1
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
2
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
3
|
D’Alessandra Y, Valerio V, Moschetta D, Massaiu I, Bozzi M, Conte M, Parisi V, Ciccarelli M, Leosco D, Myasoedova VA, Poggio P. Extraction-Free Absolute Quantification of Circulating miRNAs by Chip-Based Digital PCR. Biomedicines 2022; 10:biomedicines10061354. [PMID: 35740375 PMCID: PMC9220272 DOI: 10.3390/biomedicines10061354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Circulating microRNAs (miRNA) have been proposed as specific biomarkers for several diseases. Quantitative Real-Time PCR (RT-qPCR) is the gold standard technique currently used to evaluate miRNAs expression from different sources. In the last few years, digital PCR (dPCR) emerged as a complementary and accurate detection method. When dealing with gene expression, the first and most delicate step is nucleic-acid isolation. However, all currently available protocols for RNA extraction suffer from the variable loss of RNA species due to the chemicals and number of steps involved, from sample lysis to nucleic acid elution. Here, we evaluated a new process for the detection of circulating miRNAs, consisting of sample lysis followed by direct evaluation by dPCR in plasma from healthy donors and in the cardiovascular setting. Our results showed that dPCR is able to detect, with high accuracy, low-copy-number as well as highly expressed miRNAs in human plasma samples without the need for RNA extraction. Moreover, we assessed a known myocardial infarction-related miR-133a in acute myocardial infarct patients vs. healthy subjects. In conclusion, our results show the suitability of the extraction-free quantification of circulating miRNAs as disease markers by direct dPCR.
Collapse
Affiliation(s)
- Yuri D’Alessandra
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Michele Bozzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (V.P.); (D.L.)
- Casa di Cura San Michele, 81024 Maddaloni, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (V.P.); (D.L.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy;
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, 80138 Naples, Italy; (M.C.); (V.P.); (D.L.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (Y.D.); (V.V.); (D.M.); (I.M.); (M.B.); (V.A.M.)
- Correspondence: ; Tel.: +39-02-5800-2853
| |
Collapse
|
4
|
Chen F, Li G, Wu C, Wang L, Ko CN, Ma DL, Leung CH. Interference Reduction Biosensing Strategy for Highly Sensitive microRNA Detection. Anal Chem 2022; 94:4513-4521. [PMID: 35234447 DOI: 10.1021/acs.analchem.2c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs are potential biomarkers for human cancers and other diseases due to their roles as post-transcriptional regulators for gene expression. However, the detection of miRNAs by conventional methods such as RT-qPCR, in situ hybridization, northern blot-based platforms, and next-generation sequencing is complicated by short length, low abundance, high sequence homology, and susceptibility to degradation of miRNAs. In this study, we developed a nicking endonuclease-mediated interference reduction rolling circle amplification (NEM-IR-RCA) strategy for the ultrasensitive and highly specific detection of miRNA-21. This method exploits the advantages of the optical properties of long-lived iridium(III) probes, in conjunction with time-resolved emission spectroscopy (TRES) and exponential rolling circle amplification (E-RCA). Under the NEM-IR-RCA-based signal enhancement processes, the limit of detection of miRNA-21 was down to 0.0095 fM with a linear range from 0.05 to 100 fM, which is comparable with the conventional RT-qPCR. Unlike RT-qPCR, the strategy was performed at a lower and constant temperature without heating/cooling cycles and reverse transcription. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specificity. Moreover, the potential application of this method was demonstrated in cancer cells and mouse serum samples, showing good agreement with RT-qPCR results. Apart from miRNA-21 detection, this platform could be also adapted for detecting other miRNAs, such as let-7a and miRNA-22, indicating its excellent potential for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
5
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
6
|
Gaňová M, Zhang H, Zhu H, Korabečná M, Neužil P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens Bioelectron 2021; 181:113155. [PMID: 33740540 DOI: 10.1016/j.bios.2021.113155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/13/2021] [Accepted: 03/06/2021] [Indexed: 01/30/2023]
Abstract
The digital polymerase chain reaction (dPCR) multiplexing method can simultaneously detect and quantify closely related deoxyribonucleic acid sequences in complex mixtures. The dPCR concept is continuously improved by the development of microfluidics and micro- and nanofabrication, and different complex techniques are introduced. In this review, we introduce dPCR techniques based on sample compartmentalization, droplet- and chip-based systems, and their combinations. We then discuss dPCR multiplexing methods in both laboratory research settings and advanced or routine clinical applications. We focus on their strengths and weaknesses with regard to the character of biological samples and to the required precision of such analysis, as well as showing recently published work based on those methods. Finally, we envisage possible future achievements in this field.
Collapse
Affiliation(s)
- Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Haoqing Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Hanliang Zhu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Marie Korabečná
- 1st Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital, 12800, Prague, Czech Republic
| | - Pavel Neužil
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; The Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Jia R, Zhang G, Liu H, Chen Y, Zhou J, Liu Y, Ding P, Wang Y, Zang W, Wang A. Novel Application of Nanofluidic Chip Digital PCR for Detection of African Swine Fever Virus. Front Vet Sci 2021; 7:621840. [PMID: 33614757 PMCID: PMC7894257 DOI: 10.3389/fvets.2020.621840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/06/2023] Open
Abstract
African swine fever virus (ASFV) gives rise to a grievous transboundary and infectious disease, African swine fever (ASF), which has caused a great economic loss in the swine industry. To prevent and control ASF, once suspicious symptoms have presented, the movement of animal and pork products should be stopped, and then, laboratory testing should be adopted to diagnose ASF. A method for ASFV DNA quantification is presented in this research, which utilizes the next-generation PCR platform, nanofluidic chip digital PCR (cdPCR). The cdPCR detection showed good linearity and repeatability. The limit of detection for cdPCR is 30.1995 copies per reaction, whereas no non-specific amplification curve was found with other swine viruses. In the detection of 69 clinical samples, the cdPCR showed significant consistency [91.30% (63/69)] to the Office International des Epizooties-approved quantitative PCR. Compared with the commercial quantitative PCR kit, the sensitivity of the cdPCR assay was 86.27% (44/50), and the specificity was 94.44% (17/18). The positive coincidence rate of the cdPCR assay was 88% (44/50). The total coincidence rate of the cdPCR and kit was 89.86% (62/69), and the kappa value reached 0.800 (P < 0.0001). This is the first time that cdPCR has been applied to detecting ASFV successfully.
Collapse
Affiliation(s)
- Rui Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongliang Liu
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yankai Liu
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanwei Wang
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Weimin Zang
- Henan Zhongze Biological Engineering Co. LTD, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
9
|
Horny MC, Dupuis V, Siaugue JM, Gamby J. Release and Detection of microRNA by Combining Magnetic Hyperthermia and Electrochemistry Modules on a Microfluidic Chip. SENSORS 2020; 21:s21010185. [PMID: 33383936 PMCID: PMC7796339 DOI: 10.3390/s21010185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/15/2023]
Abstract
The heating of a biologic solution is a crucial part in an amplification process such as the catalytic detection of a biological target. However, in many situations, heating must be limited in microfluidic devices, as high temperatures can cause the denaturation of the chip components. Local heating through magnetic hyperthermia on magnetic nano-objects has opened the doors to numerous improvements, such as for oncology where a reduced heating allows the synergy of chemotherapy and thermotherapy. Here we report on the design and implementation of a lab on chip without global heating of samples. It takes advantage of the extreme efficiency of DNA-modified superparamagnetic core-shell nanoparticles to capture complementary sequences (microRNA-target), uses magnetic hyperthermia to locally release these targets, and detects them through electrochemical techniques using ultra-sensitive channel DNA-modified ultramicroelectrodes. The combination of magnetic hyperthermia and microfluidics coupled with on-chip electrochemistry opens the way to a drastic reduction in the time devoted to the steps of extraction, amplification and nucleic acids detection. The originality comes from the design and microfabrication of the microfluidic chip suitable to its insertion in the millimetric gap of toric inductance with a ferrite core.
Collapse
Affiliation(s)
- Marie-Charlotte Horny
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France;
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France; (V.D.); (J.-M.S.)
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | - Vincent Dupuis
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France; (V.D.); (J.-M.S.)
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France; (V.D.); (J.-M.S.)
| | - Jean Gamby
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France;
- Correspondence: ; Tel.: +33-1-70-27-06-70
| |
Collapse
|
10
|
Savonnet M, Rolland T, Cubizolles M, Roupioz Y, Buhot A. Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies. J Pharm Biomed Anal 2020; 194:113777. [PMID: 33293175 DOI: 10.1016/j.jpba.2020.113777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
Although cardiac pathologies are the major cause of death in the world, it remains difficult to provide a reliable diagnosis to prevent heart attacks. Rapid patient care and management in emergencies are critical to prevent dramatic consequences. Thus, relevant biomarkers such as cardiac troponin and natriuretic peptides are currently targeted by commercialized Point-Of-Care immunoassays. Key points still to be addressed concern cost, lack of standardization, and poor specificity, which could limit the reliability of the assays. Consequently, alternatives are emerging to address these issues. New probe molecules such as aptamers or molecularly imprinted polymers should allow a reduction in cost of the assays and an increase in reproducibility. In addition, the assay specificity and reliability could be improved by enabling multiplexing through the detection of several molecular targets in a single device.
Collapse
Affiliation(s)
- Maud Savonnet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France; Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Tristan Rolland
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Myriam Cubizolles
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, F-38000, Grenoble, France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|
11
|
Jiang XW, Chen SZ, Zhu XY, Xu XX, Liu Y. Development and validation of a droplet digital PCR assay for the evaluation of PML-RARα fusion transcripts in acute promyelocytic leukemia. Mol Cell Probes 2020; 53:101617. [PMID: 32585184 DOI: 10.1016/j.mcp.2020.101617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
Acute promyelocytic leukemia (APL) is an aggressive disease that requires prompt treatment. Promyelocytic leukemia protein-retinoic acid receptor α (PML-RARα) fusion genes resulting from reciprocal translocation are considered a molecular basis for diagnosing APL. Moreover, PML-RARα fusion gene testing is an essential tool for monitoring the response to therapy via minimal residual disease and providing a diagnosis before rapid disease progression in APL. The present study developed a novel droplet digital PCR (ddPCR) assay to rapidly detect two PML-RARα variants (bcr1 and bcr3) and compared its limit of detection (LOD) with quantitative PCR (qPCR). It was demonstrated that the LOD of ddPCR for PML-RARα reached 0.001%, and the evaluation of high copy number samples of PML-RARα by ddPCR correlated well with qPCR. Furthermore, clinical sample testing with ddPCR found that 34 and 24% samples were bcr-1-positive and bcr3-positive, respectively. However, according to qPCR, 30% of the samples were bcr1-positive and 20% were bcr3-positive. In addition, the concordance rate between ddPCR and qPCR reaction was 86%. While monitoring minimal residual disease, the PML-RARα mutation rate of three patients who recovered well decreased to 0.34%. However, one patient who was bcr3-positive and relapsed had a mutation rate of 13% while in remission, indicating that the bcr3 isoform may be an adverse prognostic factor affecting recovery. Therefore, the present results suggested that this novel ddPCR assay may be useful for monitoring and evaluating the treatment effects and prognosis of APL.
Collapse
Affiliation(s)
- Xi-Wen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China.
| | - Si-Ze Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China; The Precise Therapy Engineering Technology Research Cente of Guangdong Province for Esophageal Cancer, Guangzhou, 510080, China
| | - Xiao-Ya Zhu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China
| | - Xiao-Xie Xu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China
| | - Yue Liu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, 510080, China; The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, 510080, China
| |
Collapse
|
12
|
Droplet digital PCR enabled by microfluidic impact printing for absolute gene quantification. Talanta 2020; 211:120680. [DOI: 10.1016/j.talanta.2019.120680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023]
|
13
|
Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies. Mol Aspects Med 2020; 72:100832. [DOI: 10.1016/j.mam.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
14
|
Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection. Int J Mol Sci 2020; 21:ijms21030700. [PMID: 31973111 PMCID: PMC7037063 DOI: 10.3390/ijms21030700] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection. In this review article, we summarize the current knowledge of the function of these two miRs in the heart, their association with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has already been extensively studied, much remains to be done before research findings can be translated into clinical application for patient’s benefit.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3229-5427
| |
Collapse
|
15
|
Wu C, Maley AM, Walt DR. Single-molecule measurements in microwells for clinical applications. Crit Rev Clin Lab Sci 2019:1-21. [PMID: 31865834 DOI: 10.1080/10408363.2019.1700903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to detect and analyze proteins, nucleic acids, and other biomolecules is critical for clinical diagnostics and for understanding the underlying mechanisms of disease. Current detection methods in clinical and research laboratories rely upon bulk measurement techniques such as immunoassays, polymerase chain reaction, and mass spectrometry to detect these biomarkers. However, many potentially useful protein or nucleic acid biomarkers in blood, saliva, or other biofluids exist at concentrations well below the detection limits of current methods, necessitating the development of more sensitive technologies. Single-molecule measurements are poised to address this challenge, vastly improving sensitivity for detecting low abundance biomarkers and rare events within a population. Microwell arrays have emerged as a powerful tool for single-molecule measurements, enabling ultrasensitive detection of disease-relevant biomolecules in easily accessible biofluids. This review discusses the development, fundamentals, and clinical applications of microwell-based single-molecule methods, as well as challenges and future directions for translating these methods to the clinic.
Collapse
Affiliation(s)
- Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
16
|
Jiang N, Pan J, Fang S, Zhou C, Han Y, Chen J, Meng X, Jin X, Gong Z. Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer. Clin Chim Acta 2019; 495:331-337. [PMID: 31054913 DOI: 10.1016/j.cca.2019.04.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
Despite many advances in diagnostics and multimodal treatment (surgery, radiotherapy, chemotherapy), cancer still remains one of the most important public health challenges worldwide because of the associated morbidity and mortality. Liquid biopsy has been developed to detect cancer at an early stage based on minimally invasive and serial body fluid tests with the advantage of following tumor evolution in real time. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating cell-free noncoding RNAs (cfRNAs) and circulating exosomes represent the major components of liquid biopsy analysis. Liquid biopsy already has been implemented in cancer management, and most studies thus far are mainly focused on CTCs and ctDNA. In fact, the circulating long noncoding RNAs (lncRNAs) in exosomes have been discovered and confirmed to be closely related to tumorigenesis, metastasis and therapy. Thus this review is mainly focused on the clinical potential of circulating exosomal lncRNAs as a source of liquid biopsy biomarkers in cancer diagnosis, prognosis, and response to treatment, offering novel insights into the precision medicine of oncology.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Jinchang Pan
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Chengwei Zhou
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Ying Han
- Department of Radiation Oncology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Jun Chen
- Department of Radiation Oncology, The Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University, Ningbo 315211, China; Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China.
| |
Collapse
|
17
|
Li D, Zhou J, Yang B, Yu Y. microRNA-340-5p inhibits hypoxia/reoxygenation-induced apoptosis and oxidative stress in cardiomyocytes by regulating the Act1/NF-κB pathway. J Cell Biochem 2019; 120:14618-14627. [PMID: 30989715 DOI: 10.1002/jcb.28723] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been reported to play critical roles in the occurrence, progression, and treatment of many cardiovascular diseases. However, the molecular mechanism by which miRNA regulates target gene expression in ischemia-reperfusion (I/R) injury in acute myocardial infarction (AMI) is not entirely clear. MiR-340-5p was reported to be downregulated in acute ischemic stroke. However, it still remains unknown whether miR-340-5p is mediated in the pathogenesis process of I/R injury after AMI. In the present study, male C57BL/6 J mice and H9C2 cardiomyocytes were used as experimental models. Real-time polymerase chain reaction analysis, Western blot analysis, and the terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling immunofluorescence staining assay were conducted to examine related indicators in the study. We confirmed that the expression of miR-340-5p is downregulated after I/R in AMI mice and hypoxia/reperfusion (H/R)-induced cardiomyocytes. miR-340-5p could inhibit apoptosis and oxidative stress in H/R-induced H9C2 cells via downregulating activator 1 (Act1). The inhibiting action of miR-340-5p on H/R-induced apoptosis and oxidative stress in cardiomyocytes was partially reversed after Act1 overexpression. Moreover, the results showed that the NF-κB pathway may be mediated in the role of miR-340-5p on H/R-induced cardiomyocyte apoptosis and oxidative stress. We demonstrated that upregulation of miR-340-5p suppresses apoptosis and oxidative stress induced by H/R in H9C2 cells by inhibiting Act1. Therapeutic strategies that target miR-340-5p, Act1, and the NF-κB pathway could be beneficial for the treatment of I/R injury after AMI.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiology, Gansu Provincial Hospital of TCM, Lanzhou, Gansu, China
| | - Jian Zhou
- Department of Cardiology, Gansu Provincial Hospital of TCM, Lanzhou, Gansu, China
| | - Baoping Yang
- Department of Cardiology, Gansu Provincial Hospital of TCM, Lanzhou, Gansu, China
| | - Yan Yu
- Department of Cardiology, Gansu Provincial Hospital of TCM, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Wu HY, Wu JL, Ni ZL. Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-β1/Smads signaling pathway by targeting TRPM6. Cell Cycle 2019; 18:621-637. [PMID: 30810438 PMCID: PMC6464590 DOI: 10.1080/15384101.2019.1580494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to act as key regulators in the pathogenesis of myocardial ischemic-reperfusion (I/R) injury. In this study, we explore the role and mechanism of microRNA-202-3p (miR-202-3p) in regulating cardiomyocyte apoptosis, in respective of the TGF-β1/Smads signaling pathway by targeting the transient receptor potential cation channel, subfamily M, member 6 (TRPM6). The targeting relationship between miR-202-3p and TRPM6 was verified by a dual-luciferase reporter gene assay. Sprague-Dawley rat models of myocardial I/R injury were initially established and treated with different mimics, inhibitors and siRNAs to test the effects of miR-202-3p and TRPM6 on myocardial I/R injury. The levels of inflammatory factors; IL-1β, IL-6, TNF-α as well as the degree of myocardial fibrosis and cardiomyocyte apoptosis were determined in rats transfected with different plasmids. TRPM6 was found to be the target of miR-202-3p. Up-regulated miR-202-3p or knockdown of TRPM-6 alleviated oxidative stress and inflammatory response, reduced ventricular mass, altered cardiac hemodynamics, suppressed myocardial infarction, attenuated cell apoptosis, and inhibited myocardial fibrosis. MiR-202-3p overexpression activates the TGF-β1/Smads signaling pathway by negatively regulating TRPM6 expression. Taken together, these findings suggest that miR-202-3p offers protection against ventricular remodeling after myocardial I/R injury via activation of the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- Hui-Ying Wu
- a Department of Cardiovascular Medicine , Fuwai Central China Cardiovascular Hospital , Zhengzhou , P.R. China
| | - Jian-Li Wu
- b Medical School , Huanghe S & T University , Zhengzhou , P.R. China
| | - Zhan-Ling Ni
- a Department of Cardiovascular Medicine , Fuwai Central China Cardiovascular Hospital , Zhengzhou , P.R. China
| |
Collapse
|
19
|
miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39:1073-1084. [PMID: 29877320 PMCID: PMC6289363 DOI: 10.1038/aps.2018.30] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/07/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the world. Although considerable progress has been made in the diagnosis, treatment and prognosis of CVD, there is still a critical need for novel diagnostic biomarkers and new therapeutic interventions to decrease the incidence of this disease. Recently, there is increasing evidence that circulating miRNAs (miRNAs), i.e. endogenous, stable, single-stranded, short, non-coding RNAs, can be used as diagnostic biomarkers for CVD. Furthermore, miRNAs represent potential novel therapeutic targets for several cardiovascular disorders. In this review we provides an overview of the effects of several CVD; including heart failure, acute myocardial infarction, arrhythmias and pulmonary hypertension; on levels of circulating miRNAs. In addition, the use of miRNA as therapeutic targets is also discussed, as well as challenges and recommendations in their use in the diagnosis of CVD.
Collapse
|
20
|
Xi L, Kouvelos G, Paolocci N. Circulating biomarkers for cardiovascular diseases: the beats never stop. Acta Pharmacol Sin 2018; 39:1065-1067. [PMID: 29926843 DOI: 10.1038/aps.2018.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|