1
|
Babaei A, Yazdi AT, Ranji R, Bahadoran E, Taheri S, Nikkhahi F, Ghorbani S, Abbasi A. Therapeutic Effects of Exosomal miRNA-4731-5p from Adipose Tissue-Derived Stem Cells on Human Glioblastoma Cells. Arch Med Res 2024; 55:103061. [PMID: 39098111 DOI: 10.1016/j.arcmed.2024.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND AIM Several microRNAs (miRNAs) are differentially expressed and serve as tumor suppressors in glioblastoma (GBM). The present study aimed to elucidate the function of exosomal microRNA-4731-5p (miR-4731-5p) from adipose tissue-derived mesenchymal stem cells (AD-MSCs) in the activity of human GBM cell lines. METHOD First, GBM-related miRNAs, their expression, and potential target genes and cytokines of miR-4731-5p were identified using bioinformatic datasets. Subsequently, purified AD-MSCs were transfected with a miRNA-4731-5p expression plasmid, and exosomes were isolated and characterized. Next, the transfection process was confirmed and the 50% inhibitory concentration (IC50) of the overexpressed exosomal miRNA-4731-5p was inhibited for cancer cells. The probable anticancer action of exosomal miRNA-4731-5p on U-87 and U-251 GBM cell lines was verified by flow cytometry, DAPI staining, cell cycle, real-time PCR, and wound healing assays. RESULTS A concentration of 50 ng/mL of miRNA-4731-5p-transfected exosomes was the safe dose for anticancer settings. The results showed that the exosomal miR-4731-5p exerted an inhibitory effect on the cell cycle and migration and induced apoptosis in GBM cell lines by regulating the phosphoinositide-3-kinase-AKT (PI3K-AKT) and nuclear factor-kB (NF-kB) signaling pathways. CONCLUSION This study reveals that the expression of exosomal miRNA-4731-5p has favorable antitumor properties for the treatment of GBM cell lines and may be a fundamental therapeutic option for this type of brain tumor.
Collapse
Affiliation(s)
- Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Amin Torabi Yazdi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shiva Taheri
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saied Ghorbani
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03479-9. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
3
|
Chen Y, Zhang L, Wu X, Sun X, Sundah NR, Wong CY, Natalia A, Tam JKC, Lim DWT, Chowbay B, Ang BT, Tang C, Loh TP, Shao H. Magnetic augmentation through multi-gradient coupling enables direct and programmable profiling of circulating biomarkers. Nat Commun 2024; 15:8410. [PMID: 39333499 PMCID: PMC11437193 DOI: 10.1038/s41467-024-52754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Conventional magnetic biosensing technologies have reduced analytical capacity for magnetic field dimensionality and require extensive sample processing. To address these challenges, we spatially engineer 3D magnetic response gradients for direct and programmable molecular detection in native biofluids. Named magnetic augmentation through triple-gradient coupling for high-performance detection (MATCH), the technology comprises gradient-distributed magnetic nanoparticles encapsulated within responsive hydrogel pillars and suspended above a magnetic sensor array. This configuration enables multi-gradient matching to achieve optimal magnetic activation, response and transduction, respectively. Through focused activation by target biomarkers, the platform preferentially releases sensor-proximal nanoparticles, generating response gradients that complement the sensor's intrinsic detection capability. By implementing an upstream module that recognizes different biomarkers and releases universal activation molecules, the technology achieves programmable detection of various circulating biomarkers in native plasma. It bypasses conventional magnetic labeling, completes in <60 minutes and achieves sensitive detection (down to 10 RNA and 1000 protein copies). We apply the MATCH to measure RNAs and proteins directly in patient plasma, achieving accurate cancer classification.
Collapse
Affiliation(s)
- Yuan Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Xingjie Wu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Xuecheng Sun
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - John K C Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
| | - Balram Chowbay
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
- Clinical Pharmacology Laboratory, National Cancer Centre Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Beng Ti Ang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Carol Tang
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- SG Enable, Innovation, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
4
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2024:10.1007/s12035-024-04316-z. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Shi J. Early 2-Factor Transcription Factors Associated with Progression and Recurrence in Bevacizumab-Responsive Subtypes of Glioblastoma. Cancers (Basel) 2024; 16:2536. [PMID: 39061176 PMCID: PMC11275000 DOI: 10.3390/cancers16142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The early 2-factor (E2F) family of transcription factors, including E2F1 through 8, plays a critical role in apoptosis, metabolism, proliferation, and angiogenesis within glioblastoma (GBM). However, the specific functions of E2F transcription factors (E2Fs) and their impact on the malignancy of Bevacizumab (BVZ)-responsive GBM subtypes remain unclear. This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), and Gene Expression Omnibus (GEO) to explore the impact of eight E2F family members on the clinical characteristics of BVZ-responsive GBM subtypes and possible mechanisms of recurrence after BVZ treatment. Using machine learning algorithms, including TreeBagger and deep neural networks, we systematically predicted and validated GBM patient survival terms based on the expression profiles of E2Fs across BVZ-responsive GBM subtypes. Our bioinformatics analyses suggested that a significant increase in E2F8 post-BVZ treatment may enhance the function of angiogenesis and stem cell proliferation, implicating this factor as a candidate mechanism of GBM recurrence after treatment. In addition, BVZ treatment in unresponsive GBM patients may potentially worsen disease progression. These insights underscore that E2F family members play important roles in GBM malignancy and BVZ treatment response, highlighting their potential as prognostic biomarkers, therapeutic targets, and recommending precision BVZ treatment to individual GBM patients.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, CA 94121, USA
| |
Collapse
|
6
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Eftekhari M, Safari A, Najafi M. MicroRNAs targeted mTOR as therapeutic agents to improve radiotherapy outcome. Cancer Cell Int 2024; 24:233. [PMID: 38965615 PMCID: PMC11229485 DOI: 10.1186/s12935-024-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Eftekhari
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71439-14693, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Ordóñez-Rubiano EG, Rincón-Arias N, Espinosa S, Shelton WJ, Salazar AF, Cómbita A, Baldoncini M, Luzzi S, Payán-Gómez C, Gómez- Amarillo DF, Hakim F, Patiño-Gómez JG, Parra- Medina R. The potential of miRNA-based approaches in glioblastoma: An update in current advances and future perspectives. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100193. [PMID: 39055532 PMCID: PMC11268206 DOI: 10.1016/j.crphar.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant central nervous system tumor. The emerging field of epigenetics stands out as particularly promising. Notably, the discovery of micro RNAs (miRNAs) has paved the way for advancements in diagnosing, treating, and prognosticating patients with brain tumors. We aim to provide an overview of the emergence of miRNAs in GBM and their potential role in the multifaceted management of this disease. We discuss the current state of the art regarding miRNAs and GBM. We performed a narrative review using the MEDLINE/PUBMED database to retrieve peer-reviewed articles related to the use of miRNA approaches for the treatment of GBMs. MiRNAs are intrinsic non-coding RNA molecules that regulate gene expression mainly through post-transcriptional mechanisms. The deregulation of some of these molecules is related to the pathogenesis of GBM. The inclusion of molecular characterization for the diagnosis of brain tumors and the advent of less-invasive diagnostic methods such as liquid biopsies, highlights the potential of these molecules as biomarkers for guiding the management of brain tumors such as GBM. Importantly, there is a need for more studies to better examine the application of these novel molecules. The constantly changing characterization and approach to the diagnosis and management of brain tumors broaden the possibilities for the molecular inclusion of novel epigenetic molecules, such as miRNAs, for a better understanding of this disease.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Sebastian Espinosa
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | | | | | - Alba Cómbita
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matías Baldoncini
- School of Medicine, Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires, Argentina
- Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina
| | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | | | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Javier G. Patiño-Gómez
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Rafael Parra- Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| |
Collapse
|
8
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Indira Chandran V, Gopala S, Venkat EH, Kjolby M, Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol 2024; 8:103. [PMID: 38760427 PMCID: PMC11101656 DOI: 10.1038/s41698-024-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Glioblastoma is a highly heterogeneous tumor whose pathophysiological complexities dictate both the diagnosis of disease severity as well as response to therapy. Conventional diagnostic tools and standard treatment regimens have only managed to achieve limited success in the management of patients suspected of glioblastoma. Extracellular vesicles are an emerging liquid biopsy tool that has shown great promise in resolving the limitations presented by the heterogeneous nature of glioblastoma. Here we discuss the contrasting yet interdependent dual role of extracellular vesicles as communication agents that contribute to the progression of glioblastoma by creating a heterogeneous microenvironment and as a liquid biopsy tool providing an opportunity to accurately identify the disease severity and progression.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Easwer Hariharan Venkat
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology and Steno Diabetes Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Zhou L, Liu X, Wu T, Liu Q, Jing M, Li H, Xu N, Tang H. Identification of survival related key genes and long-term survival specific differentially expressed genes related key miRNA network of primary glioblastoma. Heliyon 2024; 10:e28439. [PMID: 38601561 PMCID: PMC11004527 DOI: 10.1016/j.heliyon.2024.e28439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Primary glioblastoma(pGBM) is the most malignant tumor of the central nervous system. Radiotherapy, chemotherapy and surgical treatment have little effect on the survival of pGBM patients. The prognosis is often poorly once the tumor recurs. It is urgent to develop new therapies for patients. In recent years, studies have been clarified that miRNA have a powerful regulating effect on the genes. However, the main group of miRNAs in regulating long-term survival specific related genes of pGBM is still unclear. Given that the survival period of most glioma patients is relatively short, studying long-term survival patients with pGBM is of great value for this disease. Our study aim to identify key miRNAs with long-term survival related genes present in pGBM and uncover their potential mechanisms. The gene expression profiles of GSE53733, GSE15824, GSE30563, GSE50161 were obtained from the Gene Expression Omnibus database. Firstly, samples were divided into 3 groups according to its survival time and each group compare to the normal control group. Then we obtained differential expression genes (DEGs) with a long-term survival specific (LTSDEGs) and a short-term survival specific DEGs (STSDEGs). Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted with LTSDEGs and STSDEGs together. Moreover, we used the UALCAN database to verify LTSDEGs and STSDEGs, and obtained long-term verified survival specific DEGs(LTVSDEGs) and short-term verified survival specific DEGs(STVSDEGs). Finally, we established the predicted key miRNAs-LTVSDEGs interaction network. The protein expressions of the top 4 LTVSDEGs were verified in the HPA database with immunohistochemical staining. In total, we found 260 genes changed in LTSDEGs and 822 genes changed in STSDEGs. GO and KEGG results shown that the major changes are focused on tumor metabolism. 9 LTVSDEGs and 18 STVSDEGs were verified in UALCAN database. As for protein expression verification in top 4 LTVSDEGs, ZNF630, BLVRB and RPA3 were verified, while TPBG was not detected. We obtained 59 key miRNA from the predicted key miRNAs-LTVSDEGs interaction network. 25 key miRNAs were verified using GSE90603. Finally, we constructed the key miRNAs-LTVSDEGs network using a Sankey diagram, including 25 miRNAs and 7 LTVSDEGs. In conclusion, our study shows that there is a close relationship between metabolic changes and survival in pGBM. Besides, we established a key miRNAs-LTVSDEGs network for pGBM, which could be the key path in prolonging the life of pGBM patients.
Collapse
Affiliation(s)
- Lingqi Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
- Guangzhou Key Laboratory of Child Neurodevelopment, Guangzhou, 510623, China
- Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, 200031, China
| | - Xuemei Liu
- Department of Gynecology, Shunde Hospital,Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China
| | - Tong Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Qundi Liu
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Meilian Jing
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Huahan Li
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Ning Xu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518111, China
| | - Hai Tang
- Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
11
|
Katole VR, Kaple M. Unraveling the Landscape of Pediatric Glioblastoma Biomarkers: A Comprehensive Review of Enhancing Diagnostics and Therapeutic Insights. Cureus 2024; 16:e57272. [PMID: 38686271 PMCID: PMC11057698 DOI: 10.7759/cureus.57272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma, the most common and aggressive form of primary brain tumor, poses significant challenges to patients, caregivers, and clinicians alike. Pediatric glioblastoma is a rare and aggressive brain tumor that presents unique challenges in treatment. It differs from its adult counterpart in terms of genetic and molecular characteristics. Its incidence is relatively low, but the prognosis remains grim due to its aggressive behavior. Diagnosis relies on imaging techniques and histopathological analysis. The rarity of the disease underscores the need for effective treatment strategies. In recent years, the quest to understand and manage pediatric glioblastoma has seen a significant shift towards unraveling the intricate landscape of biomarkers. Surgery remains a cornerstone of glioblastoma management, aiming to resect as much of the tumor as possible. Glioblastoma's infiltrative nature presents challenges in achieving a complete surgical resection. This comprehensive review delves into the realm of pediatric glioblastoma biomarkers, shedding light on their potential to not only revolutionize diagnostics but also shape therapeutic strategies. From personalized treatment selection to the development of targeted therapies, the potential impact of these biomarkers on clinical outcomes is undeniable. Moreover, this review underscores the substantial implications of biomarker-driven approaches for therapeutic interventions. All advancements in targeted therapies and immunotherapy hold promise for the treatment of pediatric glioblastoma. The genetic profiling of tumors allows for personalized approaches, potentially improving treatment efficacy. The ethical dilemmas surrounding pediatric cancer treatment, particularly balancing potential benefits with risks, are complex. Ongoing clinical trials and preclinical research suggest exciting avenues for future interventions.
Collapse
Affiliation(s)
- Vedant R Katole
- Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Meghali Kaple
- Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Valle-Garcia D, Pérez de la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa KF. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. Int J Mol Sci 2024; 25:2464. [PMID: 38473710 DOI: 10.3390/ijms25052464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) is the most aggressive and common type of cancer within the central nervous system (CNS). Despite the vast knowledge of its physiopathology and histology, its etiology at the molecular level has not been completely understood. Thus, attaining a cure has not been possible yet and it remains one of the deadliest types of cancer. Usually, GB is diagnosed when some symptoms have already been presented by the patient. This diagnosis is commonly based on a physical exam and imaging studies, such as computed tomography (CT) and magnetic resonance imaging (MRI), together with or followed by a surgical biopsy. As these diagnostic procedures are very invasive and often result only in the confirmation of GB presence, it is necessary to develop less invasive diagnostic and prognostic tools that lead to earlier treatment to increase GB patients' quality of life. Therefore, blood-based biomarkers (BBBs) represent excellent candidates in this context. microRNAs (miRNAs) are small, non-coding RNAs that have been demonstrated to be very stable in almost all body fluids, including saliva, serum, plasma, urine, cerebrospinal fluid (CFS), semen, and breast milk. In addition, serum-circulating and exosome-contained miRNAs have been successfully used to better classify subtypes of cancer at the molecular level and make better choices regarding the best treatment for specific cases. Moreover, as miRNAs regulate multiple target genes and can also act as tumor suppressors and oncogenes, they are involved in the appearance, progression, and even chemoresistance of most tumors. Thus, in this review, we discuss how dysregulated miRNAs in GB can be used as early diagnosis and prognosis biomarkers as well as molecular markers to subclassify GB cases and provide more personalized treatments, which may have a better response against GB. In addition, we discuss the therapeutic potential of miRNAs, the current challenges to their clinical application, and future directions in the field.
Collapse
Affiliation(s)
- David Valle-Garcia
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Itamar Flores
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Aleli Salazar
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Karla F Meza-Sosa
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| |
Collapse
|
13
|
Shi J, Huang S. Comparative Insight into Microglia/Macrophages-Associated Pathways in Glioblastoma and Alzheimer's Disease. Int J Mol Sci 2023; 25:16. [PMID: 38203185 PMCID: PMC10778632 DOI: 10.3390/ijms25010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Microglia and macrophages are pivotal to the brain's innate immune response and have garnered considerable attention in the context of glioblastoma (GBM) and Alzheimer's disease (AD) research. This review delineates the complex roles of these cells within the neuropathological landscape, focusing on a range of signaling pathways-namely, NF-κB, microRNAs (miRNAs), and TREM2-that regulate the behavior of tumor-associated macrophages (TAMs) in GBM and disease-associated microglia (DAMs) in AD. These pathways are critical to the processes of neuroinflammation, angiogenesis, and apoptosis, which are hallmarks of GBM and AD. We concentrate on the multifaceted regulation of TAMs by NF-κB signaling in GBM, the influence of TREM2 on DAMs' responses to amyloid-beta deposition, and the modulation of both TAMs and DAMs by GBM- and AD-related miRNAs. Incorporating recent advancements in molecular biology, immunology, and AI techniques, through a detailed exploration of these molecular mechanisms, we aim to shed light on their distinct and overlapping regulatory functions in GBM and AD. The review culminates with a discussion on how insights into NF-κB, miRNAs, and TREM2 signaling may inform novel therapeutic approaches targeting microglia and macrophages in these neurodegenerative and neoplastic conditions. This comparative analysis underscores the potential for new, targeted treatments, offering a roadmap for future research aimed at mitigating the progression of these complex diseases.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - Shiwei Huang
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Zhang Y, Wong CY, Lim CZJ, Chen Q, Yu Z, Natalia A, Wang Z, Pang QY, Lim SW, Loh TP, Ang BT, Tang C, Shao H. Multiplexed RNA profiling by regenerative catalysis enables blood-based subtyping of brain tumors. Nat Commun 2023; 14:4278. [PMID: 37460561 DOI: 10.1038/s41467-023-39844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Current technologies to subtype glioblastoma (GBM), the most lethal brain tumor, require highly invasive brain biopsies. Here, we develop a dedicated analytical platform to achieve direct and multiplexed profiling of circulating RNAs in extracellular vesicles for blood-based GBM characterization. The technology, termed 'enzyme ZIF-8 complexes for regenerative and catalytic digital detection of RNA' (EZ-READ), leverages an RNA-responsive transducer to regeneratively convert and catalytically enhance signals from rare RNA targets. Each transducer comprises hybrid complexes - protein enzymes encapsulated within metal organic frameworks - to configure strong catalytic activity and robust protection. Upon target RNA hybridization, the transducer activates directly to liberate catalytic complexes, in a target-recyclable manner; when partitioned within a microfluidic device, these complexes can individually catalyze strong chemifluorescence reactions for digital RNA quantification. The EZ-READ platform thus enables programmable and reliable RNA detection, across different-sized RNA subtypes (miRNA and mRNA), directly in sample lysates. When clinically evaluated, the EZ-READ platform established composite signatures for accurate blood-based GBM diagnosis and subtyping.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carine Z J Lim
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qingchang Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhonglang Yu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhigang Wang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Lim
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
15
|
Borba LAB, Passos G, Oliveira I. Liquid biopsy and tumor DNA/RNA detection in the cerebrospinal fluid of patients diagnosed with central nervous system glioma - A review article. Surg Neurol Int 2023; 14:183. [PMID: 37292399 PMCID: PMC10246314 DOI: 10.25259/sni_52_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Background Gliomas are the most common primary malignant neoplasms of the central nervous system and their characteristic genetic heterogeneity implies in a prominent complexity in their management. The definition of the genetic/molecular profile of gliomas is currently essential for the classification of the disease, prognosis, choice of treatment, and it is still dependent on surgical biopsies, which in many cases become unfeasible. Liquid biopsy with detection and analysis of biomarkers such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from the tumor and circulating in the bloodstream or cerebrospinal fluid (CSF) has emerged as a minimally invasive alternative to aid in diagnosis, follow-up, and response to treatment of gliomas. Methods Through a systematic search in the PubMed MEDLINE, Cochrane Library, and Embase databases, we reviewed the evidence on the use of liquid biopsy to detect tumor DNA/RNA in the CSF of patients diagnosed with central nervous system gliomas. Results After a systematic review applying all inclusion and exclusion criteria, as well as a double review by independent authors, 14 studies specifically addressing the detection of tumor DNA/RNA in the CSF of patients diagnosed with central nervous system glioma were selected in the final analysis. Conclusion Sensitivity and specificity of liquid biopsy in CSF are still very variable depending on factors such as the diagnostic method, collection timing, biomarker (DNA and RNA), tumor type, extension and volume of the tumor, collection method, and contiguity from neoplasm to CSF. Despite the technical limitations that still exist and prevent the routine and validated use of liquid biopsy in CSF, the growing number of studies around the world is increasingly improving this technic, resulting in promising prospects for its use in diagnosis, evolutionary follow-up, and response to the treatment of complex diseases such as central nervous system gliomas.
Collapse
Affiliation(s)
| | | | - Irlon Oliveira
- Corresponding author: Irlon Oliveira, Department of Neurosurgery, Hospital Universitário Evangelico de Curitiba, Curitiba, Parana, Brazil.
| |
Collapse
|
16
|
Hanif F, Zhang Y, Dube C, Gibert MK, Saha S, Hudson K, Marcinkiewicz P, Kefas B, Guessous F, Abounader R. miR-3174 Is a New Tumor Suppressor MicroRNA That Inhibits Several Tumor-Promoting Genes in Glioblastoma. Int J Mol Sci 2023; 24:9326. [PMID: 37298284 PMCID: PMC10253284 DOI: 10.3390/ijms24119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
microRNAs (miRNAs) play an important role in the pathology of glioblastoma (GBM), which is the most malignant and most common primary malignant brain tumor. miRNAs can target multiple genes simultaneously and are considered as potential therapeutic agents or targets. This study aimed to determine the role of miR-3174 in the pathobiology of GBM using both in vitro and in vivo approaches. This is the first study deciphering the role of miR-3174 in GBM. We studied the expression of miR-3174 and found it to be downregulated in a panel of GBM cell lines, GSCs and tissues relative to astrocytes and normal brain tissue. This finding led us to hypothesize that miR-3174 has a tumor-suppressive role in GBM. Exogenous expression of miR-3174 inhibited GBM cell growth and invasion, and hampered the neurosphere formation ability of GSCs. miR-3174 downregulated the expression of multiple tumor-promoting genes including CD44, MDM2, RHOA, PLAU and CDK6. Further, overexpression of miR-3174 reduced tumor volume in nude mice with intracranial xenografts. Immuno-histochemical study of brain sections with intracranial tumor xenografts revealed the pro-apoptotic and anti-proliferative activity of miR-3174. In conclusion, we demonstrated that miR-3174 has a tumor-suppressive role in GBM and could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry, Dow International Medical College, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi 74200, Pakistan
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Myron K Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Pawel Marcinkiewicz
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fadila Guessous
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
17
|
Lyu Y, Guo Y, Okeoma CM, Yan Z, Hu N, Li Z, Zhou S, Zhao X, Li J, Wang X. Engineered extracellular vesicles (EVs): Promising diagnostic/therapeutic tools for pediatric high-grade glioma. Biomed Pharmacother 2023; 163:114630. [PMID: 37094548 DOI: 10.1016/j.biopha.2023.114630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly malignant brain tumor that mainly occurs in children with extremely low overall survival. Traditional therapeutic strategies, such as surgical resection and chemotherapy, are not feasible mostly due to the special location and highly diffused features. Radiotherapy turns out to be the standard treatment method but with limited benefits of overall survival. A broad search for novel and targeted therapies is in the progress of both preclinical investigations and clinical trials. Extracellular vesicles (EVs) emerged as a promising diagnostic and therapeutic candidate due to their distinct biocompatibility, excellent cargo-loading-delivery capacity, high biological barrier penetration efficiency, and ease of modification. The utilization of EVs in various diseases as biomarker diagnoses or therapeutic agents is revolutionizing modern medical research and practice. In this review, we will briefly talk about the research development of DIPG, and present a detailed description of EVs in medical applications, with a discussion on the application of engineered peptides on EVs. The possibility of applying EVs as a diagnostic tool and drug delivery system in DIPG is also discussed.
Collapse
Affiliation(s)
- Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yupei Guo
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Zhaoyue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Nan Hu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zian Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shaolong Zhou
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinjun Wang
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
18
|
Tripodi L, Sasso E, Feola S, Coluccino L, Vitale M, Leoni G, Szomolay B, Pastore L, Cerullo V. Systems Biology Approaches for the Improvement of Oncolytic Virus-Based Immunotherapies. Cancers (Basel) 2023; 15:1297. [PMID: 36831638 PMCID: PMC9954314 DOI: 10.3390/cancers15041297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response. Today, innovative approaches derived from systems biology are exploited to improve target discovery in several types of cancer and to identify the MHC-I and II restricted peptide repertoire recognized by T-cells. Using specific computation pipelines, it is possible to select the best tumor peptide candidates that can be efficiently vectorized and delivered by numerous OV-based platforms, in order to reinforce anticancer immune responses. Beyond the identification of TAAs, system biology can also support the engineering of OVs with improved oncotropism to reduce toxicity and maintain a sufficient portion of the wild-type virus virulence. Finally, these technologies can also pave the way towards a more rational design of armed OVs where a transgene of interest can be delivered to TME to develop an intratumoral gene therapy to enhance specific immune stimuli.
Collapse
Affiliation(s)
- Lorella Tripodi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Sara Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00100 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00100 Helsinki, Finland
| | - Ludovica Coluccino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Maria Vitale
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Guido Leoni
- Nouscom Srl, via Castel Romano 100, 00128 Rome, Italy
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4YS, UK
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00100 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
19
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
20
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
21
|
Gray A, Cui T, Bell EH, McElroy J, Sebastian E, Li F, Geurts M, Liu K, Robe P, Haque SJ, Chakravarti A. MicroRNA-575 acts as a novel oncogene via targeting multiple signaling pathways in glioblastoma. Exp Mol Pathol 2022; 128:104813. [PMID: 35901926 DOI: 10.1016/j.yexmp.2022.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/09/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Glioblastoma (GBM) patients currently face poor survival outcomes with an average survival period of <15 months, while only 3-5% of patients survive longer than 36 months. Although the mechanisms of tumorigenesis are still being elucidated, miRNAs are promising candidates to explore as novel and prognostic biomarkers in GBM. In this study, we identified the association between miR-575 expression and overall survival (OS) of primary GBM patients and undertook functional studies to discern the contribution of miR-575 to GBM tumorigenesis. METHODS Total RNAs were isolated from 254 FFPE GBM tumor samples and miR expression was assayed (simultaneously) using NanoString Technologies. To determine the association between miR-575 and patients' prognosis, Kaplan-Meier, univariable and multivariable Cox regression analyses were performed. Cell proliferation, colony formation, migration assays were conducted to investigate the function of miR-575 in vitro and in vivo. In silico target gene network analysis was performed to identify the putative targets of miR-575 in GBM, which were further verified by luciferase reporter assay, as well as qPCR and immunoblotting. RESULTS Our clinical data (n = 254) show that miR-575 is associated with worse GBM OS by univariable analysis (UVA, HR = 1.27, p-value<0.001) and multivariable (MVA, HR = 1.23, p = 0.007) analysis incorporating critical clinical variables. Functional studies indicated that overexpression of miR-575 significantly increased cell proliferation and migration of GBM cells in vitro, as well as tumor growth in vivo. Subsequent in silico target gene network and mechanistic studies identified CDKN1B/p27 and PTEN, as potential targets of miR-575 in GBM. MicroRNA-575 can also regulate the activity of AKT and ERK pathways in GBM. CONCLUSION miR-575 has prognostic value in GBM, with higher expression associating with worse OS of patients, and contributes to GBM tumorigenesis by regulating multiple signaling pathways in GBM.
Collapse
Affiliation(s)
- Ashley Gray
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiantian Cui
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Erica Hlavin Bell
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Joseph McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Ebin Sebastian
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Fuhai Li
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marjolein Geurts
- Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Kevin Liu
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pierre Robe
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S Jaharul Haque
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital/Ohio State Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
22
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
23
|
Bonafé GA, dos Santos JS, Fernandes AMADP, Ziegler JV, Marson FAL, Rocha T, Carvalho PDO, Ortega MM. Anti-Migratory Effect of Dipotassium Glycyrrhizinate on Glioblastoma Cell Lines: Microarray Data for the Identification of Key MicroRNA Signatures. Front Oncol 2022; 12:819599. [PMID: 35992881 PMCID: PMC9382584 DOI: 10.3389/fonc.2022.819599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) pathway has been reported to be responsible for the aggressive disease phenomenon observed in glioblastoma (GBM). Dipotassium glycyrrhizinate (DPG), a dipotassium salt of glycyrrhizic acid isolated from licorice, has recently demonstrated an anti-tumoral effect on GBM cell lines U87MG and T98G through NF-κB suppression by IRAK2- and TRAF6-mediating microRNA (miR)-16 and miR-146a, respectively. Thus, the present study aimed to evaluate the expression profiles of miRNAs related to NF-κB suppression in T98G GBM cell line after DPG exposure using miRNA microarray (Affymetrix Human miRNA 4.0A), considering only predicted miRNAs as NF-κB regulator genes. Additional assays using U251 and U138MG cells were performed to validate the array results. DPG cytotoxicity was determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and cellular apoptosis was quantified by DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The anti-proliferative effect was observed by cell proliferation and wound-healing assays, and the sphere formation assay examined whether DPG reduced stem cell subpopulation formation. The most over-expressed miRNAs were miR-4443 and miR-3620. The cytotoxic effect of DPG in U251 and U138MG was observed with an IC50 of 32 and 20 mM for 48 h, respectively. The IC50 of each cell line was used in all further assays. DPG treatment-induced apoptosis is observed by DNA fragmentation and increased TUNEL-positive cells. Cell proliferation and wound-healing assays showed an anti-proliferative and anti-migratory effect by DPG on the evaluated cell lines. In addition, DPG treatment led to a 100% reduction in sphere formation. The qPCR results in U251 and U138MG cells showed that DPG increased miR-4443 (2.44 vs. 1.11, p-value = 0.11; 8.27 vs. 1.25, p-value = 0.04) and miR-3620 expression (1.66 vs. 1.00, p-value = 0.03; 8.47 vs. 1.01, p-value = 0.03) and decreased CD209 (0.44 vs. 1.10, p-value = 0.03; 0.49 vs. 1.07, p-value = 0.04) and TNC (0.20 vs. 1.03, p-value = 0.001; 0.39 vs. 1.06, p-value = 0.01) mRNA levels compared to controls. Our results suggest that DPG inhibits cell viability by activating apoptosis and inhibiting cell proliferation and stem cell subpopulation formation through miR-4443 and miR-3620 upregulation. Both miRNAs are responsible for the post-transcriptional inhibition of NF-κB by CD209 and TNC modulation.
Collapse
Affiliation(s)
- Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Jéssica Silva dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | | | | | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Thalita Rocha
- Post Graduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, Sorocaba, São Paulo, Brazil
| | - Patricia de Oliveira Carvalho
- Multidisciplinary Research Laboratory, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista, São Paulo, Brazil
- *Correspondence: Manoela Marques Ortega,
| |
Collapse
|
24
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Machine learning and bioinformatics approaches for classification and clinical detection of bevacizumab responsive glioblastoma subtypes based on miRNA expression. Sci Rep 2022; 12:8685. [PMID: 35606527 PMCID: PMC9126877 DOI: 10.1038/s41598-022-12566-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
For the precise treatment of patients with glioblastoma multiforme (GBM), we classified and detected bevacizumab (BVZ)-responsive subtypes of GBM and found their differential expression (DE) of miRNAs and mRNAs, clinical characteristics, and related functional pathways. Based on miR-21 and miR-10b expression z-scores, approximately 30% of GBM patients were classified as having the GBM BVZ-responsive subtype. For this subtype, GBM patients had a significantly shorter survival time than other GBM patients (p = 0.014), and vascular endothelial growth factor A (VEGF) methylation was significantly lower than that in other GBM patients (p = 0.005). It also revealed 14 DE miRNAs and 7 DE mRNAs and revealed functional characteristics between GBM BVZ subgroups. After comparing several machine learning algorithms, the construction and cross-validation of the SVM classifier were performed. For clinical use, miR-197 was optimized and added to the miRNA panel for better classification. Afterwards, we validated the classifier with several GBM datasets and discovered some key related issues. According to this study, GBM BVZ subtypes can be classified and detected by a combination of SVM classifiers and miRNA panels in existing tissue GBM datasets. With certain modifications, the classifier may be used for the classification and detection of GBM BVZ subtypes for future clinical use.
Collapse
|
26
|
Ghaffarian Zirak R, Tajik H, Asadi J, Hashemian P, Javid H. The Role of Micro RNAs in Regulating PI3K/AKT Signaling Pathways in Glioblastoma. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:122-136. [PMID: 35463721 PMCID: PMC9013863 DOI: 10.30699/ijp.2022.539029.2726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma is a type of brain cancer with aggressive and invasive nature. Such features result from increased proliferation and migration and also poor apoptosis of glioma cells leading to resistance to current treatments such as chemotherapy and radiotherapy. In recent studies, micro RNAs have been introduced as a novel target for treating glioblastoma via regulation of apoptotic signaling pathway, remarkably PI3K/AKT, which affect cellular functions and blockage or progression of the tumor. In this review, we focus on PI3K/AKT signaling pathway and other related apoptotic processes contributing to glioblastoma and investigate the role of micro RNAs interfering in apoptosis, invasion and proliferation of glioma through such apoptotic processes pathways. Databases NCBI, PubMed, and Web of Science were searched for published English articles using keywords such as 'miRNA OR microRNA', 'Glioblastoma', 'apoptotic pathways', 'PI3K and AKT', 'Caspase signaling Pathway' and 'Notch pathway'. Most articles were published from 7 May 2015 to 16 June 2020. This study focused on PI3K/AKT signaling pathway affecting glioma cells in separated subparts. Also, other related apoptotic pathways as the Caspase cycle and Notch have been also investigated. Nearly 40 miRNAs were found as tumor suppressors or onco-miRNA, and their targets, which regulated subcomponents participating in proliferation, invasion, and apoptosis of the tumoral cells. Our review reveals that miRNAs affect key molecules in signaling apoptotic pathways, partly PI3K/AKT, making them potential therapeutic targets to overcome the tumor. However, their utility as a novel treatment for glioblastoma requires further examination and investigation.
Collapse
Affiliation(s)
- Roshanak Ghaffarian Zirak
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hurie Tajik
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Science, Shahrekord, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Jahanbakhsh Asadi
- Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Mulcahy EQX, Zhang Y, Colόn RR, Cain SR, Gibert MK, Dube CJ, Hafner M, Abounader R. MicroRNA 3928 Suppresses Glioblastoma through Downregulation of Several Oncogenes and Upregulation of p53. Int J Mol Sci 2022; 23:3930. [PMID: 35409289 PMCID: PMC8998958 DOI: 10.3390/ijms23073930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and lethal primary malignant brain tumor. Despite decades of research, therapeutic advances that significantly prolong life are non-existent. In recent years, microRNAs (miRNAs) have been a focus of study in the pathobiology of cancer because of their ability to simultaneously regulate multiple genes. The aim of this study was to determine the functional and mechanistic effects of miR-3928 in GBM both in vitro and in vivo. To the best of our knowledge, this is the first article investigating the role of miR-3928 in GBM. We measured endogenous miR-3928 expression levels in a panel of patient-derived GBM tissue samples and cell lines. We found that GBM tissue samples and cell lines express lower levels of miR-3928 than normal brain cortex and astrocytes, respectively. Therefore, we hypothesized that miR-3928 is a tumor suppressive microRNA. We verified this hypothesis by showing that exogenous expression of miR-3928 has a strong inhibitory effect on both cell growth and invasiveness of GBM cells. Stable ex vivo overexpression of miR-3928 in GBM cells led to a reduction in tumor size in nude mice xenografts. We identified many targets (MDM2, CD44, DDX3X, HMGA2, CCND1, BRAF, ATOH8, and BMI1) of miR-3928. Interestingly, inhibition of the oncogene MDM2 also led to an upregulation of wild-type p53 expression and phosphorylation. In conclusion, we find that miR-3928, through the downregulation of several oncogenes and upregulation and activation of wild-type p53, is a strong tumor suppressor in GBM. Furthermore, the fact that miR-3928 can target many important dysregulated proteins in GBM suggests it might be a "master" regulatory microRNA that could be therapeutically exploited.
Collapse
Affiliation(s)
- Elizabeth Q. X. Mulcahy
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Ying Zhang
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Rossymar R. Colόn
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Shelby R. Cain
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Myron K. Gibert
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Collin J. Dube
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Markus Hafner
- National Institutes of Health (NIH), Bethesda, MD 20894, USA;
| | - Roger Abounader
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
28
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
29
|
Deciphering specific miRNAs in brain tumors: a 5-miRNA signature in glioblastoma. Mol Genet Genomics 2022; 297:507-521. [PMID: 35175428 DOI: 10.1007/s00438-022-01866-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
MicroRNAs are endogenous non-coding RNAs with a marked impact on the development and progression of brain tumors. However, they commonly share different expression patterns in other types of tumors, thereby exhibiting lack of tissue specificity. Here, an integrative holistic analysis of microarray data is established for deciphering dysregulated miRNAs in glioblastoma, distinguishing them from eight other CNS tumors. The identification of dysregulated miRNAs was performed in a pool of 176 patients, 118 of which diagnosed with glioblastoma. Dysregulated miRNAs commonly expressed in glioblastoma were then discriminated from those co-expressed in other CNS tumors and further characterized. Overall, 21 miRNAs were found to be commonly dysregulated in glioblastoma. Notwithstanding, 16 miRNAs also exhibited a differential expression in at least one other CNS tumor. The remaining 5, specifically, hsa-miR-21-3p, hsa-miR-338-5p, hsa-miR-485-5p, hsa-miR-491-5p and hsa-miR-1290, were solely associated to glioblastoma. This signature is in-depth characterized, with the spotlight on tumor progression, invasion and patient survival. These five endogenous molecules, differentially expressed in glioblastoma, are thus suggested as potential therapeutic targets, modulating several genes involved in major signalling pathways, including MAPK/ERK, calcium, PI3K/AKT, mTOR and Wnt. In summary, these findings lay a foundation for further research on the expression and function of specific patterns of miRNAs expression in glioblastoma, providing reference for potential novel targets.
Collapse
|
30
|
Li P, Xu Z, Liu T, Liu Q, Zhou H, Meng S, Feng Z, Tang Y, Liu C, Feng J, Fu H, Liu Q, Wu M. Circular RNA Sequencing Reveals Serum Exosome Circular RNA Panel for High-Grade Astrocytoma Diagnosis. Clin Chem 2021; 68:332-343. [PMID: 34942001 DOI: 10.1093/clinchem/hvab254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although major advances have been made in the histopathological diagnosis of high-grade astrocytoma (HGA), methods for effective and noninvasive diagnosis remain largely unknown. Exosomes can cross the blood-brain barrier and are readily accessible in human biofluids, making them promising biomarkers for HGA. Circular RNAs (circRNAs) have potential as tumor biomarkers owing to their stability, conservation, and tissue specificity. However, the landscape and characteristics of exosome circRNAs in HGA remain to be studied. METHODS CircRNA deep sequencing and bioinformatics approaches were used to generate a circRNA profiling database and analyze the features of HGA cell circRNAs and HGA cell-derived exosome circRNAs. Exosome circRNA expression in the serum and tissues of healthy individuals and patients with HGA was detected using reverse transcription-quantitative PCR. Additionally, the receiver operating characteristic curve and overall survival curves were analyzed. RESULTS By investigating the characteristics of HGA cell-derived exosome circRNAs and HGA cell circRNAs, we observed that exosomes were more likely to enrich short-exon and suppressor circRNAs than HGA cells. Moreover, a serum exosome circRNA panel including hsa_circ_0075828, hsa_circ_0003828, and hsa_circ_0002976 could be used to screen for HGA, whereas a good prognosis panel comprised high concentrations of hsa_circ_0005019, hsa_circ_0000880, hsa_circ_0051680, and hsa_circ_0006365. CONCLUSIONS This study revealed a comprehensive circRNA landscape in HGA exosomes and cells. The serum exosome circexosome circRNA panel and tissue circRNAs are potentially useful for HGA liquid biopsy and prognosis monitoring. Exosome circRNAs as novel targets should facilitate further biomarker discovery and aid in HGA diagnosis and therapy monitoring.
Collapse
Affiliation(s)
- Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zihao Xu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Tao Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hecheng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Shujuan Meng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ziyang Feng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ying Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Changhong Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.,Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandon 250033, China
| | - Jianbo Feng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Haijuan Fu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Minghua Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
31
|
Gatto L, Franceschi E, Di Nunno V, Tosoni A, Lodi R, Brandes AA. Liquid Biopsy in Glioblastoma Management: From Current Research to Future Perspectives. Oncologist 2021; 26:865-878. [PMID: 34105205 PMCID: PMC8488799 DOI: 10.1002/onco.13858] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Arising from neuroepithelial glial cells, GBM is characterized by invasive behavior, extensive angiogenesis, and genetic heterogeneity that contributes to poor prognosis and treatment failure. Currently, there are several molecular biomarkers available to aid in diagnosis, prognosis, and predicting treatment outcomes; however, all require the biopsy of tumor tissue. Nevertheless, a tissue sample from a single location has its own limitations, including the risk related to the procedure and the difficulty of obtaining longitudinal samples to monitor treatment response and to fully capture the intratumoral heterogeneity of GBM. To date, there are no biomarkers in blood or cerebrospinal fluid for detection, follow-up, or prognostication of GBM. Liquid biopsy offers an attractive and minimally invasive solution to support different stages of GBM management, assess the molecular biology of the tumor, identify early recurrence and longitudinal genomic evolution, predict both prognosis and potential resistance to chemotherapy or radiotherapy, and allow patient selection for targeted therapies. The aim of this review is to describe the current knowledge regarding the application of liquid biopsy in glioblastoma, highlighting both benefits and obstacles to translation into clinical care. IMPLICATIONS FOR PRACTICE: To translate liquid biopsy into clinical practice, further prospective studies are required with larger cohorts to increase specificity and sensitivity. With the ever-growing interest in RNA nanotechnology, microRNAs may have a therapeutic role in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Enrico Franceschi
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Vincenzo Di Nunno
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Alicia Tosoni
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| | - Raffaele Lodi
- Istituto delle Scienze Neurologiche di Bologna, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)BolognaItaly
| | - Alba Ariela Brandes
- Department of Medical Oncology, Azienda Unità Sanitaria Locale (USL) of BolognaBolognaItaly
| |
Collapse
|
32
|
Zhou J, Liu R. Upregulation of miR-144-3p expression attenuates glioma cell viability and invasion by targeting BCL6. Exp Ther Med 2021; 22:1157. [PMID: 34504602 DOI: 10.3892/etm.2021.10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/14/2020] [Indexed: 11/05/2022] Open
Abstract
Glioma remains to be an aggressive type of cancer with poor prognosis irrespective of the type of standard treatment applied. Therefore, identification of accurate early diagnostic methods and therapeutic strategies for glioma is imperative for the treatment of this disease. The expression of a number of miRNAs in glioma have been reported to be associated with the regulation of tumorigenic progression, cancer cell proliferation, metastasis, invasion, angiogenesis and drug resistance. The aim of the present study was to assess the function of the microRNA (miR/miRNA)-144-3p/BCL6 axis in glioma. Reverse transcription-quantitative PCR was used to measure miR-144-3p and BCL6 expression. Western blotting was used for measuring BCL6 expression. Luciferase reporter assay was used to assess the association between miR-144-3p and BCL6 and a tumor xenograft model was established for assess tumor growth. The data demonstrated that miR-144-3p was decreased whereas BCL6 expression was increased in glioma tissues compared with those in healthy human brain tissues, where miR-144-3p suppressed BCL6 expression by targeting the 3'-UTR sequence of BCL6. miR-144-3p overexpression alleviated proliferation and invasion in U251 cells whereas transfection with the BCL6-overexpressing plasmid rescued the suppressive effects of miR-144-3p upregulation on the proliferation and invasion of U251 cells. In addition, miR-144-3p overexpression and BCL6 downregulation inhibited tumor progression in a mouse tumor xenograft model. The present findings suggest that miR-144-3p and BCL6 may serve to be indicator of proliferation and invasion for patients with glioma. Furthermore, BCL6 may serve an important role in the miR-144-3p-mediated regulation of proliferation and invasion of glioma cells, where the miR-144-3p/BCL6 axis can be used to target patients with glioma therapeutically.
Collapse
Affiliation(s)
- Jingru Zhou
- Department of Neurosurgery, Nanchang University People's Hospital, Nanchang, Jianxi 330006, P.R. China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
33
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Maggio I, Franceschi E, Gatto L, Tosoni A, Di Nunno V, Tonon C, Brandes AA. Radiomics, mirnomics, and radiomirRNomics in glioblastoma: defining tumor biology from shadow to light. Expert Rev Anticancer Ther 2021; 21:1265-1272. [PMID: 34433354 DOI: 10.1080/14737140.2021.1971518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Glioblastoma is a highly aggressive brain tumor with an extremely poor prognosis. Genetic characterization of this tumor has identified alterations with prognostic and therapeutic impact, and many efforts are being made to improve molecular knowledge on glioblastoma. Invasive procedures, such as tumor biopsy or radical resection, are needed to characterize the tumor. AREAS COVERED The role of microRNA in cancer is an expanding field of research as many microRNAs have been shown to correlate with patient prognosis and treatment response. Novel methodologies like radiomics, radiogenomics, and radiomiRNomics are under evaluation to improve the amount of prognostic and predictive biomarkers available. EXPERT OPINION The role of radiomics, radiogenomics, and radiomiRNomic for the characterization of glioblastoma will further improve in the coming years.
Collapse
Affiliation(s)
- Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Alicia Tosoni
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Caterina Tonon
- Ircss Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba A Brandes
- Medical Oncology Department, Azienda USL, Bologna, Italy
| |
Collapse
|
35
|
Comprehensive Analysis of CD163 as a Prognostic Biomarker and Associated with Immune Infiltration in Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8357585. [PMID: 34395626 PMCID: PMC8363458 DOI: 10.1155/2021/8357585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive primary malignancy in adults with high aggression. The prognosis of GBM patients is poor. There is a critical need for novel biomarkers for the prognosis and therapy of GBM. Methods Differentially expressed genes (DEGs) in GBM were screened using TCGA cohort. Univariate and multivariate Cox regression analyses were performed on DEGs to identify the optimal prognosis-related genes. qRT-PCR was performed to verify the result. Results A total of 5216 DEGs, including 2785 upregulated and 2458 downregulated genes, were obtained. Enrichment analysis revealed that these DEGs were mainly involved in the p53 signaling pathway and cell cycle, immune response, and MAPK signaling pathways. Moreover, the top 50 DEGs were associated with drug resistance or drug sensitivity. Prognosis analysis revealed that GBM patients with a high expression of CD163 and CHI3L2 had a poor overall survival, prognosis-free survival, and disease-specific survival. The univariate and multivariate analyses revealed that CD163 and age were independent factors affecting the prognosis of GBM patients. A validation study revealed that CD163 was upregulated in GBM tissues and associated with poor overall survival. Moreover, further analysis revealed that CD163 showed significant correlation with immune cells, immune biomarkers, chemokines, and chemokine receptors. We also identified several CD163-associated kinase, miRNA, and transcription factor targets in GBM, including LCK, miR-483, and ELF1. Conclusions In conclusion, our study suggested CD163 as a prognostic biomarker and associated it with immune infiltration in GBM.
Collapse
|
36
|
Tanaka S, Ohgidani M, Hata N, Inamine S, Sagata N, Shirouzu N, Mukae N, Suzuki SO, Hamasaki H, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Funakoshi Y, Iwaki T, Hosoi M, Iihara K, Mizoguchi M, Kato TA. CD206 Expression in Induced Microglia-Like Cells From Peripheral Blood as a Surrogate Biomarker for the Specific Immune Microenvironment of Neurosurgical Diseases Including Glioma. Front Immunol 2021; 12:670131. [PMID: 34267749 PMCID: PMC8276757 DOI: 10.3389/fimmu.2021.670131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Targeting the unique glioma immune microenvironment is a promising approach in developing breakthrough immunotherapy treatments. However, recent advances in immunotherapy, including the development of immune checkpoint inhibitors, have not improved the outcomes of patients with glioma. A way of monitoring biological activity of immune cells in neural tissues affected by glioma should be developed to address this lack of sensitivity to immunotherapy. Thus, in this study, we sought to examine the feasibility of non-invasive monitoring of glioma-associated microglia/macrophages (GAM) by utilizing our previously developed induced microglia-like (iMG) cells. Primary microglia (pMG) were isolated from surgically obtained brain tissues of 22 patients with neurological diseases. iMG cells were produced from monocytes extracted from the patients’ peripheral blood. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant correlation of the expression levels of representative markers for M1 and M2 microglia phenotypes between pMG and the corresponding iMG cells in each patient (Spearman’s correlation coefficient = 0.5225, P <0.0001). Synchronous upregulation of CD206 expression levels was observed in most patients with glioma (6/9, 66.7%) and almost all patients with glioblastoma (4/5, 80%). Therefore, iMG cells can be used as a minimally invasive tool for monitoring the disease-related immunological state of GAM in various brain diseases, including glioma. CD206 upregulation detected in iMG cells can be used as a surrogate biomarker of glioma.
Collapse
Affiliation(s)
- Shunya Tanaka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noritoshi Shirouzu
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Mukae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masako Hosoi
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Huda MN, Nafiujjaman M, Deaguero IG, Okonkwo J, Hill ML, Kim T, Nurunnabi M. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 2021; 7:2106-2149. [PMID: 33988964 PMCID: PMC8147457 DOI: 10.1021/acsbiomaterials.1c00217] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Exosomes are cell-derived vesicles containing heterogeneous active biomolecules such as proteins, lipids, mRNAs, receptors, immune regulatory molecules, and nucleic acids. They typically range in size from 30 to 150 nm in diameter. An exosome's surfaces can be bioengineered with antibodies, fluorescent dye, peptides, and tailored for small molecule and large active biologics. Exosomes have enormous potential as a drug delivery vehicle due to enhanced biocompatibility, excellent payload capability, and reduced immunogenicity compared to alternative polymeric-based carriers. Because of active targeting and specificity, exosomes are capable of delivering their cargo to exosome-recipient cells. Additionally, exosomes can potentially act as early stage disease diagnostic tools as the exosome carries various protein biomarkers associated with a specific disease. In this review, we summarize recent progress on exosome composition, biological characterization, and isolation techniques. Finally, we outline the exosome's clinical applications and preclinical advancement to provide an outlook on the importance of exosomes for use in targeted drug delivery, biomarker study, and vaccine development.
Collapse
Affiliation(s)
- Md Nurul Huda
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Isaac G Deaguero
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
| | - Jude Okonkwo
- John A Paulson School of Engineering, Harvard University, Cambridge, MA 02138
| | - Meghan L. Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX 79968
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
38
|
Wang T, Mao P, Feng Y, Cui B, Zhang B, Chen C, Xu M, Gao K. Blocking hsa_circ_0006168 suppresses cell proliferation and motility of human glioblastoma cells by regulating hsa_circ_0006168/miR-628-5p/IGF1R ceRNA axis. Cell Cycle 2021; 20:1181-1194. [PMID: 34024251 PMCID: PMC8265815 DOI: 10.1080/15384101.2021.1930357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND hsa_circ_0006168 is an oncogenic circular RNA in esophageal cancer. However, its role remains unclarified in tumor progression of gliomas, especially in glioblastoma (GBM). METHODS Cell counting kit-8 assay, transwell assays, western blotting, and xenograft experiment, as well as colony formation assay and flow cytometry were performed to measure cell proliferation and motility. Expression of hsa_circ_0006168, microRNA (miR)-628-3p, insulin‑like growth factor 1 receptor (IGF1R), and Ras/extracellular signal regulated kinases (Erk)-related proteins were determined by quantitative real-time polymerase chain reaction and western blotting. The physical interaction was confirmed by dual-luciferase reporter assay and RNA pull-down assay. RESULTS hsa_circ_0006168 and IGF1R were upregulated, and miR-628-5p was downregulated in human GBM tissues and cells. Functionally, blocking hsa_circ_0006168 and overexpressing miR-628-5p suppressed cell proliferation, migration, invasion, and expression of Vimentin and Snail (mesenchymal markers) in A172 and LN229 cells, accompanied with increased E-cadherin (epithelial marker), decreased colony formation, and promoted apoptosis rate. Silencing miR-628-5p counteracted the suppression of hsa_circ_0006168 deficiency on these behaviors, and restoring IGF1R blocked miR-628-5p-mediated inhibition as well. More importantly, hsa_circ_0006168 knockdown could delay xenograft tumor growth in vivo and lower Ras and phosphorylated Erk1/2 expression in vitro and in vivo. Mechanically, hsa_circ_0006168 targeted and sponged miR-628-5p, and IFG1R was a novel target for miR-628-5p. Inhibiting miR-628-5p could abrogate in vitro role of hsa_circ_0006168 knockdown, and similarly IGF1R upregulation counteracted miR-628-5p role. CONCLUSION Silencing hsa_circ_0006168 might suppress GBM proliferation and motility via serving as competitive endogenous RNA for miR-628-5p and regulating IGF1R/Ras/Erk pathway.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Yong Feng
- Department of Neurosurgery, The Hancheng People's Hospital, Weinan, Shannxi, China
| | - Bo Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Bin Zhang
- Department of Neurosurgery, Bao Ji Affiliated Hospital of Xi'an Medical University, Baoji, Shannxi, China
| | - Chen Chen
- Department of Neurosurgery, Mianxian Hospital, Mianxian, Shannxi, China
| | - Mingjie Xu
- Department of Neurosurgery, Traditional Chinese Medicine Hospital of Xixiang, Hanzhong, Shannxi, China
| | - Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| |
Collapse
|
39
|
Sun J, Sun Z, Gareev I, Yan T, Chen X, Ahmad A, Zhang D, Zhao B, Beylerli O, Yang G, Zhao S. Exosomal miR-2276-5p in Plasma Is a Potential Diagnostic and Prognostic Biomarker in Glioma. Front Cell Dev Biol 2021; 9:671202. [PMID: 34141710 PMCID: PMC8204016 DOI: 10.3389/fcell.2021.671202] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Exosomal microRNAs (miRNAs) play an essential role in near and distant intercellular communication and are potential diagnostic and prognostic biomarkers for various cancers. This study focused on evaluation of exosomal miR-2276-5p in plasma as a diagnostic and prognostic biomarker for glioma. Methods Plasma exosomes from 124 patients with glioma and 36 non-tumor controls were collected and subjected to quantitative real-time polymerase chain reaction (qRT-PCR) analysis for the exosomal miR-2276-5p expression. Bioinformatic analyses were performed to identify a gene target, and CGGA and TCGA databases were checked for evaluation of prognostic relevance. Results The exosomal miR-2276-5p in glioma patients had a significantly decreased expression, compared with non-glioma patients (p < 0.01). Receiver operating characteristics (ROC) curve analyses were observed to regulate the diagnostic sensitivity and specificity of miR-2276-5p in glioma; the area under the curve (AUC) for miR-2276-5p was 0.8107. The lower expression of exosomal miR-2276-5p in patients with glioma correlated with poorer survival rates. RAB13 was identified as the target of miR-2276-5p which was high in glioma patients, especially those with higher tumor grades and correlated with poor survival. Conclusion The circulating exosomal miR-2276-5p is significantly reduced in the plasma of glioma patients, and thus, it could be a potential biomarker for patients with glioma for diagnostic and/or prognostic purposes.
Collapse
Affiliation(s)
- Jingxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Zhenying Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Tao Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Brain Science, Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Vojdani S, Ghaderian SMH, Zali A, Rakhshan A, Oraee Yazdani S, Poursheikhani A, Bidari Zerehpoush F, Sharifi G. Altered expression of EGFR and miR-34a derived from serum and tumoral tissue was associated with glioblastoma multiform. Exp Mol Pathol 2021; 121:104655. [PMID: 34062187 DOI: 10.1016/j.yexmp.2021.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glioblastoma multiform (GBM) is the most prevalent and invasive brain malignancy in adults. There are ongoing researches to introduce novel and non-invasive potential biomarkers for the early detection of GBM. METHODS Here we compared the expression of EGFR, miR-34a, and miR-19a between tumoral and adjacent non-cancerous tissues (ANCTs) of 50 GBM patients and also compared their expression levels in serum samples of GBM patients with serum samples of 50 control subjects. RESULTS The expression level of the EGFR gene was elevated in GBM tissues in comparison to the corresponding ANCTs (P < 0.0001) and also was higher in the serum sample of patients compared with control serum (P < 0.0001). The miR-34a was significantly downregulated in serum samples as well as tissues obtained from GBM patients compared with the corresponding controls (expression ratio = 0.57 and 0.4, P = 0.02 and 0.001 respectively). CONCLUSIONS Dysregulation of the EGFR gene and miR-34a in serum samples of GBM patients compared with the control subjects promises the emergence of non-invasive biomarkers for early detection of GBM which need confirmative studies with a large sample size.
Collapse
Affiliation(s)
- Samaneh Vojdani
- Department of Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aazadeh Rakhshan
- Department of Pathology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Farahnaz Bidari Zerehpoush
- Department of Pathology, Medical School, Shahid Beheshti University of Medical Sciences, HakimLoghman Hospital, Tehran, Iran
| | - Giuve Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgical Science, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Liu Y, Jiang K, Zhi T, Xu X. miR-720 is a key regulator of glioma migration and invasion by controlling TARSL2 expression. Hum Cell 2021; 34:1504-1516. [PMID: 34024034 DOI: 10.1007/s13577-021-00551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/12/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain tumor and is characterized by diffuse infiltrative growth. However, the mechanisms that control this phenotype remain largely unknown. Emerging evidence has demonstrated that the abnormal expression of microRNAs and their target genes are involved in the migration and invasion of glioma cells. In this study, we demonstrated that microRNA-720 (miR-720) was significantly upregulated in glioma tissues and cells. Functional experiments showed that overexpression of miR-720 promotes glioma migration and invasion, while downregulation of miR-720 inhibits glioma migration and invasion. Meanwhile, we found that threonyl-tRNA synthetase like-2 (TARSL2) was a direct and functional target of miR-720 in glioma. Reintroduction of TARSL2 into glioma cells repressed the invasion promoting function of miR-720, whereas downregulation of TARSL2 reversed the anti-invasion function of anti-miR-720. Furthermore, quantitative real-time polymerase chain reaction results showed that miR-720 was inversely correlated with TARSL2 expression in 40 GBM tissues. Finally, in vivo experiments showed that miR-720 promotes glioma growth and upregulates invasion-related genes in nude mice. Overall, our findings suggest increasing miR-720 enhances glioma migration and invasion through downregulation of TARSL2, which may provide novel insight into the treatment of glioma.
Collapse
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, Jiangsu Province, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing, 214200, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
42
|
Zhao X, Chen X, Wu X, Zhu L, Long J, Su L, Gu L. Machine Learning Analysis of MicroRNA Expression Data Reveals Novel Diagnostic Biomarker for Ischemic Stroke. J Stroke Cerebrovasc Dis 2021; 30:105825. [PMID: 34022583 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Ischemic stroke (IS) is one of the leading causes of morbidity and mortality worldwide. Circulating microRNAs have a potential as minimally invasive biomarkers for disease prediction, diagnosis, and prognosis. In this study, we sought to use different machine learning algorithms to identify an optimal model of microRNA by integrating the expression data of pre-selected microRNAs for discriminating patients with IS from controls. METHODS The expression level of microRNAs in the peripheral blood of 50 patients with IS and 50 matched controls were assessed through real-time polymerase chain reaction (qRT-PCR). Machine learning algorithms, including artificial neural network, random forest, extreme gradient boosting, and support vector machine (SVM) were employed via R 3.6.3 software to establish diagnostic models for IS. RESULTS The IS group had significantly increased expression levels of miR-19a (P < 0.001), miR-148a (P < 0.001), miR-320d (P = 0.003), and miR-342-3p (P < 0.001) compared with the control group. MiR-148a, miR-342-3p, miR-19a, and miR-320d yielded areas under the receiver operating characteristic curve (AUC) of 0.872, 0.844, 0.721, and 0.673, respectively, with 0.740, 0.940, 0.740, and 0.840 sensitivity and 0.920, 0.640, 0.600, and 0.440 specificity, respectively. Model miR-148a + miR-342-3p + miR-19a had the best predictive value when analyzed via SVM algorithm with AUC, sensitivity, and specificity values of 0.958, 0.937, and 0.889, respectively. CONCLUSION The diagnostic value of the combination of miR-148a, miR-342-3p, and miR-19a through SVM algorithm has the potential to serve as a feasible approach to promote the diagnosis of IS.
Collapse
Affiliation(s)
- Xinyi Zhao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine.
| | - Xingmei Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine.
| | - Xulong Wu
- School of Public Health, Guangxi Medical University.
| | - Lulu Zhu
- School of Public Health, Guangxi Medical University.
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases.
| | - Li Su
- School of Public Health, Guangxi Medical University; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases.
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine.
| |
Collapse
|
43
|
Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, Oton-Gonzalez L, Rotondo JC, Torreggiani E, Tognon M, Martini F. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021; 11:6573-6591. [PMID: 33995677 PMCID: PMC8120225 DOI: 10.7150/thno.55664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues. MSCs can regenerate through cell division or differentiate into adipocytes, osteoblasts and chondrocytes. As a result, MSCs have become an important source of cells in tissue engineering and regenerative medicine for bone tissue and cartilage. Several epigenetic factors are believed to play a role in MSCs differentiation. Among these, microRNA (miRNA) regulation is involved in the fine modulation of gene expression during osteogenic/chondrogenic differentiation. It has been reported that miRNAs are involved in bone homeostasis by modulating osteoblast gene expression. In addition, countless evidence has demonstrated that miRNAs dysregulation is involved in the development of osteoporosis and bone fractures. The deregulation of miRNAs expression has also been associated with several malignancies including bone cancer. In this context, bone-associated circulating miRNAs may be useful biomarkers for determining the predisposition, onset and development of osteoporosis, as well as in clinical applications to improve the diagnosis, follow-up and treatment of cancer and metastases. Overall, this review will provide an overview of how miRNAs activities participate in osteogenic/chondrogenic differentiation, while addressing the role of miRNA regulatory effects on target genes. Finally, the role of miRNAs in pathologies and therapies will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara. Ferrara, Italy
| |
Collapse
|
44
|
miR-542-3p Contributes to the HK2-Mediated High Glycolytic Phenotype in Human Glioma Cells. Genes (Basel) 2021; 12:genes12050633. [PMID: 33922649 PMCID: PMC8146800 DOI: 10.3390/genes12050633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The elevation of glucose metabolism is linked to high-grade gliomas such as glioblastoma multiforme (GBM). The high glycolytic phenotype is associated with cellular proliferation and resistance to treatment with chemotherapeutic agents in GBM. MicroRNA-542-3p (miR-542-3p) has been implicated in several tumors including gliomas. However, the role of miR-542-3p in glucose metabolism in human gliomas remains unclear; (2) Methods: We measured the levels of cellular proliferation in human glioma cells. We measured the glycolytic activity in miR-542-3p knockdown and over-expressed human glioma cells. We measured the levels of miR-542-3p and HK2 in glioma tissues from patients with low- and high-grade gliomas using imaging analysis; (3) Results: We show that knockdown of miR-542-3p significantly suppressed cellular proliferation in human glioma cells. Knockdown of miR-542-3p suppressed HK2-induced glycolytic activity in human glioma cells. Consistently, over-expression of miR-542-3p increased HK2-induced glycolytic activity in human glioma cells. The levels of miR-542-3p and HK2 were significantly elevated in glioma tissues of patients with high-grade gliomas relative to that in low-grade gliomas. The elevation of HK2 levels in patients with high-grade gliomas were positively correlated with the high levels of miR-542-3p in GBM and low-grade gliomas (LGG) based on the datasets from the Cancer Genome Atlas (TCGA) database. Moreover, the high levels of miR-542-3p were associated with poor survival rate in the TCGA database; (4) Conclusions: miR-542-3p contributes to the HK2-mediated high glycolytic phenotype in human glioma cells.
Collapse
|
45
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States.,Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
46
|
A HIF1A/miR-485-5p/SRPK1 axis modulates the aggressiveness of glioma cells upon hypoxia. Exp Cell Res 2021; 402:112547. [PMID: 33722639 DOI: 10.1016/j.yexcr.2021.112547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
The high aggressiveness of gliomas remains a huge challenge to clinical therapies, and the hypoxic microenvironment in the core region is a critical contributor to glioma aggressiveness. In this study, it was found that miR-485-5p was low expressed within glioma tissue samples and cells. GO enrichment annotation indicated that the predicted downstream targets miR-485-5p were enriched in hypoxia response and decreased oxygen level. In glioma cells, miR-485-5p overexpression suppressed cell viability, migratory ability, and invasive ability under both normoxic and hypoxic conditions. Through direct binding, miR-485-5p suppressed SRPK1 expression. Under hypoxia, SRPK1 overexpression enhanced hypoxia-induced glioma cell aggressiveness and significantly reversed the effects of miR-485-5p overexpression. Moreover, HIF1A could target the miR-485-5p promoter region to inhibit the transcription. HIF1A, miR-485-5p, and SRPK1 form a regulatory axis, which modulates glioma cell aggressiveness under hypoxia. In conclusion, we identify a HIF1A/miR-485-5p/SRPK1 axis that modulates the aggressiveness of glioma cells under hypoxia. The axis could potentially provide new research avenues in the treatment of gliomas considering the hypoxic environment in its core.
Collapse
|
47
|
Monie DD, Bhandarkar AR, Parney IF, Correia C, Sarkaria JN, Vile RG, Li H. Synthetic and systems biology principles in the design of programmable oncolytic virus immunotherapies for glioblastoma. Neurosurg Focus 2021; 50:E10. [PMID: 33524942 DOI: 10.3171/2020.12.focus20855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Oncolytic viruses (OVs) are a class of immunotherapeutic agents with promising preclinical results for the treatment of glioblastoma (GBM) but have shown limited success in recent clinical trials. Advanced bioengineering principles from disciplines such as synthetic and systems biology are needed to overcome the current challenges faced in developing effective OV-based immunotherapies for GBMs, including off-target effects and poor clinical responses. Synthetic biology is an emerging field that focuses on the development of synthetic DNA constructs that encode networks of genes and proteins (synthetic genetic circuits) to perform novel functions, whereas systems biology is an analytical framework that enables the study of complex interactions between host pathways and these synthetic genetic circuits. In this review, the authors summarize synthetic and systems biology concepts for developing programmable, logic-based OVs to treat GBMs. Programmable OVs can increase selectivity for tumor cells and enhance the local immunological response using synthetic genetic circuits. The authors discuss key principles for developing programmable OV-based immunotherapies, including how to 1) select an appropriate chassis, a vector that carries a synthetic genetic circuit, and 2) design a synthetic genetic circuit that can be programmed to sense key signals in the GBM microenvironment and trigger release of a therapeutic payload. To illustrate these principles, some original laboratory data are included, highlighting the need for systems biology studies, as well as some preliminary network analyses in preparation for synthetic biology applications. Examples from the literature of state-of-the-art synthetic genetic circuits that can be packaged into leading candidate OV chassis are also surveyed and discussed.
Collapse
Affiliation(s)
- Dileep D Monie
- Departments of1Immunology.,6Mayo Clinic Alix School of Medicine.,7Mayo Clinic Graduate School of Biomedical Sciences; and Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Cristina Correia
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | | | - Hu Li
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| |
Collapse
|
48
|
Supplitt S, Karpinski P, Sasiadek M, Laczmanska I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int J Mol Sci 2021; 22:1422. [PMID: 33572595 PMCID: PMC7866970 DOI: 10.3390/ijms22031422] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine.
Collapse
Affiliation(s)
- Stanislaw Supplitt
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Maria Sasiadek
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| | - Izabela Laczmanska
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| |
Collapse
|
49
|
Le Fèvre C, Constans JM, Chambrelant I, Antoni D, Bund C, Leroy-Freschini B, Schott R, Cebula H, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 - Radiological features and metric markers. Crit Rev Oncol Hematol 2021; 159:103230. [PMID: 33515701 DOI: 10.1016/j.critrevonc.2021.103230] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022] Open
Abstract
After chemoradiotherapy for glioblastoma, pseudoprogression can occur and must be distinguished from true progression to correctly manage glioblastoma treatment and follow-up. Conventional treatment response assessment is evaluated via conventional MRI (contrast-enhanced T1-weighted and T2/FLAIR), which is unreliable. The emergence of advanced MRI techniques, MR spectroscopy, and PET tracers has improved pseudoprogression diagnostic accuracy. This review presents a literature review of the different imaging techniques and potential imaging biomarkers to differentiate pseudoprogression from true progression.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France.
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Caroline Bund
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Benjamin Leroy-Freschini
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, avenue Molière, 67200, Strasbourg, France.
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
50
|
Liu JY, Fu WQ, Zheng XJ, Li W, Ren LW, Wang JH, Yang C, Du GH. Avasimibe exerts anticancer effects on human glioblastoma cells via inducing cell apoptosis and cell cycle arrest. Acta Pharmacol Sin 2021; 42:97-107. [PMID: 32451414 PMCID: PMC7921416 DOI: 10.1038/s41401-020-0404-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/19/2020] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, but there is no effective drug available for GBM. Avasimibe is a potent inhibitor of acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1), which was used to treat atherosclerosis. Experimental evidence and bioinformatics have shown that avasimibe has anticancer activity. In this study we investigated the anticancer effects of avasimibe on human glioblastoma cells and the underlying mechanisms. Our results showed that avasimibe dose-dependently inhibited the proliferation of U251 and U87 human glioblastoma cells with IC50 values of 20.29 and 28.27 μM, respectively, at 48 h. Avasimibe (7.5, 15, 30 μM) decreased the DNA synthesis, and inhibited the colony formation of the tumor cells. Treatment of avasimibe also dose-dependently increased the apoptotic rate of tumor cells, decreased the mitochondrial membrane potential, induced the activity of caspase-3/7, and increased the protein expression of cleaved caspase-9, cleaved PARP and Bax in U251 and U87 cells. RNA-sequencing analyses revealed that avasimibe suppressed the expression of CDK2, cyclin E1, CDK4, cyclin D, CDK1, cyclin B1, Aurora A, and PLK1, while induced the expression of p53, p21, p27, and GADD45A, which was validated by Western blot analysis. These results demonstrated that avasimibe induced mitochondria-dependent apoptosis in glioblastoma cells, which was associated with arresting the cell cycle at G0/G1 phase and G2/M phase by regulating the p53/p21 pathway, p53/GADD45A and Aurora A/PLK1 signaling pathways. In U87 xenograft nude mice model, administration of avasimibe (15, 30 mg·kg-1·d-1, ip, for 18 days) dose-dependently inhibit the tumor growth. Taken together, our results demonstrated that avasimibe might be a promising chemotherapy drug in the treatment of GBM.
Collapse
Affiliation(s)
- Jin-Yi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wei-Qi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiang-Jin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Wen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Hua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650500, China.
| | - Guan-Hua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|