1
|
Sharma A, Gupta S, Sharma NR, Paul K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB Life 2023; 75:82-96. [PMID: 36121739 DOI: 10.1002/iub.2675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic proteins with N-glycosidase activity. RIPs exert their action by removing a specific purine from 28S rRNA, thereby, irreversibly inhibiting the process of protein synthesis. RIPs can target both prokaryotic and eukaryotic cells. In bacteria, the production of RIPs aid in the process of pathogenesis whereas, in plants, the production of these toxins has been attributed to bolster defense against insects, viral, bacterial and fungal pathogens. In recent years, RIPs have been engineered to target a particular cell type, this has fueled various experiments testing the potential role of RIPs in many biomedical applications like anti-viral and anti-tumor therapies in animals as well as anti-pest agents in engineered plants. In this review, we present a comprehensive study of various RIPs, their mode of action, their significance in various fields involving plants and animals. Their potential as treatment options for plant infections and animal diseases is also discussed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| | - Shelly Gupta
- Department of Biochemistry, School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| |
Collapse
|
2
|
Qian H, Wang L, Li Y, Wang B, Li C, Fang L, Tang L. The traditional uses, phytochemistry and pharmacology of Abrus precatorius L.: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115463. [PMID: 35714881 DOI: 10.1016/j.jep.2022.115463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abrus precatorius L. (AP) is a folk medicine with a long-term medicinal history worldwide, which is extensively applied to various ailments, such as bronchitis, jaundice, hepatitis, contraception, tumor, abortion, malaria, etc. Meanwhile, its leaves are also served as tea in China, and its roots are employed as a substitute for Glycyrrhiza uralensis or as a raw material for the extraction of glycyrrhizin in India. Thus, AP is considered to be a plant with dual values of medicine and economy as well as its chemical composition and biological activity, which are of growing interest to the scientific community. AIM OF REVIEW In the review, the traditional application, botany, chemical constituents, pharmacological activities, and toxicity are comprehensively and systematically summarized. MATERIALS AND METHODS An extensive database retrieval was conducted to gather the specific information about AP from 1871 to 2022 using online bibliographic databases Web of Science, PubMed, SciFinder, Google Scholar, CNKI, and Baidu Scholar. The search terms comprise the keywords "Abrus precatorius", "phytochemistry", "pharmacological activity", "toxicity" and "traditional application" as a combination. RESULTS To date, AP is traditionally used to treat various diseases, including sore throat, cough, bronchitis, jaundice, hepatitis, abdominal pain, contraception, tumor, abortion, malaria, and so on. More than 166 chemical compounds have been identified from AP, which primarily cover flavonoids, phenolics, terpenoids, steroids, alkaloids, organic acids, esters, proteins, polysaccharides, and so on. A wide range of in vitro and in vivo pharmacological functions of AP have been reported, such as antitumor, antimicrobial, insecticidal, antiprotozoal, antiparasitic, anti-inflammatory, antioxidant, immunomodulatory, antifertility, antidiabetic, other pharmacological activities. The crushed seeds in powder or paste form were comparatively toxic to humans and animals by oral administration. Interestingly, the methanolic extracts were non-toxic to adult Wistar albino rats at various doses (200 and 400 mg/kg) daily. CONCLUSIONS The review focuses on the traditional application, botany, phytochemistry, pharmacological activities, and toxicity of AP, which offers a valuable context for researchers on the current research status and a reference for further research and applications of this medicinal plant.
Collapse
Affiliation(s)
- Huiqin Qian
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
| | - Lu Wang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bailing Wang
- College of Pharmacy, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chunyan Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Like Fang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Lijie Tang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| |
Collapse
|
3
|
The Updated Review on Plant Peptides and Their Applications in Human Health. Int J Pept Res Ther 2022; 28:135. [PMID: 35911180 PMCID: PMC9326430 DOI: 10.1007/s10989-022-10437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
4
|
Kaur A, Sharma Y, Kumar A, Ghosh MP, Bala K. In-vitro antiproliferative efficacy of Abrus precatorius seed extracts on cervical carcinoma. Sci Rep 2022; 12:10226. [PMID: 35715430 PMCID: PMC9205867 DOI: 10.1038/s41598-022-13976-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Abrus precatorius is a tropical medicinal plant with multiple medicinal benefits whose seeds have not yet been studied against cervical cancer. Herein, we have assessed the antioxidant and antiproliferative properties of seed extracts (ethyl acetate and 70% ethanol) prepared from Soxhlet and Maceration extraction methods against Hep2C and HeLa Cells. We observed that the APE (Sox) extract had a significantly higher total flavonoid content, APA (Mac) extract had a high total phenolic content, and APA (Sox) extract had a high total tannin content. Further, HPLC analysis of extracts revealed the presence of tannic acid and rutin. Moreover, APA (Sox) exhibited the highest free radical scavenging activity. APE (Mac) had the best antiproliferative activity against Hep2C cells, while APA (Sox) had the best antiproliferative activity against HeLa cells. In Hep2C cells, APE (Mac) extract revealed the highest SOD, catalase activity, GSH content, and the lowest MDA content, whereas APA (Mac) extract demonstrated the highest GST activity. In HeLa cells, APA (Sox) extract showed the highest SOD, GST activity, GSH content, and the least MDA content, whereas APA (Mac) extract showed the highest catalase activity. Lastly, docking results suggested maximum binding affinity of tannic acid with HER2 and GCR receptors. This study provides evidence that A. precatorius seed extracts possess promising bioactive compounds with probable anticancer and antioxidant properties against cervical cancer for restricting tumor growth.
Collapse
Affiliation(s)
- Amritpal Kaur
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, India
| | - Madhumita P Ghosh
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
5
|
Zhang L, Xu JY, Yuan L, Yin XB, Li YH, Qin LQ. Protective effects of epigallocatechin-3-o-gallate combined with organic selenium against transforming growth factor-beta 1-induced fibrosis in LX-2 cells. J Food Biochem 2022; 46:e14223. [PMID: 35586925 DOI: 10.1111/jfbc.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the protective effects and possible mechanism of epigallocatechin-3-o-gallate (EGCG) combined with organic selenium in transforming growth factor (TGF)-β1-activated LX-2 cells. After 12 h of starvation, LX-2 cells were treated with 10 ng/ml of recombinant TGF-β1 and different concentrations of EGCG, L-selenomethionine (L-SeMet), or L-selenomethylcysteine (L-SeMC) for 24 h. We found that 100 and 200 μM EGCG combined with 1 mM L-SeMet or L-SeMC showed a synergistic effect in decreasing the survival rate of activated LX-2 cells. In addition, the combination of 100 mM EGCG and 1 mM L-SeMet or L-SeMC promoted the apoptosis of activated LX-2 cells. Compared with the EGCG treatment group, the combination intervention group had significantly suppressed levels of hepatic stellate cell activation markers including alpha-smooth muscle actin, collagen type I alpha 1, collagen type III alpha 1, 5-hydroxytryptophan (5-HT), and 5-HT receptors 2A and 2B. Moreover, interleukin-10 levels were decreased, while TGF-β1 levels were increased after TGF-β1 activation in LX-2 culture medium, whereas the combin1ation intervention reversed this phenomenon. The combination treatment had a more pronounced effect than any single treatment at the same dose. These results demonstrated that the combination of EGCG and organic selenium synergistically improves the TGF-β1-induced fibrosis of LX-2 cells to some extent by promoting apoptosis and inhibiting cell activation. PRACTICAL APPLICATIONS: Here, we found that the effects of epigallocatechin-3-o-gallate (EGCG) + L-selenomethionine or L-selenomethylcysteine were more pronounced than those of EGCG alone. Future studies should investigate the protective effects of green tea and selenium-enriched green tea against hepatic fibrosis and explore the differences in their molecular mechanisms. The results of this study will be helpful for the development and utilization of selenium-enriched tea for food processing and health supplement production.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xue-Bin Yin
- Key Laboratory for Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Vikram ENT, Ilavarasan R, Kamaraj R. Anti-cancer activities of Schedule E1 drugs used in ayurvedic formulations. J Ayurveda Integr Med 2022; 13:100545. [PMID: 35661925 PMCID: PMC9163510 DOI: 10.1016/j.jaim.2022.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Schedule E1 is an important part of Drugs and Cosmetics Act (Government of India) that comprises the list of poisonous drugs from plant, animal and mineral origins to be consumed under medical supervision. Ayurveda, the world's oldest medicinal system has a list of drugs represented in schedule E1 that are used since thousands of years. This review reports the anti-cancer activities of fifteen toxic ayurvedic drugs from plant origin represented in Drugs and Cosmetics Act, 1940. The information was collected from the various authentic sources, compiled and summarised. The plant extracts, formulations, phytoconstituents and other preparations of these drugs have shown effective activities against mammary carcinoma, neuroblastoma, non-small cell lung carcinoma, lymphocytic leukaemia, colorectal adenocarcinoma, Ehrlich ascites carcinoma, prostate adenocarcinoma, glioblastoma asterocytoma and other malignancies. They have various mechanisms of action including Bax upregulation, Bcl2 downregulation, induction of cell cycle arrest at S phase, G2/M phase, inhibition of vascular endothelial growth factors, inhibition of Akt/mTOR signalling etc. Certain traditional ayurvedic preparations containing these plants are reported beneficial and the possibilities of these drugs as the alternative and adjuvant therapeutic agents in the current cancer care have been discussed. The studies suggest that these drugs could be utilised in future for the critical care of malignancies.
Collapse
Affiliation(s)
- E N T Vikram
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (Dt.), Tamilnadu 603203, India
| | - R Ilavarasan
- Captain Srinivasa Murthy Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Arumbakkam, Chennai, Tamilnadu 600106, India
| | - R Kamaraj
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram (Dt.), Tamilnadu 603203, India.
| |
Collapse
|
7
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
8
|
Iman K, Raza MK, Ansari M, Monika, Ansari A, Ahmad M, Ahamad MN, Qasem KMA, Hussain S, Akhtar MN, Shahid M. Novel {Cu 4} and {Cu 4Cd 6} clusters derived from flexible aminoalcohols: synthesis, characterization, crystal structures, and evaluation of anticancer properties. Dalton Trans 2021; 50:11941-11953. [PMID: 34378588 DOI: 10.1039/d1dt00324k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new copper clusters, {Cu4} and {Cu4Cd6}, with polydentate aminoalcohol ligands, diethanol propanolamine (H3L1) and bis-tris{2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol} (H6L2), have been synthesized under mild conditions and characterized thoroughly by single-crystal X-ray diffraction (XRD), infrared spectroscopy, elemental analysis, powder XRD, magnetic and DFT studies, and absorption and fluorescence spectroscopy. The cluster {Cu4} exhibits a rare tetranuclear copper cubane core whereas {Cu4Cd6} forms an unusual heterometallic cage owing to the introduction of the second metal Cd into the ligand. A hexapodal ligand (H6L2) with N and O donor atoms was chosen deliberately for the construction of a high-nuclearity cluster, i.e., {Cu4Cd6}. Interestingly, both the clusters displayed significant cytotoxicity towards human cervical (HeLa) and lung (A549) cancer cells as evident from the shallow IC50 values [15.6 ± 0.8 μM (HeLa), 18.5 ± 1.9 μM (A549) for {Cu4}, and 11.1 ± 1.5 μM (HeLa), 10.2 ± 1.3 μM (A549) for {Cu4Cd6}] obtained after a 24 h incubation. However, moderate toxicity was observed toward immortalized lung epithelial normal cells (HPL1D) with IC50 values of 32.4 ± 1.2 μM for {Cu4} and 27.6 ± 1.7 μM for {Cu4Cd6}. A cellular apoptotic study using HeLa cells revealed that the {Cu4} cluster triggered apoptosis at both the early and late phases while the {Cu4Cd6} cluster facilitate apoptosis mainly at the late apoptotic stage. A standard 2',7'-dichlorodihydrofluorescein-diacetate (DCFH-DA) test affirms that both the clusters enhanced ROS production inside the cancer cells, responsible for promoting cell apoptosis. The decanuclear {Cu4Cd6} clusters demonstrated better anticancer activity compared to the tetranuclear {Cu4} clusters, indicating the role of high nuclearity and additional Cd metal in the enhanced intracellular production of ROS.
Collapse
Affiliation(s)
- Khushboo Iman
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li J, Hu S, Jian W, Xie C, Yang X. Plant antimicrobial peptides: structures, functions, and applications. BOTANICAL STUDIES 2021; 62:5. [PMID: 33914180 PMCID: PMC8085091 DOI: 10.1186/s40529-021-00312-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.
Collapse
Affiliation(s)
- Junpeng Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Shuping Hu
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Wei Jian
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chengjian Xie
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| | - Xingyong Yang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
10
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
11
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
12
|
Katoch R, Tripathi A. Research advances and prospects of legume lectins. J Biosci 2021; 46:104. [PMID: 34815374 PMCID: PMC8608583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/28/2021] [Indexed: 11/09/2023]
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
13
|
Nouri-Vaskeh M, Alizadeh L, Hajiasgharzadeh K, Mokhtarzadeh A, Halimi M, Baradaran B. The role of HSP90 molecular chaperones in hepatocellular carcinoma. J Cell Physiol 2020; 235:9110-9120. [PMID: 32452023 DOI: 10.1002/jcp.29776] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Misfolded proteins have enhanced formation of toxic oligomers and nonfunctional protein copies lead to recruiting wild-type protein types. Heat shock protein 90 (HSP90) is a molecular chaperone generated by cells that are involved in many cellular functions through regulation of folding and/or localization of large multi-protein complexes as well as client proteins. HSP90 can regulate a number of different cellular processes including cell proliferation, motility, angiogenesis, signal transduction, and adaptation to stress. HSP90 makes the mutated oncoproteins able to avoid misfolding and degradation and permits the malignant transformation. As a result, HSP90 is an important factor in several signaling pathways associated with tumorigenicity, therapy resistance, and inhibiting apoptosis. Clinically, the upregulation of HSP90 expression in hepatocellular carcinoma (HCC) is linked with advanced stages and inappropriate survival in cases suffering from this kind of cancer. The present review comprehensively assesses HSP90 functions and its possible usefulness as a potential diagnostic biomarker and therapeutic option for HCC.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Panda PK, Patra S, Naik PP, Praharaj PP, Mukhopadhyay S, Meher BR, Gupta PK, Verma RS, Maiti TK, Bhutia SK. Deacetylation of LAMP1 drives lipophagy-dependent generation of free fatty acids by Abrus agglutinin to promote senescence in prostate cancer. J Cell Physiol 2020; 235:2776-2791. [PMID: 31544977 DOI: 10.1002/jcp.29182] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
Therapy-induced senescence in cancer cells is an irreversible antiproliferative state, which inhibits tumor growth and is therefore a potent anti-neoplastic mechanism. In this study, low doses of Abrus agglutinin (AGG)-induced senescence through autophagy in prostate carcinoma cells (PC3) and inhibited proliferation. The inhibition of autophagy with 3-methyl adenine reversed AGG-induced senescence, thus confirming that AGG-triggered senescence required autophagy. AGG treatment also led to lipophagy-mediated accumulation of free fatty acids (FFAs), with a concomitant decrease in the number of lipid droplets. Lalistat, a lysosomal acid lipase inhibitor, abrogated AGG-induced lipophagy and senescence in PC3 cells, indicating that lipophagy is essential for AGG-induced senescence. The accumulation of FFAs increased reactive oxygen species generation, a known facilitator of senescence, which was also reduced in the presence of lalistat. Furthermore, AGG upregulated silent mating type information regulator 2 homolog 1 (SIRT1), while the presence of sirtinol reduced autophagy flux and the senescent phenotype in the AGG-treated cells. Mechanistically, AGG-induced cytoplasmic SIRT1 deacetylated a Lys residue on the cytoplasmic domain of lysosome-associated membrane protein 1 (LAMP1), an autolysosomal protein, resulting in lipophagy and senescence. Taken together, our findings demonstrate a novel SIRT1/LAMP1/lipophagy axis mediating AGG-induced senescence in prostate cancer cells.
Collapse
Affiliation(s)
- Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | | | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | | | - Piyush Kumar Gupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
15
|
Patra S, Panda PK, Naik P, Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Padhi P, Jena M, Patil S, Patra SK, Bhutia SK. Terminalia bellirica extract induces anticancer activity through modulation of apoptosis and autophagy in oral squamous cell carcinoma. Food Chem Toxicol 2020; 136:111073. [DOI: 10.1016/j.fct.2019.111073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022]
|
16
|
Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes. Bioorg Chem 2020; 95:103561. [DOI: 10.1016/j.bioorg.2019.103561] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/15/2019] [Accepted: 12/27/2019] [Indexed: 01/26/2023]
|
17
|
Abrus agglutinin inhibits oral carcinogenesis through inactivation of NRF2 signaling pathway. Int J Biol Macromol 2019; 155:1123-1132. [PMID: 31715238 DOI: 10.1016/j.ijbiomac.2019.11.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/27/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Abrus agglutinin (AGG), a heterotetrameric type II ribosome inactivating protein isolated from the seeds of Abrus precatorius shows potent antitumor activity in different cancer models. We examined the role of antioxidant system in modulation of the anticancer activity of AGG in in vitro and in hamster model of oral cancer. AGG promotes apoptosis through accumulation of ROS in CAL33 cells. Interestingly, our data showed that AGG decreases the activity of antioxidant enzymes including superoxide dismutase, catalase, glutathione peroxidase in CAL33 cells indicating antioxidant enzyme inhibition leads to AGG-induced ROS accumulation. Moreover, AGG inhibits expression of NRF2, transcription factor which regulates the expression of antioxidant enzymes in CAL33 cells. We found that AGG induces autophagy stimulation and loss of p62 expression in CAL33 cells. Furthermore, it showed that NRF2 expression is restored in the presence of 3-methyladenine and Baficomycin-A1 establishing role of autophagy in modulation of NRF2 through p62. Our study showed that AGG significantly inhibited tumor growth in DMBA-induced carcinogenesis. In immunohistochemical analysis, AGG-treated tumor displays higher caspase 3 expression and less p62 and NRF2 expression in comparison to the control. In conclusion, AGG-induced degradation of NRF2 through autophagy leads to ROS accumulation dependent apoptosis which might be used for treatment of oral cancer.
Collapse
|
18
|
Ganji Formulation for Patients with Hepatocellular Carcinoma Who Have Undergone Surgery: A Multicenter, Randomized, Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9492034. [PMID: 31320916 PMCID: PMC6607716 DOI: 10.1155/2019/9492034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Objective. To ascertain the efficacy and safety of Ganji Formulation (GF) for patients with Hepatocellular carcinoma (HCC) who had undergone surgery. Materials and Methods. A total of 262 HCC patients who had undergone liver resection, local ablation, or transcatheter arterial chemoembolization (TACE) were divided randomly into the treatment group and control group. The former was treated with GF and the later with placebo, both for 6 months. The primary endpoint was overall survival (OS). Second endpoints were disease-free survival (DFS) or time to disease progression (TTP). Results. OS of the treatment group was significantly longer than that of the control group (P < 0.05). Subgroup analysis showed that, for patients who received TACE, the TTP was significantly longer in the treatment group than in the control group (P < 0.05). However, for patients who underwent liver resection or local ablation, there was no significant difference in DFS between the two groups (P > 0.05). Conclusion. GF could improve postoperative cumulative survival and prolong the TTP. This clinical trial number is registered with ChiCTR-IOR-15007349.
Collapse
|
19
|
Bhutia SK, Panda PK, Sinha N, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Saha S, Patra S, Mishra SR, Behera BP, Patil S, Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol Res 2019; 144:8-18. [PMID: 30951812 DOI: 10.1016/j.phrs.2019.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Plant lectins are non-immunoglobin in nature and bind to the carbohydrate moiety of the glycoconjugates without altering any of the recognized glycosyl ligands. Plant lectins have found applications as cancer biomarkers for recognizing the malignant tumor cells for the diagnosis and prognosis of cancer. Interestingly, plant lectins contribute to inducing cell death through autophagy and apoptosis, indicating their potential implication in cancer inhibitory mechanism. In the present review, anticancer activities of major plant lectins have been documented, with a detailed focus on the signaling circuit for the possible molecular targeted cancer therapy. In this context, several lectins have exhibited preclinical and clinical significance, driving toward therapeutic potential in cancer treatment. Moreover, several plant lectins induce immunomodulatory activities, and therefore, novel strategies have been established from preclinical and clinical investigations for the development of combinatorial treatment consisting of immunotherapy along with other anticancer therapies. Although the application of plant lectins in cancer is still in very preliminary stage, advanced high-throughput technology could pave the way for the development of lectin-based complimentary medicine for cancer treatment.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| | - Prashanta K Panda
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Soumya R Mishra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Bishnu P Behera
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
20
|
Sinha N, Meher BR, Naik PP, Panda PK, Mukhapadhyay S, Maiti TK, Bhutia SK. p73 induction by Abrus agglutinin facilitates Snail ubiquitination to inhibit epithelial to mesenchymal transition in oral cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:179-190. [PMID: 30668428 DOI: 10.1016/j.phymed.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/21/2018] [Accepted: 08/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT), a key step in oral cancer progression, is associated with invasion, metastasis, and therapy resistance, thus targeting the EMT represents a critical therapeutic strategy for the treatment of oral cancer metastasis. Our previous study showed that Abrus agglutinin (AGG), a plant lectin, induces both intrinsic and extrinsic apoptosis to activate the tumor inhibitory mechanism. OBJECTIVE This study aimed to investigate the role of AGG in modulating invasiveness and stemness through EMT inhibition for the development of antineoplastic agents against oral cancer. METHODS The EMT- and stemness-related proteins were studied in oral cancer cells using Western blot analysis and fluorescence microscopy. The potential mechanisms of Snail downregulation through p73 activation in FaDu cells were evaluated using Western blot analysis, immunoprecipitation, confocal microscopy, and molecular docking analysis. Immunohistochemical staining of the tumor samples of AGG-treated FaDu-xenografted nude mice was performed. RESULTS At the molecular level, AGG-induced p73 suppressed Snail expression, leading to EMT inhibition in FaDu cells. Notably, AGG promoted the translocation of Snail from the nucleus to the cytoplasm in FaDu cells and triggered its degradation through ubiquitination. In this setting, AGG inhibited the interaction between Snail and p73 in FaDu cells, resulting in p73 activation and EMT inhibition. Moreover, in epidermal growth factor (EGF)-stimulated FaDu cells, AGG abolished the upregulation of extracellular signal-regulated kinase (ERK)1/2 that plays a pivotal role in the upregulation of Snail to regulate the EMT phenotypes. In immunohistochemistry analysis, FaDu xenografts from AGG-treated mice showed decreased expression of Snail, SOX2, and vimentin and increased expression of p73 and E-cadherin compared with the control group, confirming EMT inhibition as part of its anticancer efficacy against oral cancer. CONCLUSION In summary, AGG stimulates p73 in restricting EGF-induced EMT, invasiveness, and stemness by inhibiting the ERK/Snail pathway to facilitate the development of alternative therapeutics for oral cancer.
Collapse
Affiliation(s)
- Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Biswa Ranjan Meher
- Centre for Life Science, Central University of Jharkhand, Brambe, Ranchi 835205, Jharkhand, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Subhadip Mukhapadhyay
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
21
|
Lu W, Mao Y, Chen X, Ni J, Zhang R, Wang Y, Wang J, Wu L. Fordin: A novel type I ribosome inactivating protein from Vernicia fordii modulates multiple signaling cascades leading to anti-invasive and pro-apoptotic effects in cancer cells in vitro. Int J Oncol 2018; 53:1027-1042. [PMID: 30015835 PMCID: PMC6065405 DOI: 10.3892/ijo.2018.4470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Fordin, which is derived from Vernicia fordii, is a novel type I ribosome inactivating protein (RIP) with RNA N-glycosidase activity. In the present study, fordin was expressed by Escherichia coli and purified using nickel affinity chromatography. Previous studies have demonstrated RIP toxicity in a variety of cancer cell lines. To understand the therapeutic potential of fordin on tumors, the present study investigated the effects of fordin on the viability of several tumor and normal cell lines. The results demonstrated that fordin induced significant cytotoxicity in four cancer cell lines, compared with the normal cell line. Specifically, profound apoptosis and inhibition of cell invasion were observed following fordin exposure in U-2 OS and HepG2 cells; however, the molecular mechanism underlying the action of RIP remains to be fully elucidated. In the present study, it was found that the anticancer effects of fordin were associated with suppression of the nuclear factor (NF)-κB signaling pathway. In U-2 OS and HepG2 cells, fordin inhibited the expression of inhibitor of NF-κB (IκB) kinase, leading to downregulation of the phosphorylation level of IκB, which quelled the nuclear translocation of NF-κB. Fordin also reduced the mRNA and protein levels of NF-κB downstream targets associated with cell apoptosis and metastasis, particularly B-cell lymphoma-2-related protein A1 (Blf-1) and matrix metalloproteinase (MMP)-9. The inactivation of NF-κB and the reduction in the expression levels of Blf-1 and MMP-9 mediated by fordin were also confirmed by co-treatment with lipopolysaccharide or p65 small interfering RNA. These findings suggested a possible mechanism for the fordin-induced effect on tumor cell death and metastasis. The results of the present study demonstrated the multiple anticancer effects of fordin in U-2 OS and HepG2 cells, in part by inhibiting activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weili Lu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Yingji Mao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Xue Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jun Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Rui Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Yuting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
22
|
Panda PK, Naik PP, Praharaj PP, Meher BR, Gupta PK, Verma RS, Maiti TK, Shanmugam MK, Chinnathambi A, Alharbi SA, Sethi G, Agarwal R, Bhutia SK. Abrus agglutinin stimulates BMP-2-dependent differentiation through autophagic degradation of β-catenin in colon cancer stem cells. Mol Carcinog 2018; 57:664-677. [PMID: 29457276 DOI: 10.1002/mc.22791] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Eradicating cancer stem cells (CSCs) in colorectal cancer (CRC) through differentiation therapy is a promising approach for cancer treatment. Our retrospective tumor-specimen analysis elucidated alteration in the expression of bone morphogenetic protein 2 (BMP-2) and β-catenin during the colon cancer progression, indicating that their possible intervention through "forced differentiation" in colon cancer remission. We reveal that Abrus agglutinin (AGG) induces the colon CSCs differentiation, and enhances sensitivity to the anticancer therapeutics. The low dose AGG (max. dose = 100 ng/mL) decreased the expression of stemness-associated molecules such as CD44 and β-catenin in the HT-29 cell derived colonospheres. Further, AGG augmented colonosphere differentiation, as demonstrated by the enhanced CK20/CK7 expression ratio and induced alkaline phosphatase activity. Interestingly, the AGG-induced expression of BMP-2 and the AGG-induced differentiation were demonstrated to be critically dependent on BMP-2 in the colonospheres. Similarly, autophagy-induction by AGG was associated with colonosphere differentiation and the gene silencing of BMP-2 led to the reduced accumulation of LC3-II, suggesting that AGG-induced autophagy is dependent on BMP-2. Furthermore, hVps34 binds strongly to BMP-2, indicating a possible association of BMP-2 with the process of autophagy. Moreover, the reduction in the self-renewal capacity of the colonospheres was associated with AGG-augmented autophagic degradation of β-catenin through an interaction with the autophagy adaptor protein p62. In the subcutaneous HT-29 xenograft model, AGG profoundly inhibited the growth of tumors through an increase in BMP-2 expression and LC3-II puncta, and a decrease in β-catenin expression, confirming the antitumor potential of AGG through induction of differentiation in colorectal cancer.
Collapse
Affiliation(s)
- Prashanta K Panda
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prajna P Naik
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Biswa R Meher
- Department of Botany, Berhampur University, Berhampur, India
| | - Piyush K Gupta
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Rama S Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sulaiman A Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rajesh Agarwal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
23
|
Panda PK, Naik PP, Meher BR, Das DN, Mukhopadhyay S, Praharaj PP, Maiti TK, Bhutia SK. PUMA dependent mitophagy by Abrus agglutinin contributes to apoptosis through ceramide generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:480-495. [DOI: 10.1016/j.bbamcr.2017.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
|
24
|
Serge NE, Laurette Blandine MK, Kumar S, Clergé T, Vijayalakshmi M. Extraction, purification, and biochemical characterization of serine protease from leaves of Abrus precatorius. Prep Biochem Biotechnol 2017; 47:1016-1024. [DOI: 10.1080/10826068.2017.1373289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ngangoum Eric Serge
- Bioprocess Laboratory, Institute University of Technology, University of Ngaoundere, Ngaoundere, Cameroon
- Centre for Bio-separation Technology, VIT University, Vellore, Tamil Nadu, India
| | | | - Sanjit Kumar
- Bioprocess Laboratory, Institute University of Technology, University of Ngaoundere, Ngaoundere, Cameroon
| | - Tchiégang Clergé
- Bioprocess Laboratory, Institute University of Technology, University of Ngaoundere, Ngaoundere, Cameroon
| | | |
Collapse
|
25
|
Phaseolus acutifolius Lectin Fractions Exhibit Apoptotic Effects on Colon Cancer: Preclinical Studies Using Dimethilhydrazine or Azoxi-Methane as Cancer Induction Agents. Molecules 2017; 22:molecules22101670. [PMID: 28991196 PMCID: PMC6151564 DOI: 10.3390/molecules22101670] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023] Open
Abstract
Phaseolus acutifolius (Tepary bean) lectins have been studied as cytotoxic molecules on colon cancer cells. The toxicological profile of a Tepary bean lectin fraction (TBLF) has shown low toxicity in experimental animals; exhibiting anti-nutritional effects such as a reduction in body weight gain and a decrease in food intake when using a dose of 50 mg/kg on alternate days for six weeks. Taking this information into account, the focus of this work was to evaluate the effect of the TBLF on colon cancer using 1,2-dimethylhydrazine (DMH) or azoxy-methane/dextran sodium sulfate (AOM/DSS) as colon cancer inductors. Rats were treated with DMH or AOM/DSS and then administered with TBFL (50 mg/kg) for six weeks. TBLF significantly decreased early tumorigenesis triggered by DMH by 70%, but without any evidence of an apoptotic effect. In an independent experiment, AOM/DSS was used to generate aberrant cryptic foci, which decreased by 50% after TBLF treatment. TBLF exhibited antiproliferative and proapoptotic effects related to a decrease of the signal transduction pathway protein Akt in its activated form and an increase of caspase 3 activity, but not to p53 activation. Further studies will deepen our knowledge of specific apoptosis pathways and cellular stress processes such as oxidative damage.
Collapse
|
26
|
Sinha N, Panda PK, Naik PP, Das DN, Mukhopadhyay S, Maiti TK, Shanmugam MK, Chinnathambi A, Zayed ME, Alharbi SA, Sethi G, Agarwal R, Bhutia SK. Abrus
agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma. Mol Carcinog 2017; 56:2400-2413. [DOI: 10.1002/mc.22679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Niharika Sinha
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Prashanta K. Panda
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Prajna P. Naik
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Durgesh N. Das
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | - Tapas K. Maiti
- Department of Biotechnology; Indian Institute of Technology; Kharagpur India
| | - Muthu K. Shanmugam
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - ME Zayed
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Sulaiman A. Alharbi
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
- Department of Botany and Microbiology; College of Science; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Rajesh Agarwal
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of Colorado Denver; Aurora Colorado
| | - Sujit K. Bhutia
- Department of Life Science; National Institute of Technology; Rourkela India
| |
Collapse
|
27
|
Plant Lectins as Medical Tools against Digestive System Cancers. Int J Mol Sci 2017; 18:ijms18071403. [PMID: 28671623 PMCID: PMC5535896 DOI: 10.3390/ijms18071403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
Digestive system cancers-those of the esophagus, stomach, small intestine, colon-rectum, liver, and pancreas-are highly related to genetics and lifestyle. Most are considered highly mortal due to the frequency of late diagnosis, usually in advanced stages, caused by the absence of symptoms or masked by other pathologies. Different tools are being investigated in the search of a more precise diagnosis and treatment. Plant lectins have been studied because of their ability to recognize and bind to carbohydrates, exerting a variety of biological activities on animal cells, including anticancer activities. The present report integrates existing information on the activity of plant lectins on various types of digestive system cancers, and surveys the current state of research into their properties for diagnosis and selective treatment.
Collapse
|
28
|
Sinha N, Panda PK, Naik PP, Maiti TK, Bhutia SK. Abrus agglutinin targets cancer stem-like cells by eliminating self-renewal capacity accompanied with apoptosis in oral squamous cell carcinoma. Tumour Biol 2017; 39:1010428317701634. [DOI: 10.1177/1010428317701634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The accumulating evidences show that Abrus agglutinin, a plant lectin, displays a broad range of anticancer activity including cancer-specific induction of apoptosis; however, the underlying molecular mechanism of Abrus agglutinin–induced oral cancer stem cell elimination remains elusive. Our data documented that Abrus agglutinin effectively downregulated the CD44+ expression with the increased CD44− population in different oral cancer cells. After 24-h Abrus agglutinin treatment, FaDu cells were quantified for orosphere formation in ultra-low attachment plates and data showed that Abrus agglutinin inhibited the number and size of orosphere in a dose-dependent manner in FaDu cells. Furthermore, Abrus agglutinin hindered the plasticity of FaDu orospheres as supported by reduced sphere formation and downregulated the self-renewal property via inhibition of Wnt-β-catenin signaling pathway. Introduction of LiCl, a glycogen synthase kinase 3β inhibitor, rescued the Abrus agglutinin–stimulated inhibition of β-catenin and phosphorylated glycogen synthase kinase 3β in FaDu cell–derived orospheres confirming importance of Wnt signaling in Abrus agglutinin–mediated inhibition of stemness. In this connection, our data showed that Abrus agglutinin restrained proliferation and induced apoptosis in FaDu-derived cancer stem cells in dose-dependent manner. Moreover, western blot data demonstrated that Abrus agglutinin increased the Bax/Bcl-2 ratio with activation of poly(adenosine diphosphate–ribose) polymerase and caspase-3 favoring apoptosis induction in orospheres. Abrus agglutinin induced reactive oxygen species accumulation in orospheres and pretreatment of N-acetyl cysteine, and a reactive oxygen species scavenger inhibited Abrus agglutinin–mediated caspase-3 activity and β-catenin expression indicating reactive oxygen species as a principal regulator of Wnt signaling and apoptosis. In conclusion, Abrus agglutinin has a potential role as an integrative therapeutic approach for combating oral cancer through targeting self-renewability of orospheres via reactive oxygen species–mediated apoptosis.
Collapse
Affiliation(s)
- Niharika Sinha
- Department of Life science, National Institute of Technology Rourkela, Rourkela, India
| | - Prashanta Kumar Panda
- Department of Life science, National Institute of Technology Rourkela, Rourkela, India
| | - Prajna Paramita Naik
- Department of Life science, National Institute of Technology Rourkela, Rourkela, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sujit K Bhutia
- Department of Life science, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
29
|
Mukhopadhyay S, Schlaepfer IR, Bergman BC, Panda PK, Praharaj PP, Naik PP, Agarwal R, Bhutia SK. ATG14 facilitated lipophagy in cancer cells induce ER stress mediated mitoptosis through a ROS dependent pathway. Free Radic Biol Med 2017; 104:199-213. [PMID: 28069524 DOI: 10.1016/j.freeradbiomed.2017.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/01/2017] [Accepted: 01/05/2017] [Indexed: 01/13/2023]
Abstract
Understanding the dynamics of autophagy and apoptosis crosstalk in cancer progression remains a challenging task. Here, we reported how the autophagy protein ATG14 induces lipophagy-mediated mitochondrial apoptosis. The overexpression of ATG14 in HeLa cells inhibited cell viability and increased mitochondrial apoptosis and endoplasmic reticulum (ER) stress. Furthermore, inhibition of this ATG14-induced autophagy promoted apoptosis. ATG14 overexpression resulted in the accumulation of free fatty acids (FFA), with a concomitant decrease in the number of lipid droplets. Our data showed that ER stress induced by ATG14 was due to the lipophagy-mediated FFA accumulation, which resulted in ROS-dependent mitochondrial stress leading to apoptosis. Inhibition of lipophagy in HeLa-ATG14 cells enhanced the cellular viability and rescued them from lipotoxicity. Mechanistically, we found that ATG14 interacted with Ulk1 and LC3, and knock down of Ulk1 prevented the lipidation of LC3 and autophagy in HeLa-ATG14 cells. We also identified a phosphatidylethanolamine (PE) binding region in ATG14, and the addition of Ulk1 to Hela-ATG14 cells decreased the ATG14-PE interaction. Lastly, confocal microscopy studies showed that the decrease in ATG14-PE binding was concomitant with the increase in LC3 lipidation over time, confirming the importance of Ulk1 to sort PE to LC3 during ATG14 mediated lipophagy induction. In conclusion, ATG14 and Ulk1 interact to induce lipophagy resulting in FFA accumulation leading to ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Isabel R Schlaepfer
- Division of Medical Oncology, University of Colorado School of Medicine, United States
| | - Bryan C Bergman
- Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, United States
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, United States
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
30
|
Saranya J, Shilpa G, Raghu KG, Priya S. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P 38 MAPK. Front Pharmacol 2017; 8:34. [PMID: 28223935 PMCID: PMC5293820 DOI: 10.3389/fphar.2017.00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK.
Collapse
Affiliation(s)
- Jayaram Saranya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram, India
| | - Ganesan Shilpa
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and TechnologyThiruvananthapuram, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Kozhiparambil G Raghu
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and TechnologyThiruvananthapuram, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Sulochana Priya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and TechnologyThiruvananthapuram, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
31
|
Vijayan P, Viswanathamurthi P, Sugumar P, Ponnuswamy MN, Velmurugan K, Nandhakumar R, Balakumaran MD, Kalaichelvan PT. Toward a new avenue in ruthenium-sulphur chemistry of binuclear μ-sulphido bridged (μ-S)2 complexes having Ru2S2 core: Targeted synthesis, crystal structure, biomolecules interaction and their in vitro anticancer activities. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Ji DK, Zhang Y, Zang Y, Li J, Chen GR, He XP, Tian H. Targeted Intracellular Production of Reactive Oxygen Species by a 2D Molybdenum Disulfide Glycosheet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9356-9363. [PMID: 27570946 DOI: 10.1002/adma.201602748] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/25/2016] [Indexed: 05/20/2023]
Abstract
A 2D "glycosheet" based on supramolecular self-assembly between 2D MoS2 and fluorescent glycoligands is developed. The composite 2D material is proven suitable for targeted intracellular production of reactive oxygen species (singlet oxygen) by the sequential control of a receptor endocytosis and light irradiation.
Collapse
Affiliation(s)
- Ding-Kun Ji
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Yue Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| |
Collapse
|
33
|
AbrusAgglutinin, a type II ribosome inactivating protein inhibits Akt/PH domain to induce endoplasmic reticulum stress mediated autophagy-dependent cell death. Mol Carcinog 2016; 56:389-401. [DOI: 10.1002/mc.22502] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
|
34
|
Mukhopadhyay S, Das DN, Panda PK, Sinha N, Naik PP, Bissoyi A, Pramanik K, Bhutia SK. Autophagy protein Ulk1 promotes mitochondrial apoptosis through reactive oxygen species. Free Radic Biol Med 2015; 89:311-21. [PMID: 26409225 DOI: 10.1016/j.freeradbiomed.2015.07.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
Abstract
Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Akalabya Bissoyi
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Krishna Pramanik
- Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
35
|
He XP, Hu XL, Jin HY, Gan J, Zhu H, Li J, Long YT, Tian H. Quick Serological Detection of a Cancer Biomarker with an Agglutinated Supramolecular Glycoprobe. Anal Chem 2015; 87:9078-83. [PMID: 26235567 DOI: 10.1021/acs.analchem.5b02384] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Hong-Ying Jin
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jiemin Gan
- Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai 200040, PR China
| | - Huili Zhu
- Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai 200040, PR China
| | - Jia Li
- National
Center for Drug Screening, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, PR China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
36
|
Zeng M, Zheng M, Lu D, Wang J, Jiang W, Sha O. Anti-tumor activities and apoptotic mechanism of ribosome-inactivating proteins. CHINESE JOURNAL OF CANCER 2015; 34:325-34. [PMID: 26184404 PMCID: PMC4593346 DOI: 10.1186/s40880-015-0030-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/14/2015] [Indexed: 01/22/2023]
Abstract
Ribosome-inactivating proteins (RIPs) belong to a family of enzymes that attack eukaryotic ribosomes and potently inhibit cellular protein synthesis. RIPs possess several biomedical properties, including anti-viral and anti-tumor activities. Multiple RIPs are known to inhibit tumor cell proliferation through inducing apoptosis in a variety of cancers, such as breast cancer, leukemia/lymphoma, and hepatoma. This review focuses on the anti-tumor activities of RIPs and their apoptotic effects through three closely related pathways: mitochondrial, death receptor, and endoplasmic reticulum pathways.
Collapse
Affiliation(s)
- Meiqi Zeng
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Manyin Zheng
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Desheng Lu
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Jun Wang
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Wenqi Jiang
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
- School of Medicine, Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510060, People's Republic of China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Ou Sha
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
37
|
Vijayan P, Viswanathamurthi P, Velmurugan K, Nandhakumar R, Balakumaran MD, Kalaichelvan PT, Malecki JG. Nickel(ii) and copper(ii) complexes constructed with N2S2 hybrid benzamidine–thiosemicarbazone ligand: synthesis, X-ray crystal structure, DFT, kinetico-catalytic and in vitro biological applications. RSC Adv 2015. [DOI: 10.1039/c5ra18568h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report nickel(ii) and copper(ii) complexes containing the benzamidine–thiosemicarbazone ligand together with DFT, enzyme kinetics and in vitro biological applications such as DNA/BSA affinities and anticancer properties.
Collapse
Affiliation(s)
| | | | | | - Raju Nandhakumar
- Department of Chemistry
- Karunya University
- Coimbatore-641 114
- India
| | | | | | | |
Collapse
|
38
|
Saswati S, Chakraborty A, Dash SP, Panda AK, Acharyya R, Biswas A, Mukhopadhyay S, Bhutia SK, Crochet A, Patil YP, Nethaji M, Dinda R. Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu(i/ii) complexes of thiosemicarbazone: special emphasis on their interactions with DNA. Dalton Trans 2015; 44:6140-57. [DOI: 10.1039/c4dt03764b] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interactions of four Cu-TSC complexes with DNA & their cytotoxicity studies against the HeLa cell have been reported.
Collapse
|
39
|
Ji DK, Zhang Y, Zang Y, Liu W, Zhang X, Li J, Chen GR, James TD, He XP. Receptor-targeting fluorescence imaging and theranostics using a graphene oxide based supramolecular glycocomposite. J Mater Chem B 2015; 3:9182-9185. [DOI: 10.1039/c5tb02057c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the construction of a supramolecular, graphene oxide (GO)-based glycocomposite for receptor-targeting theranostics.
Collapse
Affiliation(s)
- Ding-Kun Ji
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yue Zhang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- National Center for Drug Screening
| | - Yi Zang
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Wang Liu
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University (ECNU)
- Shanghai 200062
- P. R. China
| | - Xiongwen Zhang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University (ECNU)
- Shanghai 200062
- P. R. China
| | - Jia Li
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
40
|
A Review of Biotechnological Approaches to Conservation and Sustainable Utilization of Medicinal Lianas in India. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14592-1_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|