1
|
Yudintceva NM, Nashchekina YA, Mikhailova NA, Vinogradova TI, Yablonsky PK, Gorelova AA, Muraviov AN, Gorelov AV, Samusenko IA, Nikolaev BP, Yakovleva LY, Shevtsov MA. Urethroplasty with a bilayered poly-D,L-lactide-co-ε-caprolactone scaffold seeded with allogenic mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2019; 108:1010-1021. [PMID: 31369698 DOI: 10.1002/jbm.b.34453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023]
Abstract
Reconstructive surgery for urethral defects employing tissue-engineered scaffolds represents an alternative treatment for urethroplasty. The aim of this study was to compare the therapeutic efficacy of the bilayer poly-D,L-lactide/poly-ε-caprolactone (PL-PC) scaffold seeded with allogenic mesenchymal stem cells (MSCs) for urethra reconstruction in a rabbit model with conventional urethroplasty employing an autologous buccal mucosa graft (BG). The inner layer of the scaffold based on poly-D,L-lactic acid (PL) was seeded with MSCs, while the outer layer, prepared from poly-ε-caprolactone, protected the surrounding tissues from urine. To track the MSCs in vivo, the latter were labeled with superparamagnetic iron oxide nanoparticles. In rabbits, a dorsal penile defect was reconstructed employing a BG or a PL-PC graft seeded with nanoparticle-labeled MSCs. In the 12-week follow-up period, no complications were detected. Subsequent histological analysis demonstrated biointegration of the PL-PC graft with surrounding urethral tissues. Less fibrosis and inflammatory cell infiltration were observed in the experimental group as compared with the BG group. Nanoparticle-labeled MSCs were detected in the urothelium and muscular layer, co-localizing with the urothelium cytokeratin marker AE1/AE3, indicating the possibility of MSC differentiation into neo-urothelium. Our results suggest that a bilayer MSCs-seeded scaffold could be efficiently employed for urethroplasty.
Collapse
Affiliation(s)
- Natalia M Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Yulia A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Nataliya A Mikhailova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Tatiana I Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Petr K Yablonsky
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia.,Federal State Budgetary Institute, St. Petersburg, Russia
| | - Anna A Gorelova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia.,St. Luca's City Hospital, St. Petersburg, Russia
| | - Alexandr N Muraviov
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia.,Private University, Saint-Petersburg Medico-Social Institute, St. Petersburg, Russia
| | - Andrey V Gorelov
- Federal State Budgetary Institute, St. Petersburg, Russia.,Pokrovskaya Municipal Hospital, St. Petersburg, Russia
| | - Igor A Samusenko
- Federal State Budgetary Institute, The Nikiforov Russian Center of Emergency and Radiation Medicine, Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, St. Petersburg, Russia
| | - Boris P Nikolaev
- Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | | | - Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia.,Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, St. Petersburg, Russia.,Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Numerical Simulation of Shale Gas Multiscale Seepage Mechanism-Coupled Stress Sensitivity. J CHEM-NY 2019. [DOI: 10.1155/2019/7387234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complexity of the gas transport mechanism in microfractures and nanopores is caused by the feature of multiscale and multiphysics. Figuring out the flow mechanism is of great significance for the efficient development of shale gas. In this paper, an apparent permeability model which covers continue, slip, transition, and molecular flow and geomechanical effect was presented. Additionally, a mathematical model comprising multiscale, geomechanics, and adsorption phenomenon was proposed to characterize gas flow in the shale reservoir. The aim of this paper is to investigate some important impacts in the process of gas transportation, which includes the shale stress sensitivity, adsorption phenomenon, and reservoir porosity. The results reveal that the performance of the multistage fractured horizontal well is strongly influenced by stress sensitivity coefficient. The cumulative gas production will decrease sharply when the shale gas reservoir stress sensitivity coefficient increases. In addition, the adsorption phenomenon has an influence on shale gas seepage and sorption capacity; however, the effect of adsorption is very weak in the early gas transport period, and the impact of later will increase. Moreover, shale porosity also greatly affects the shale gas transportation.
Collapse
|
3
|
Yudintceva NM, Nashchekina YA, Blinova MI, Orlova NV, Muraviov AN, Vinogradova TI, Sheykhov MG, Shapkova EY, Emeljannikov DV, Yablonskii PK, Samusenko IA, Mikhrina AL, Pakhomov AV, Shevtsov MA. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells. Int J Nanomedicine 2016; 11:4521-4533. [PMID: 27660444 PMCID: PMC5019275 DOI: 10.2147/ijn.s111656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in vivo and support bladder tissue regeneration and function.
Collapse
Affiliation(s)
- Natalia M Yudintceva
- Department of Cell Culture, Institute of Cytology of the Russian Academy of Sciences (RAS)
| | - Yulia A Nashchekina
- Department of Cell Culture, Institute of Cytology of the Russian Academy of Sciences (RAS)
- Nanotechnology and Telecommunications, Institute of Physics, Peter the Great St Petersburg Polytechnic University
| | - Miralda I Blinova
- Department of Cell Culture, Institute of Cytology of the Russian Academy of Sciences (RAS)
| | - Nadezhda V Orlova
- Department of Urology, Federal State Institution Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
| | - Alexandr N Muraviov
- Department of Urology, Federal State Institution Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
| | - Tatiana I Vinogradova
- Department of Urology, Federal State Institution Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
| | - Magomed G Sheykhov
- Department of Urology, Federal State Institution Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
| | - Elena Y Shapkova
- Department of Urology, Federal State Institution Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
| | - Dmitriy V Emeljannikov
- Department of Urology, Federal State Institution Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
| | - Petr K Yablonskii
- Department of Urology, Federal State Institution Saint Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia
- Faculty of Medicine, Federal State Budgetary Institute
| | - Igor A Samusenko
- Department of Pathology, Federal State Budgetary Institute “Nikiforov Russian Centre of Emergency and Radiation Medicine” of the Ministry of Health of Russia
| | - Anastasiya L Mikhrina
- Department of Pathomorphology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Science
| | - Artem V Pakhomov
- Department of Radiology, Federal Almazov North-West Medical Research Center
| | - Maxim A Shevtsov
- Department of Cell Culture, Institute of Cytology of the Russian Academy of Sciences (RAS)
- Department of Radiology, Federal Almazov North-West Medical Research Center
- Department of Experimental Medicine, First I.P. Pavlov State Medical University of St Petersburg, St Petersburg, Russia
| |
Collapse
|