1
|
Yang J, Yang X, Guo T, Wang L, Zhao Z, Hu Z, Li Y. Can thymosin beta 10 function both as a non-invasive biomarker and chemotherapeutic target in human colorectal cancer? Transl Oncol 2024; 46:102026. [PMID: 38850800 PMCID: PMC11214320 DOI: 10.1016/j.tranon.2024.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Thymosin beta 10 (TMSB10) overexpression is a general characteristic in human carcinogenesis. It is involved in the malignant process of generating multiple cancers. However, there are only a few reports about TMSB10 in colorectal cancer (CRC) and the mechanism of its carcinogenetic effect is still poorly understood. The present study intends to clarify the biological roles and carcinogenic mechanism of TMSB10 in CRC and to explore the possibility whether TMSB10 might be useful as a non-invasive serum tumor biomarker in detecting CRC. Immunohistochemical results showed that TMSB10 protein expression in CRC tissues was generally higher than that in adjacent tissues, and the TMSB10 contents in serum of CRC patients was significantly elevated compared to that of healthy controls. Knockdown-TMSB10 increased apoptosis and induced S-cell cycle arrest, and finally inhibited cell proliferation in vitro and in vivo. Transcriptome sequencing and western blotting analysis revealed that knockdown-TMSB10 increased phosphorylation of p38 and activated the p38 pathway that blocked cell cycle and promoted apoptosis. Taken together, our study indicated that TMSB10 could serve as a minimally invasive serum tumor marker in detecting CRC. At the same time it demonstrates an effective regulatory capacity of TMSB10 on cell proliferation of CRC, suggesting that TMSB10 and downstream effector molecules regulated by TMSB10 could further be applied as an appealing target in clinical post-surgery chemotherapy.
Collapse
Affiliation(s)
- Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China; Lvliang Center for Disease Prevention and Control, Lvliang, Shanxi, PR China.
| | - Xiaolong Yang
- Department of Cell Biology and Genetics, College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Tianyi Guo
- Department of Colorectal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Lingxiao Wang
- Department of Colorectal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhenxiang Zhao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Zhen Hu
- Department of Colorectal Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, PR China
| | - Yaoping Li
- Department of Colorectal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, PR China.
| |
Collapse
|
2
|
Sadanala BD, Trivedi R. Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities. CHEM REC 2024; 24:e202300347. [PMID: 38984727 DOI: 10.1002/tcr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Indexed: 07/11/2024]
Abstract
The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.
Collapse
Affiliation(s)
- Bhavya Deepthi Sadanala
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Present address, Department of Chemistry, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
3
|
Khan NA, Rashid F, Jadoon MSK, Jalil S, Khan ZA, Orfali R, Perveen S, Al-Taweel A, Iqbal J, Shahzad SA. Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules 2022; 27:molecules27196235. [PMID: 36234774 PMCID: PMC9570995 DOI: 10.3390/molecules27196235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecules with nitrogen-containing scaffolds have gained much attention due to their biological importance in the development of new anticancer agents. The present paper reports the synthesis of a library of new dihydropyridine and pyridine analogs with diverse pharmacophores. All compounds were tested against the human tissue nonspecific alkaline phosphatase (h-TNAP) enzyme. Most of the compounds showed excellent enzyme inhibition against h-TNAP, having IC50 values ranging from 0.49 ± 0.025 to 8.8 ± 0.53 µM, which is multi-fold higher than that of the standard inhibitor (levamisole = 22.65 ± 1.60 µM) of the h-TNAP enzyme. Furthermore, an MTT assay was carried out to evaluate cytotoxicity against the HeLa and MCF-7 cancer cell lines. Among the analogs, the most potent dihydropyridine-based compound 4d was selected to investigate pro-apoptotic behavior. The further analysis demonstrated that compound 4d played a significant role in inducing apoptosis through multiple mechanisms, including overproduction of reactive oxygen species, mitochondrial dysfunction, DNA damaging, and arrest of the cell cycle at the G1 phase by inhibiting CDK4/6. The apoptosis-inducing effect of compound 4d was studied through staining agents, microscopic, and flow cytometry techniques. Detailed structure–activity relationship (SAR) and molecular docking studies were carried out to identify the core structural features responsible for inhibiting the enzymatic activity of the h-TNAP enzyme. Moreover, fluorescence emission studies corroborated the binding interaction of compound 4d with DNA through a fluorescence titration experiment.
Collapse
Affiliation(s)
- Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Siraj Khan Jadoon
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
- Correspondence: or
| |
Collapse
|
4
|
Yang GJ, Wang W, Lei PM, Leung CH, Ma DL. A 7-methoxybicoumarin derivative selectively inhibits BRD4 BD2 for anti-melanoma therapy. Int J Biol Macromol 2020; 164:3204-3220. [DOI: 10.1016/j.ijbiomac.2020.08.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
|
5
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
6
|
Wang SY, Ni X, Hu KQ, Meng FL, Li M, Ma XL, Meng TT, Wu HH, Ge D, Zhao J, Li Y, Su GH. Cilostazol alleviate nicotine induced cardiomyocytes hypertrophy through modulation of autophagy by CTSB/ROS/p38MAPK/JNK feedback loop. Int J Biol Sci 2020; 16:2001-2013. [PMID: 32398966 PMCID: PMC7211170 DOI: 10.7150/ijbs.43825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Nicotine is proved to be an important factor for cardiac hypertrophy. Autophagy is important cell recycling system involved in the regulation of cardiac hypertrophy. Cilostazol, which is often used in the management of peripheral vascular disease. However, the effects of cilostazol on nicotine induced autophagy and cardiac hypertrophy are unclear. Here, we aim to determine the role and molecular mechanism of cilostazol in alleviating nicotine-induced cardiomyocytes hypertrophy through modulating autophagy and the underlying mechanisms. Our results clarified that nicotine stimulation caused cardiomyocytes hypertrophy and autophagy flux impairment significantly in neonatal rat ventricular myocytes (NRVMs), which were evidenced by augments of LC3-II and p62 levels, and impaired autophagosomes clearance. Interestingly, cathepsin B (CTSB) activity decreased dramatically after stimulation with nicotine in NRVMs, which was crucial for substrate degradation in the late stage of autophagy process, and cilostazol could reverse this effect dramatically. Intracellular ROS levels were increased significantly after nicotine exposure. Meanwhile, p38MAPK and JNK were activated after nicotine treatment. By using ROS scavenger N-acetyl-cysteine (NAC) could reverse the effects of nicotine by down-regulation the phosphorylation of p38MAPK and JNK pathways, and pretreatment of specific inhibitors of p38MAPK and JNK could restore the autophagy impairment and cardiomyocytes hypertrophy induced by nicotine. Moreover, CTSB activity of lysosome regained after the treatment with cilostazol. Cilostazol also inhibited the ROS accumulation and the activation of p38MAPK and JNK, which providing novel connection between lysosome CTSB and ROS/p38MAPK/JNK related oxidative stress pathway. This is the first demonstration that cilostazol could alleviate nicotine induced cardiomyocytes hypertrophy through restoration of autophagy flux by activation of CTSB and inhibiting ROS/p38/JNK pathway, exhibiting a feedback loop on regulation of autophagy and cardiomyocytes hypertrophy.
Collapse
Affiliation(s)
- Shu-Ya Wang
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xi Ni
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ke-Qing Hu
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan-Liang Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Li
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao-Li Ma
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ting-Ting Meng
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Hui-Hui Wu
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, China
| | - Jing Zhao
- Development Biology, School of Life Science, Shandong University, Jinan, China
| | - Ying Li
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guo-Hai Su
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Tsypysheva IP, Koval’skaya AV, Petrova PR, Lobov AN, Erastov AS, Zileeva ZR, Vakhitov VА, Vakhitova YV. Synthesis of conjugates of (−)-cytisine derivatives with ferrocene-1-carbaldehyde and their cytotoxicity against HEK293, Jurkat, A549, MCF-7 and SH-SY5Y cells. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Wang R, Chen H, Yan W, Zheng M, Zhang T, Zhang Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur J Med Chem 2020; 190:112109. [PMID: 32032851 DOI: 10.1016/j.ejmech.2020.112109] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Cancer is one of the most fatal threatens to human health throughout the world. The major challenges in the control and eradication of cancers are the continuous emergency of drug-resistant cancer and the low specificity of anticancer agents, creating an urgent need to develop novel anticancer agents. Organometallic compounds especially ferrocene derivatives possess remarkable structural and mechanistic diversity, inherent stability towards air, heat and light, low toxicity, low cost, reversible redox, ligand exchange, and catalytic properties, making them promising drug candidates for cancer therapy. Ferrocifen, a ferrocene-phenol hybrid, has demonstrated promising anticancer properties on drug-resistant cancers. Currently, Ferrocifen is in pre-clinical trial against cancers. Obviously, ferrocene moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of ferrocene-containing hybrids with potential application in the treatment of cancers covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Ruo Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Huahong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Weitao Yan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingwen Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Tesen Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaohuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
9
|
Montes-González I, Alsina-Sánchez AM, Aponte-Santini JC, Delgado-Rivera SM, Durán-Camacho GL. Perspectives of ferrocenyl chalcones: synthetic scaffolds toward biomedical and materials science applications. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Ferrocene and its derivatives constitute versatile and interesting scaffolds for the global chemical enterprise due to its multiple applications that range from biomedical to materials science. Ferrocenyl derivatives are the leading compounds in our research for the syntheses and characterization as well as their potential biological applications. Among them, our recent focus has been in ferrocenyl chalcones as a framework for further derivatization. The proposed modifications consist on the incorporation of heterocyclic moieties into the ferrocenyl chalcone core. This can be afforded either by introducing a heterocyclic aromatic moiety as a substituent or functionalizing the α-β unsaturated system. Another modification explored is the formation of ammonium or pyridinium salts to increase water solubility. Studied ferrocenyl chalcones exhibit remarkable stability, physical, and electrochemical properties. These factors have led the approaches for them to be precursors of biologically active compounds (cancer, bacteria, malaria, and neurobiological diseases). Moreover, other potential applications include molecular materials, redox-sensors, and polymers. Our goal in this mini review is to highlight the chemistry of ferrocene derivatives with particular prominence to those ferrocenyl chalcones studied in our laboratory and their applications. Moreover, we are providing a background on ferrocene, chalcones, and ferrocenyl chalcones, emphasizing the methodologies with preeminent yields.
Collapse
Affiliation(s)
- Ingrid Montes-González
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | - Ambar M. Alsina-Sánchez
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | - Juan C. Aponte-Santini
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | - Sara M. Delgado-Rivera
- Department of Chemistry , University of Puerto Rico-Río Piedras Campus , San Juan , Puerto Rico
| | | |
Collapse
|
10
|
Saravanan V, Kannan A, Rajakumar P. Synthesis, characterization, optical and electrochemical properties and antifungal and anticancer activities of ferrocenyl conjugated novel dendrimers. NEW J CHEM 2017. [DOI: 10.1039/c6nj01120a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A new class of triazoloferrocenyl conjugates was prepared by copper(i) catalyzed click chemistry, which shows good antifungal activity against fungal pathogens, and also shows excellent anticancer activity against MCF-7 cells.
Collapse
Affiliation(s)
| | - Ayyavoo Kannan
- Department of Organic Chemistry
- University of Madras
- Chennai
- India
- Department of Chemistry
| | | |
Collapse
|
11
|
Zhao T, Pan H, Feng Y, Li H, Zhao Y. Petroleum ether extract of Chenopodium album L. prevents cell growth and induces apoptosis of human lung cancer cells. Exp Ther Med 2016; 12:3301-3307. [PMID: 27882153 PMCID: PMC5103781 DOI: 10.3892/etm.2016.3765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/13/2016] [Indexed: 11/29/2022] Open
Abstract
Chenopodium album L. is a common edible herb distributed in China that has been used as a traditional Chinese medicine for antiviral, antifungal, anti-inflammatory and cancer treatment. However, to the best of our knowledge no previous reports have investigated its the function of its phytochemical extracts in lung cancer cells. The purpose of the present study was to assess the anticancer activities of the phytochemical extracts of C. album L. on human non-small cell lung cancer A549 cells. The present findings demonstrated that the petroleum ether (PE) extract of C. album L. exhibited significant growth inhibitory effects on A549 with an IC50 value of 33.31±2.79 µg/ml. As determined by MTT and colony formation assays, its growth inhibitory effects were dose- and time-dependent. Furthermore, PE extract-treated A549 cells exhibited dose-dependent cell growth arrest at the G1 phase of the cell cycle and cell apoptosis was induced. These results provide useful data on the anticancer activities of C. album L. in human lung cancer and demonstrated the novel possibilities of this plant in developing lung cancer therapies.
Collapse
Affiliation(s)
- Ting Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Hui Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yang Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Haizhou Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yang Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China; Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20000, P.R. China
| |
Collapse
|
12
|
Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation. PLoS One 2016; 11:e0148482. [PMID: 26845040 PMCID: PMC4741527 DOI: 10.1371/journal.pone.0148482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Adiponectin and miR-133a are key regulators in cardiac hypertrophy. However, whether APN has a potential effect on miR-133a remains unclear. In this study, we aimed to investigate whether APN could regulate miR-133a expression in Angiotensin II (Ang II) induced cardiac hypertrophy in vivo and in vitro. Lentiviral-mediated adiponectin treatment attenuated cardiac hypertrophy induced by Ang II infusion in male wistar rats as determined by reduced cell surface area and mRNA levels of atrial natriuretic peptide (ANF) and brain natriuretic peptide (BNP), also the reduced left ventricular end-diastolic posterior wall thickness (LVPWd) and end-diastolic interventricular septal thickness (IVSd). Meanwhile, APN elevated miR-133a level which was downregulated by Ang II. To further investigate the underlying molecular mechanisms, we treated neonatal rat ventricular myocytes (NRVMs) with recombinant rat APN before Ang II stimulation. Pretreating cells with recombinant APN promoted AMP-activated protein kinase (AMPK) phosphorylation and inhibited ERK activation. By using the inhibitor of AMPK or a lentiviral vector expressing AMPK short hairpin RNA (shRNA) cancelled the positive effect of APN on miR-133a. The ERK inhibitor PD98059 reversed the downregulation of miR-133a induced by Ang II. These results indicated that the AMPK activation and ERK inhibition were responsible for the positive effect of APN on miR-133a. Furthermore, adiponectin receptor 1 (AdipoR1) mRNA expression was inhibited by Ang II stimulation. The positive effects of APN on AMPK activation and miR-133a, and the inhibitory effect on ERK phosphorylation were inhibited in NRVMs transfected with lentiviral AdipoR1shRNA. In addition, APN depressed the elevated expression of connective tissue growth factor (CTGF), a direct target of miR-133a, through the AMPK pathway. Taken together, our data indicated that APN reversed miR-133a levels through AMPK activation, reduced ERK1/2 phosphorylation in cardiomyocytes stimulated with Ang II, revealing a previously undemonstrated and important link between APN and miR-133a.
Collapse
|