 cells through the suppression of cell apoptosis and the promotion of cell viability, migration, and invasion ability. SRY-box 6 (SOX6) was found to be a direct target of miR-202-5p. The knockdown of SOX6 significantly aggravated the hypoxia-induced myocardial damage to H9c2 cells, which was alleviated after the inhibition of miR-202-5p expression. Besides, miR-202-5p suppression resulted in the activation of the PI3K/AKT/FOXO3a pathway in H9c2 cells. The data presented in this study revealed that miR-202-5p was upregulated in H9c2 cells during myocardial ischemia. The overexpressed miR-202-5p may aggravate the myocardial ischemia-caused injury by downregulating SOX6 to suppress the activation of the PI3K/AKT/FOXO3a pathway. Thus, miR-202-5p may serve as a potential target for the clinical treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, Changzhou Wujin People’s Hospital, Wujin Hospital Affiliated to Jiangsu UniversityChangzhou, Jiangsu, China
| | - Hao Xu
- Department of Respiratory Medicine, Danyang Hospital Affiliated to Nantong UniversityDanyang, Jiangsu, China
| | - Xingli Fu
- Jiangsu University Health Science CenterZhenjiang, Jiangsu, China
| | - Jianguo Ji
- Department of Cardiology, Changzhou Wujin People’s Hospital, Wujin Hospital Affiliated to Jiangsu UniversityChangzhou, Jiangsu, China
| | - Youwei Shi
- Department of Cardiology, Changzhou Wujin People’s Hospital, Wujin Hospital Affiliated to Jiangsu UniversityChangzhou, Jiangsu, China
| | - Yongfang Wang
- Department of Clinical Laboratory, Changzhou Wujin People’s Hospital, Wujin Hospital Affiliated to Jiangsu UniversityChangzhou, Jiangsu, China
| |
Collapse
|
19
|
Zhang C, Tang Y, Li Y, Xie L, Zhuang W, Liu J, Gong J. Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats. PLoS One 2017; 12:e0179042. [PMID: 28591178 PMCID: PMC5462470 DOI: 10.1371/journal.pone.0179042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
The unfolded protein response (UPR) plays a critical role in cell death mediated by ischemia/reperfusion (I/R) injury. However, little is known about the exact mechanism of UPR signaling pathways after myocardial I/R injury in rats. An attempt was therefore made to assess whether the myocardial I/R induced UPR, and which branch of UPR (ATF6, IRE1 and PERK) signal pathway was activated. Sprague-Dawley rats were pretreated with UPR stimulator dithiothreitol (DTT) and UPR inhibitor 4-phenylbutyrate (4PBA) and then subjected to myocardial I/R surgery. Compared with sham-operated group, the expression of GRP78, ATF6, CHOP and sXBP1 in the I/R injured group is significantly increased at transcript and protein levels, which indicated that all the three signal pathways of UPR were activated in the myocardial I/R injury. Compared with the I/R injured group, treatment with 4PBA effectively decreased myocardium infarct size, reduced myocardial apoptosis, down-regulated caspase-12 expression, diminished serum creatine kinase and lactate dehydrogenase levels. In contrast, these effects were reversed in DTT treated group. In summary, these results demonstrated that myocardial I/R injury activates UPR and inhibiting cell UPR possesses a cardioprotective effect through the suppression of ER stress-induced apoptosis. Therefore, inhibition of UPR might be used as a therapeutic target during myocardial I/R injury.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Tang
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yanming Li
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Liang Xie
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Wei Zhuang
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
- * E-mail: (JG); (JL)
| | - Jianbin Gong
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
- * E-mail: (JG); (JL)
| |
Collapse
|
20
|
Downregulated endogenous sulfur dioxide/aspartate aminotransferase pathway is involved in angiotensin II-stimulated cardiomyocyte autophagy and myocardial hypertrophy in mice. Int J Cardiol 2016; 225:392-401. [DOI: 10.1016/j.ijcard.2016.09.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/23/2022]
|
21
|
He F, Xu BL, Chen C, Jia HJ, Wu JX, Wang XC, Sheng JL, Huang L, Cheng J. Methylophiopogonanone A suppresses ischemia/reperfusion-induced myocardial apoptosis in mice via activating PI3K/Akt/eNOS signaling pathway. Acta Pharmacol Sin 2016; 37:763-71. [PMID: 27063216 DOI: 10.1038/aps.2016.14] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/06/2016] [Indexed: 12/24/2022] Open
Abstract
AIM The dried tuber root of Ophiopogon japonicus has been used in the traditional Chinese medicine for treatment of myocardial ischemia and thrombosis. In this study we investigated the effects of methylophiopogonanone A (MO-A), a major homoisoflavonoid in Ophiopogon japonicus, on myocardial ischemia/reperfusion (I/R) injury. METHODS Mice were pretreated with MO-A (10 mg·kg(-1)·d(-1), po) for 2 weeks and then subjected to transient occlusion of the left anterior descending coronary artery. Cardiac function was evaluated, and the infarct size and apoptosis index were assessed. The mechanisms underlying the cardio-protection of MO-A were analyzed in H9C2 rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The cell viability and apoptosis were evaluated; apoptotic and relevant signaling proteins were analyzed. NO levels in the culture medium were assessed. RESULTS In I/R mice, pretreatment with MO-A significantly reduced the infarct size (by 60.7%) and myocardial apoptosis (by 56.8%), and improved cardiac function. In H9C2 cells subjected to H/R, pretreatment with MO-A (10 μmol/L) significantly decreased apoptosis and cleaved caspase-3 expression, elevated the Bcl-2/Bax ratio and restored NO production. Furthermore, pretreatment with MO-A markedly increased the activation of PI3K/Akt/eNOS pathway in H9C2 cells subjected to H/R, and the protective effects of MO-A were abolished in the presence of the PI3K inhibitor wortmannin (100 nmol/L). CONCLUSION MO-A attenuates I/R-induced myocardial apoptosis in mice via activating the PI3K/Akt/eNOS signaling pathway.
Collapse
|
22
|
Zhao YR, Wang D, Liu Y, Shan L, Zhou JL. The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats. J Physiol Sci 2016; 66:229-39. [PMID: 26541157 PMCID: PMC10716937 DOI: 10.1007/s12576-015-0418-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/07/2015] [Indexed: 01/14/2023]
Abstract
Sulfur dioxide (SO2) is naturally synthesized by glutamate-oxaloacetate transaminase (GOT) from L-cysteine in mammalian cells. We found that SO2 may have a protective effect on acute lung injury (ALI) induced by limb ischemia/reperfusion (I/R) in rats. The PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways are crucial in cell signaling transduction. The present study aims to verify the role of SO2 on limb I/R-induced ALI, and investigate whether PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways were involved, as well as the relationship among the three pathways; we used specific inhibitors (LY294002, SB03580, and Stattic) to block them, respectively. The experimental methods of Western, ELISA, TUNEL, etc., were used to test the results. In the I/R group, the parameters of lung injury (MDA, MPO, TUNEL, cytokines) increased significantly, but the administration of Na2SO3/NaHSO3 attenuated the damage in the lung. The Western results showed that the rat's lung exist expression of P-STAT3, P-AKT, and P-p38 proteins. After I/R, P-STAT3, P-Akt, and P-p38 proteins expression all increased. After using Na2SO3/NaHSO3, P-Akt, and P-p38 proteins expression increased, but P-STAT3 protein expression decreased. We also found a strange phenomenon; compared to the I/R + SO2 group, the administration of stattic, P-p38 protein expression showed no change, but P-Akt protein expression increased (p < 0.05). In conclusion, SO2 has a protective effect on rats with limb I/R-induced ALI. The JAK2/STAT3, PI3K/Akt, and p38MAPK pathways are likely all involved in the process, and the JAK2/STAT3 pathway may have an impact on the P13K/Akt pathway.
Collapse
Affiliation(s)
- Yan-Rui Zhao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Lei Shan
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Yao Q, Huang Y, Liu AD, Zhu M, Liu J, Yan H, Zhang Q, Geng B, Gao Y, Du S, Huang P, Tang C, Du J, Jin H. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1073-80. [PMID: 27009048 DOI: 10.1152/ajpregu.00101.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
The present study was designed to explore the role of soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/PKG pathway in sulfur dioxide (SO2)-induced vasodilation. We showed that SO2 induced a concentration-dependent relaxation of phenylephrine (PE)-precontracted rat aortic rings in association with an increase in cGMP concentration, whereas l-aspartic acid β-hydroxamate (HDX), an inhibitor of SO2 synthase, contracted rings in a dose-dependent manner. Pretreatment of aortic rings with the sGC inhibitor ODQ (30 μM) attenuated the vasodilatory effects of SO2, suggesting the involvement of cGMP pathway in SO2-induced vasodilation. Mechanistically, SO2 upregulated the protein levels of sGC and PKG dimers, while HDX inhibited it, indicating SO2 could promote cGMP synthesis through sGC activation. Furthermore, the dimerization of sGC and PKG and vasodilation induced by SO2 in precontracted rings were significantly prevented by thiol reductants dithiothreitol (DTT). In addition, SO2 reduced the activity of phosphodiesterase type 5 (PDE5), a cGMP-specific hydrolytic enzyme, implying that SO2 elevated cGMP concentration by inhibiting its hydrolysis. Hence, SO2 exerted its vasodilatory effects at least partly by promoting disulfide-dependent dimerization of sGC and PKG, resulting in an activated sGC/cGMP/PKG pathway in blood vessels. These findings revealed a new mode of action and mechanisms by which SO2 regulated the vascular tone.
Collapse
Affiliation(s)
- Qiuyu Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Angie Dong Liu
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Mingzhu Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Jia Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Hui Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Qingyou Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Bin Geng
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, People's Republic of China
| | - Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, People's Republic of China
| | - Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Beijing, People's Republic of China; and
| | - Pan Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Chaoshu Tang
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Key Laboratory of Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China;
| |
Collapse
|
24
|
Huang Y, Tang C, Du J, Jin H. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8961951. [PMID: 26839635 PMCID: PMC4709694 DOI: 10.1155/2016/8961951] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023]
Abstract
Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
25
|
Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro 2015; 7:7/5/1759091415602463. [PMID: 26442853 PMCID: PMC4601130 DOI: 10.1177/1759091415602463] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Yan Rong
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain University of Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| |
Collapse
|
26
|
Wang XB, Du JB, Cui H. Signal pathways involved in the biological effects of sulfur dioxide. Eur J Pharmacol 2015; 764:94-99. [PMID: 26123845 DOI: 10.1016/j.ejphar.2015.06.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/12/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023]
Abstract
Gasotransmitters, such as nitric oxide, carbon monoxide and hydrogen sulfide, play important roles in life and have attracted great interest in scientists. In recent years, sulfur dioxide (SO2) has also been found to play important roles in mammals. The redox pathway is involved in the biological effects of SO2, such as the protective effect on myocardial ischemia reperfusion, myocardial injury, pulmonary hypertension and atherosclerosis. Ion channels, such as L-type calcium and adenosine triphosphate-sensitive potassium channels, as well as 3'-5'-cyclic guanosine monophosphate and 3'-5'-cyclic adenosine monophosphate pathways are also involved in the vasorelaxant effect of SO2. The mitogen-activated protein kinase pathway plays roles in vascular remodeling during pulmonary hypertension and vascular smooth muscle cell proliferation. Understanding these signaling mechanisms would help to clarify the pathophysiological effect and therapeutic potential of SO2.
Collapse
Affiliation(s)
- Xin-Bao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Yongan Street No. 95 West District, Beijing 100050, PR China.
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, PR China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Yongan Street No. 95 West District, Beijing 100050, PR China.
| |
Collapse
|
27
|
Paeoniflorin ameliorates ischemic neuronal damage in vitro via adenosine A1 receptor-mediated transactivation of epidermal growth factor receptor. Acta Pharmacol Sin 2015; 36:298-310. [PMID: 25661317 DOI: 10.1038/aps.2014.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/25/2014] [Indexed: 02/08/2023] Open
Abstract
AIM Paeoniflorin from Chinese herb Paeoniae Radix has been shown to ameliorate middle cerebral artery occlusion-induced ischemia in rats. The aim of this study was to investigate the mechanisms underlying the neuroprotective action of PF in cultured rat cortical neurons. METHODS Primary cultured cortical neurons of rats were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) insult. Cell survival was determined using MTT assay. HEK293 cells stably transfected with A1R (HEK293/A1R) were used for detailed analysis. Phosphorylation of the signaling proteins was evaluated by Western blot or immunoprecipitation. Receptor interactions were identified using co-immunoprecipitation and immunofluorescence staining. RESULTS Paeoniflorin (10 nmol/L to 1 μmol/L) increased the survival of neurons subjected to OGD/R. Furthermore, paeoniflorin increased the phosphorylation of Akt and ERK1/2 in these neurons. These effects were blocked by PI3K inhibitor wortmannin or MEK inhibitor U0126. Paeoniflorin also increased the phosphorylation of Akt and ERK1/2 in HEK293/A1R cells. Both A1R antagonist DPCPX and EGFR inhibitor AG1478 not only blocked paeoniflorin-induced phosphorylation of ERK1/2 and Akt in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. In addition, paeoniflorin increased the phosphorylation of Src kinase and activation of MMP-2 in HEK293/A1R cells. Both Src inhibitor PP2 and MMP-2/MMP-9 inhibitor BiPs not only blocked paeoniflorin-induced phosphorylation of ERK1/2 (and Akt) in HEK293/A1R cells, but also paeoniflorin-increased survival of neurons subjected to OGD/R. CONCLUSION Paeoniflorin promotes the survival of cultured cortical neurons by increasing Akt and ERK1/2 phosphorylation via A1R-mediated transactivation of EGFR.
Collapse
|
28
|
Cardioprotective effect of betulinic Acid on myocardial ischemia reperfusion injury in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:573745. [PMID: 24963326 PMCID: PMC4055472 DOI: 10.1155/2014/573745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
Abstract
Objectives. This study aims to investigate the effect of betulinic acid (BA) on myocardial ischemia reperfusion/injury in an open-chest anesthetized rat model. Methods. The model was induced by 30 minutes left anterior descending occlusion followed by 2 hours reperfusion. There are six groups in our present study: sham operation group, ischemia/reperfusion group, low-dosage BA group, medium-dosage BA group, high-dosage BA group, and fosinopril sodium group. Rats in the latter four groups were administrated with BA (50, 100, and 200 mg/kg, i.g.) or fosinopril sodium (10 mg/kg, i.g.) once a day for 7 days before operation, respectively. Rats in the former two groups were given the same volume of vehicle (0.5% CMC-Na, i.g.). During the operation, cardiac function was continuously monitored. Serum LDH and CK were measured with colorimetric assays. The expression of Bcl-2 and Bax and the apoptosis of cardiomyocytes were investigated with western blot and TUNEL assay, respectively. Results. Pretreatment with BA improved cardiac function and attenuated LDH and CK activities compared with IR group. Further investigation demonstrated that the expression of Bcl-2 and Bax and TUNEL assay was in line with the above results. Conclusion. BA may reduce the release of LDH and CK, prevent cardiomyocytes apoptosis, and eventually alleviate the extent of the myocardial ischemia/reperfusion injury.
Collapse
|
29
|
Wang XB, Du JB, Cui H. Sulfur dioxide, a double-faced molecule in mammals. Life Sci 2014; 98:63-7. [DOI: 10.1016/j.lfs.2013.12.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
|
30
|
Goyal SN, Haiderali S, Reddy M N, Arya DS, Patil CR. Prediabetes: grounds of pitfall signalling alteration for cardiovascular disease. RSC Adv 2014. [DOI: 10.1039/c4ra10366a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prediabetes manifested by impaired glucose tolerance and impaired fasting glucose offers high risk of myocardial dysfunction by causing endothelial dysfunction, inflammation, oxidative stress, atherosclerosis and genetic alterations.
Collapse
Affiliation(s)
- Sameer N. Goyal
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- R. C. Patel Institute of Pharmaceutical Education and Research
- Dhule, India
| | - Shaikh Haiderali
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- R. C. Patel Institute of Pharmaceutical Education and Research
- Dhule, India
| | - Navya Reddy M
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- R. C. Patel Institute of Pharmaceutical Education and Research
- Dhule, India
| | - Dharamvir Singh Arya
- Department of Pharmacology
- All India Institute of Medical Sciences
- New Delhi-110029, India
| | - Chandragouda R. Patil
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- R. C. Patel Institute of Pharmaceutical Education and Research
- Dhule, India
| |
Collapse
|
31
|
Lipoxin a4 preconditioning and postconditioning protect myocardial ischemia/reperfusion injury in rats. Mediators Inflamm 2013; 2013:231351. [PMID: 23956501 PMCID: PMC3730367 DOI: 10.1155/2013/231351] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/15/2013] [Accepted: 06/16/2013] [Indexed: 12/23/2022] Open
Abstract
This study aims to investigate the pre- and postconditioning effects of lipoxin A4 (LXA4) on myocardial damage caused by ischemia/reperfusion (I/R) injury. Seventy-two rats were divided into 6 groups: sham groups (C1 and C2), I/R groups (I/R1 and I/R2), and I/R plus LXA4 preconditioning and postconditioning groups (LX1 and LX2). The serum levels of IL-1β, IL-6, IL-8, IL-10, TNF-α, and cardiac troponin I (cTnI) were measured. The content and the activity of Na+-K+-ATPase as well as the superoxide dismutase (SOD), and malondialdehyde (MDA) levels were determined. Along with the examination of myocardium ultrastructure and ventricular arrhythmia scores (VAS), connexin 43 (Cx43) expression were also detected. Lower levels of IL-1β, IL-6, IL-8, TNF-α, cTnI, MDA content, and VAS and higher levels of IL-10, SOD activity, Na+-K+-ATPase content and activity, and Cx43 expression appeared in LX groups than I/R groups. Besides, H&E staining, TEM examination as well as analysis of gene, and protein confirmed that LXA4 preconditioning was more effective than postconditioning in preventing arrhythmogenesis via the upregulation of Cx43. That is, LXA4 postconditioning had better protective effect on Na+-K+-ATPase and myocardial ultrastructure.
Collapse
|
32
|
Jin H, Liu AD, Holmberg L, Zhao M, Chen S, Yang J, Sun Y, Chen S, Tang C, Du J. The role of sulfur dioxide in the regulation of mitochondrion-related cardiomyocyte apoptosis in rats with isopropylarterenol-induced myocardial injury. Int J Mol Sci 2013; 14:10465-82. [PMID: 23698774 PMCID: PMC3676849 DOI: 10.3390/ijms140510465] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023] Open
Abstract
The authors investigated the regulatory effects of sulfur dioxide (SO2) on myocardial injury induced by isopropylarterenol (ISO) hydrochloride and its mechanisms. Wistar rats were divided into four groups: control group, ISO group, ISO plus SO2 group, and SO2 only group. Cardiac function was measured and cardiomyocyte apoptosis was detected. Bcl-2, bax and cytochrome c (cytc) expressions, and caspase-9 and caspase-3 activities in the left ventricular tissues were examined in the rats. The opening status of myocardial mitochondrial permeability transition pore (MPTP) and membrane potential were analyzed. The results showed that ISO-treated rats developed heart dysfunction and cardiac injury. Furthermore, cardiomyocyte apoptosis in the left ventricular tissues was augmented, left ventricular tissue bcl-2 expression was down-regulated, bax expression was up-regulated, mitochondrial membrane potential was significantly reduced, MPTP opened, cytc release from mitochondrion into cytoplasm was significantly increased, and both caspase-9 and caspase-3 activities were increased. Administration of an SO2 donor, however, markedly improved heart function and relieved myocardial injury of the ISO-treated rats; it lessened cardiomyocyte apoptosis, up-regulated myocardial bcl-2, down-regulated bax expression, stimulated mitochondrial membrane potential, closed MPTP, and reduced cytc release as well as caspase-9 and caspase-3 activities in the left ventricular tissue. Hence, SO2 attenuated myocardial injury in association with the inhibition of apoptosis in myocardial tissues, and the bcl-2/cytc/caspase-9/caspase-3 pathway was possibly involved in this process.
Collapse
Affiliation(s)
- Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Angie Dong Liu
- Department of Medical and Health Sciences, Linköping University, Linköping 58183, Sweden; E-Mails: (A.D.L.); (L.H.)
| | - Lukas Holmberg
- Department of Medical and Health Sciences, Linköping University, Linköping 58183, Sweden; E-Mails: (A.D.L.); (L.H.)
| | - Manman Zhao
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Siyao Chen
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Jinyan Yang
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Shanshan Chen
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Chaoshu Tang
- Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China; E-Mail:
- Department of Physiology and Pathophysiology, Health Sciences Center, Peking University, Beijing 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
- Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-8357-3238; Fax: +86-10-6653-0532
| |
Collapse
|