1
|
Yin Z, Wong STC. Artificial intelligence unifies knowledge and actions in drug repositioning. Emerg Top Life Sci 2021; 5:803-813. [PMID: 34881780 PMCID: PMC8923082 DOI: 10.1042/etls20210223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Drug repositioning aims to reuse existing drugs, shelved drugs, or drug candidates that failed clinical trials for other medical indications. Its attraction is sprung from the reduction in risk associated with safety testing of new medications and the time to get a known drug into the clinics. Artificial Intelligence (AI) has been recently pursued to speed up drug repositioning and discovery. The essence of AI in drug repositioning is to unify the knowledge and actions, i.e. incorporating real-world and experimental data to map out the best way forward to identify effective therapeutics against a disease. In this review, we share positive expectations for the evolution of AI and drug repositioning and summarize the role of AI in several methods of drug repositioning.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center and Ting Tsung & Wei Fong Chao Center for BRAIN, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, U.S.A
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center and Ting Tsung & Wei Fong Chao Center for BRAIN, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX 77030, U.S.A
| |
Collapse
|
2
|
Dalpiaz A, Paganetto G, Botti G, Pavan B. Cancer stem cells and nanomedicine: new opportunities to combat multidrug resistance? Drug Discov Today 2020; 25:1651-1667. [PMID: 32763499 DOI: 10.1016/j.drudis.2020.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
'Multidrug resistance' (MDR) is a difficult challenge for cancer treatment. The combined role of cytochrome P450 enzymes (CYPs) and active efflux transporters (AETs) in cancer cells appears relevant in inducing MDR. Chemotherapeutic drugs can be substrates of both CYPs and AETs and CYP inducers or inhibitors can produce the same effects on AETs. In addition, a small subpopulation of cancer stem-like cells (CSCs) appears to survive conventional chemotherapy, leading to recurrent disease. Natural products appear efficacious against CSCs; their combinational treatments with standard chemotherapy are promising for cancer eradication, in particular when supported by nanotechnologies.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giada Botti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
3
|
Alyoussef A, Taha M. Blocking Wnt as a therapeutic target in mice model of skin cancer. Arch Dermatol Res 2019; 311:595-605. [PMID: 31165240 DOI: 10.1007/s00403-019-01939-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
Wnt pathway plays an important role in controlling metabolism in cancer cells. It acts as positive modulator for both cell inflammation, through activation of NFκB, and fibrosis, through activation of TGF-β. Therefore, the aim of this study is to investigate the therapeutic effects of blocking Wnt pathway by IWP12 on skin cancer by studying its effects on skin cancer-induced inflammation and fibrosis in a mice model of skin cancer. Skin cancer was induced by application of 7,12-dimethylbenz[a]anthracene (DMBA) and croton oil on the dorsal skin of mice. Dorsal skin was removed for estimation of gene and protein expression of Wnt, β-catenin, SMAD, TGF-β, NFκB, TNF-α, IL-4 and IL-10. Part of the skin is stained with hematoxylin/eosin for assessment of cell structure. Treatment of mice with IWP12 completely blocked Wnt in skin cancer mice without affecting the control mice. Skin of tumorigenic mice showed marked skin hyperkeratosis, parakeratosis, acanthosis and dysplasia. Treatment with IWP12 markedly attenuated epidermal atypia and hyperplasia. In addition, IWP12 reduced expression of β-catenin, SMAD, TGF-β, NFκB and TNF-α associated with increase in the expression of IL-4 and IL-10. In conclusion, blocking Wnt production ameliorated skin cancer via blocking pro-inflammatory cytokines and enhancing the anti-inflammatory cytokines. Moreover, blocking Wnt attenuated skin cancer-induced activation of fibrosis pathway.
Collapse
Affiliation(s)
- Abdullah Alyoussef
- Department of Internal Medicine (Dermatology), Faculty of Medicine, University of Tabuk, Tabuk, 71471, Saudi Arabia.
| | - Medhat Taha
- Department of Anatomy and Embryology, College of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Chen D. Dually Efficacious Medicine Against Fibrosis and Cancer. Med Sci (Basel) 2019; 7:medsci7030041. [PMID: 30836705 PMCID: PMC6473536 DOI: 10.3390/medsci7030041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Although there is a contemporary consensus of managing a severe disease with multi-targeted approach-based therapeutic combinations, it should not be ignored that certain patho-biological pathways are shared by distinct medical conditions and can be exploited to develop an exceptional type of medication conferring a dual efficacy. This article thus presents a spectrum of emerging molecular targets that substantially contribute to the pathogenesis of both fibrotic and neoplastic disorders, including kinase activities, cytokine cascades, and protein dynamics among others. Moreover, recently approved therapeutic agents in this regard have been sorted out to corroborate the drug’s ability upon targeting each one of these molecular pathways to treat fibrosis and cancer simultaneously. It not only streamlines an overlapping mechanistic profile in the pathogenesis across these two medical conditions, but also inspires clinicians and pharmaceutical innovation to tackle concomitant diseases, such as fibrosis and cancer, with an optimally efficacious medication.
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute of Biological Medicine, Yiling Pharmaceutical; Beijing 102600, China.
| |
Collapse
|
5
|
Gao L, Chen B, Li J, Yang F, Cen X, Liao Z, Long X. Wnt/β-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PLoS One 2017; 12:e0181346. [PMID: 28837560 PMCID: PMC5570310 DOI: 10.1371/journal.pone.0181346] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway is necessary for the development of the central nervous system and is associated with tumorigenesis in various cancers. However, the mechanism of the Wnt signaling pathway in glioma cells has yet to be elucidated. Small-molecule Wnt modulators such as ICG-001 and AZD2858 were used to inhibit and stimulate the Wnt/β-catenin signaling pathway. Techniques including cell proliferation assay, colony formation assay, Matrigel cell invasion assay, cell cycle assay and Genechip microarray were used. Gene Ontology Enrichment Analysis and Gene Set Enrichment Analysis have enriched many biological processes and signaling pathways. Both the inhibiting and stimulating Wnt/β-catenin signaling pathways could influence the cell cycle, moreover, reduce the proliferation and survival of U87 glioma cells. However, Affymetrix expression microarray indicated that biological processes and networks of signaling pathways between stimulating and inhibiting the Wnt/β-catenin signaling pathway largely differ. We propose that Wnt/β-catenin signaling pathway might prove to be a valuable therapeutic target for glioma.
Collapse
Affiliation(s)
- Liyang Gao
- School of Life Science, Ningxia University, Yinchuan, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hosptial of Guangdong Medical University, Zhanjiang, China
- * E-mail: (LG); (BC)
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- * E-mail: (LG); (BC)
| | - Jinhong Li
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Yang
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuecheng Cen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuangbing Liao
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao’ao Long
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Drug repositioning based on triangularly balanced structure for tissue-specific diseases in incomplete interactome. Artif Intell Med 2017; 77:53-63. [DOI: 10.1016/j.artmed.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/06/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023]
|
7
|
Li Y, Qiu SS, Shao Y, Song HH, Li GL, Lu W, Zhu LM. Dickkopf-1 has an Inhibitory Effect on Mesenchymal Stem Cells to Fibroblast Differentiation. Chin Med J (Engl) 2017; 129:1200-7. [PMID: 27174329 PMCID: PMC4878166 DOI: 10.4103/0366-6999.181974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are bone marrow stem cells which play an important role in tissue repair. The treatment with MSCs will be likely to aggravate the degree of fibrosis. The Wnt/β-catenin signaling pathway is involved in developmental and physiological processes, such as fibrosis. Dickkopfs (DKKs) are considered as an antagonist to block Wnt/β-catenin signaling pathway by binding the receptor of receptor-related protein (LRP5/6). DKK1 was chosen in attempt to inhibit fibrosis of MSCs by lowering activity of Wnt/β-catenin signaling pathway. Methods: Stable MSCs were randomly divided into four groups: MSCs control, MSCs + transforming growth factor-β (TGF-β), MSCs + DKK1, and MSCs + TGF-β + DKK1. Flow cytometry was used to identify MSCs. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide test. Immunofluorescence was used to detect protein expression in the Wnt/β-catenin signaling pathways. Western blotting analysis was employed to test expression of fibroblast surface markers and, finally, real-time reverse transcription polymerase chain reaction was employed to test mRNA expression of fibroblast surface markers and Wnt/β-catenin signaling proteins. Results: Cultivated MSCs were found to conform to the characteristics of standard MSCs: expression of cluster of differentiation (CD) 73, 90, and 105, not expression of 34, 45, and 79. We found that DKK1 could maintain the normal cell morphology of MSCs. Western blotting analysis showed that fibroblast surface markers were expressed in high quantities in the group MSCs + TGF-β. However, the expression was lower in the MSCs + TGF-β + DKK1. Immunofluorescence showed high expression of all Wnt/β-catnin molecules in the MSCs + TGF-β group but expressed in lower quantities in MSCs + TGF-β + DKK1 group. Finally, mRNA expression of fibroblast markers vimentin, α-smooth muscle actin and Wnt/β-catenin signaling proteins β-catenin, T-cell factor, and glycogen synthase kinase-3β was significantly increased in MSCs + TGF-β group compared to control (P < 0.05). Expression of the same fibroblast markers and Wnt/β-catenin was decreased to regular quantities in the MSCs + TGF-β + DKK1 group. Conclusions: DKK1, Wnt/β-catenin inhibitors, blocks the Wnt/β-catenin signaling pathway to inhibit the process of MSCs fibrosis. It might provide some new ways for clinical treatment of certain diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Sang-Sang Qiu
- Department of Infection Management, Affiliated Wuxi People's Hospital to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Yan Shao
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Hong-Huan Song
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Gu-Li Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Wei Lu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| | - Li-Mei Zhu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210009, China
| |
Collapse
|
8
|
Torquato HFV, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells. Curr Genomics 2017; 18:156-174. [PMID: 28367074 PMCID: PMC5345336 DOI: 10.2174/1389202917666160803162309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Márcia I Goettert
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário Univates, Rio Grande do Sul, Brazil
| | - Giselle Z Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
9
|
Morin F, Kavian N, Nicco C, Cerles O, Chéreau C, Batteux F. Niclosamide Prevents Systemic Sclerosis in a Reactive Oxygen Species–Induced Mouse Model. THE JOURNAL OF IMMUNOLOGY 2016; 197:3018-3028. [DOI: 10.4049/jimmunol.1502482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/14/2016] [Indexed: 12/27/2022]
|
10
|
Guo J, Yu W, Su H, Pang X. Genomic landscape of gastric cancer: molecular classification and potential targets. SCIENCE CHINA-LIFE SCIENCES 2016; 60:126-137. [PMID: 27460193 DOI: 10.1007/s11427-016-0034-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Gastric cancer imposes a considerable health burden worldwide, and its mortality ranks as the second highest for all types of cancers. The limited knowledge of the molecular mechanisms underlying gastric cancer tumorigenesis hinders the development of therapeutic strategies. However, ongoing collaborative sequencing efforts facilitate molecular classification and unveil the genomic landscape of gastric cancer. Several new drivers and tumorigenic pathways in gastric cancer, including chromatin remodeling genes, RhoA-related pathways, TP53 dysregulation, activation of receptor tyrosine kinases, stem cell pathways and abnormal DNA methylation, have been revealed. These newly identified genomic alterations await translation into clinical diagnosis and targeted therapies. Considering that loss-of-function mutations are intractable, synthetic lethality could be employed when discussing feasible therapeutic strategies. Although many challenges remain to be tackled, we are optimistic regarding improvements in the prognosis and treatment of gastric cancer in the near future.
Collapse
Affiliation(s)
- Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
11
|
Toman O, Kabickova T, Vit O, Fiser R, Polakova KM, Zach J, Linhartova J, Vyoral D, Petrak J. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target. Oncol Rep 2016; 36:1258-68. [PMID: 27430982 PMCID: PMC4968618 DOI: 10.3892/or.2016.4945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/26/2016] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients.
Collapse
Affiliation(s)
- O Toman
- Institute of Hematology and Blood Transfusion, CZ-12820 Prague 2, Czech Republic
| | - T Kabickova
- Institute of Hematology and Blood Transfusion, CZ-12820 Prague 2, Czech Republic
| | - O Vit
- BIOCEV, First Faculty of Medicine, Charles University in Prague, CZ-25250 Vestec, Czech Republic
| | - R Fiser
- Department of Genetics and Microbiology, Faculty of Natural Sciences, Charles University in Prague, CZ-12843 Prague, Czech Republic
| | - K Machova Polakova
- Institute of Hematology and Blood Transfusion, CZ-12820 Prague 2, Czech Republic
| | - J Zach
- Institute of Hematology and Blood Transfusion, CZ-12820 Prague 2, Czech Republic
| | - J Linhartova
- Institute of Hematology and Blood Transfusion, CZ-12820 Prague 2, Czech Republic
| | - D Vyoral
- Institute of Hematology and Blood Transfusion, CZ-12820 Prague 2, Czech Republic
| | - J Petrak
- Institute of Hematology and Blood Transfusion, CZ-12820 Prague 2, Czech Republic
| |
Collapse
|
12
|
Wnt/β-Catenin Signaling Pathway in Skin Carcinogenesis and Therapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:964842. [PMID: 26078973 PMCID: PMC4452418 DOI: 10.1155/2015/964842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/06/2015] [Accepted: 04/21/2015] [Indexed: 01/26/2023]
Abstract
Cooperating with other signaling pathways, Wnt signaling controls cell proliferation, morphology, motility, and embryonic development destination and maintains the homeostasis of tissues including skin, blood, intestine, and brain by regulating somatic stem cells and their niches throughout adult life. Abnormal regulation of Wnt pathways leads to neoplastic proliferation in these tissues. Recent research shows that Wnt signaling is also associated with the regulation of cancer stem cells (CSCs) through a similar mechanism to that observed in normal adult stem cells. Thus, the Wnt/β-catenin signaling pathway has been intensively studied and characterized. For this review, we will focus on the regulation of the Wnt/β-catenin signaling pathway in skin cancer. With the important role in stemness and skin CSC proliferation, the Wnt/β-catenin signaling pathway and its elements have the potential to be targets for skin cancer therapy.
Collapse
|
13
|
Cetin GO, Toylu A, Atabey N, Sercan Z, Sakizli M. Downregulation of VANGL1 inhibits cellular invasion rather than cell motility in hepatocellular carcinoma cells without stimulation. Genet Test Mol Biomarkers 2015; 19:283-7. [PMID: 25874746 DOI: 10.1089/gtmb.2015.0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS The Wnt planar cell polarity (PCP) pathway is one of the Wnt pathways which plays a critical role in cell proliferation and fate. The VANGL1 protein is one of Wnt-PCP pathway components. It is known that Wnt-PCP pathway has major roles in cell motility but its role in hepatocellular carcinoma (HCC) progression through invasion and metastasis needs to be clarified. METHODS We silenced VANGL1 gene expression in the HepG2 HCC cell line by stable transfection with a vector containing siRNA template for VANGL1 and investigated the change in cell invasion and motility. RESULTS Transfected cells with the siRNA template showed significantly suppressed invasive capacity when compared to controls although cellular motility was only slightly affected. CONCLUSION Our study showed a basal role for VANGL1 with respect to the invasive capacity of HCC cells. This suggests that the Wnt-PCP pathway may play a role in progression of HCC through cellular invasion but further studies are needed to clarify its role in cell motility.
Collapse
Affiliation(s)
- Gokhan Ozan Cetin
- Department of Medical Biology and Genetics, Medical School of Dokuz Eylul University , Izmir, Turkey
| | - Asli Toylu
- Department of Medical Biology and Genetics, Medical School of Dokuz Eylul University , Izmir, Turkey
| | - Nese Atabey
- Department of Medical Biology and Genetics, Medical School of Dokuz Eylul University , Izmir, Turkey
| | - Zeynep Sercan
- Department of Medical Biology and Genetics, Medical School of Dokuz Eylul University , Izmir, Turkey
| | - Meral Sakizli
- Department of Medical Biology and Genetics, Medical School of Dokuz Eylul University , Izmir, Turkey
| |
Collapse
|
14
|
Integrated analysis identifies interaction patterns between small molecules and pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:931825. [PMID: 25114931 PMCID: PMC4121214 DOI: 10.1155/2014/931825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 01/21/2023]
Abstract
Previous studies have indicated that the downstream proteins in a key pathway can be potential drug targets and that the pathway can play an important role in the action of drugs. So pathways could be considered as targets of small molecules. A link map between small molecules and pathways was constructed using gene expression profile, pathways, and gene expression of cancer cell line intervened by small molecules and then we analysed the topological characteristics of the link map. Three link patterns were identified based on different drug discovery implications for breast, liver, and lung cancer. Furthermore, molecules that significantly targeted the same pathways tended to treat the same diseases. These results can provide a valuable reference for identifying drug candidates and targets in molecularly targeted therapy.
Collapse
|
15
|
New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:126586. [PMID: 24527434 PMCID: PMC3909978 DOI: 10.1155/2014/126586] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Despite relevant progress obtained by multimodal treatment, glioblastoma (GBM), the most aggressive primary brain tumor, is still incurable. The most encouraging advancement of GBM drug research derives from the identification of cancer stem cells (CSCs), since these cells appear to represent the determinants of resistance to current standard therapies. The goal of most ongoing studies is to identify drugs able to affect CSCs biology, either inducing selective toxicity or differentiating this tumor cell population into nontumorigenic cells. Moreover, the therapeutic approach for GBM could be improved interfering with chemo- or radioresistance mechanisms, microenvironment signals, and the neoangiogenic process. During the last years, molecular targeted compounds such as sorafenib and old drugs, like metformin, displayed interesting efficacy in preclinical studies towards several tumors, including GBM, preferentially affecting CSC viability. In this review, the latest experimental results, controversies, and prospective application concerning these promising anticancer drugs will be discussed.
Collapse
|
16
|
Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 2013; 19:637-44. [PMID: 24239728 DOI: 10.1016/j.drudis.2013.11.005] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 01/04/2023]
Abstract
Recycling old drugs, rescuing shelved drugs and extending patents' lives make drug repositioning an attractive form of drug discovery. Drug repositioning accounts for approximately 30% of the newly US Food and Drug Administration (FDA)-approved drugs and vaccines in recent years. The prevalence of drug-repositioning studies has resulted in a variety of innovative computational methods for the identification of new opportunities for the use of old drugs. Questions often arise from customizing or optimizing these methods into efficient drug-repositioning pipelines for alternative applications. It requires a comprehensive understanding of the available methods gained by evaluating both biological and pharmaceutical knowledge and the elucidated mechanism-of-action of drugs. Here, we provide guidance for prioritizing and integrating drug-repositioning methods for specific drug-repositioning pipelines.
Collapse
|
17
|
|