1
|
Zhang W, Liu M, Li W, Song Y. Immune cells in the B-cell lymphoma microenvironment: From basic research to clinical applications. Chin Med J (Engl) 2024; 137:776-790. [PMID: 38269619 PMCID: PMC10997228 DOI: 10.1097/cm9.0000000000002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 01/26/2024] Open
Abstract
ABSTRACT B-cell lymphoma is a group of hematological malignancies characterized by variable genetic and biological features and clinical behaviors. The tumor microenvironment (TME) is a complex network in tumors, which consists of surrounding blood vessels, extracellular matrix, immune and non-immune cells, and signaling molecules. Increasing evidence has shown that the TME, especially immune cells within, is a double-edged sword, acting either as a tumor killer or as a promoter of tumor progression. These pro-tumor activities are driven by subpopulations of immune cells that express typical markers but have unique transcriptional characteristics, making tumor-associated immune cells good targets for human anti-cancer therapy by ablating immunosuppressive cells or enhancing immune-activated cells. Thus, exploring the role of immune cells in the TME provides distinct insights for immunotherapy in B-cell lymphoma. In this review, we elucidated the interaction between immune cells and tumor cells and their function in the initiation, progression, and prognosis of B-cell lymphoma, from preclinical experiments to clinical trials. Furthermore, we outlined potential therapeutic approaches and discussed the potential clinical value and future perspectives of targeting immune cells in patients with B-cell lymphoma.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengmeng Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| |
Collapse
|
2
|
Aoshima M, Yagasaki H, Shimozawa K, Kanezawa K, Ueno M, Morioka I. Six Years of Disease-free Survival After a Second Cord Blood Transplantation for Recurrent Acute Lymphocytic Leukemia in a Child With Down Syndrome. J Pediatr Hematol Oncol 2024; 46:e100-e102. [PMID: 38063382 DOI: 10.1097/mph.0000000000002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/05/2023] [Indexed: 01/04/2024]
Abstract
Outcomes are extremely poor in Down syndrome-associated acute lymphocytic leukemia, particularly in recurrent cases. A 2-year-old boy with Down syndrome-associated acute lymphocytic leukemia achieved complete remission after standard chemotherapy. However, he experienced recurrence twice in the bone marrow and central nervous system. Salvage treatments included whole-brain/whole-spine irradiation. Thereafter, the patient received a second cord blood transplantation after the reduced-intensity conditioning. The graft was characterized by killer cell immunoglobulin-like receptor ligands mismatch. The patient has subsequently survived for 6.5 years without recurrence. We speculate that killer cell immunoglobulin-like receptor ligand-mismatched cord blood transplantation enhanced the graft-versus-leukemia effect through natural killer cells, and conferred long-term remission.
Collapse
Affiliation(s)
- Momoka Aoshima
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Huo Z, Chen F, Zhao J, Liu P, Chao Z, Liu K, Zhou J, Zhou D, Zhang L, Zhen H, Yang W, Tan Z, Zhu K, Luo Z. Prognostic impact of absolute peripheral blood NK cell count after four cycles of R-CHOP-like regimen treatment in patients with diffuse large B cell lymphoma. Clin Exp Med 2023; 23:4665-4672. [PMID: 37938466 PMCID: PMC10725372 DOI: 10.1007/s10238-023-01249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
As a subtype of lymphocyte, natural killer (NK) cell is the first line of defense that shows a strong function in tumor immunotherapy response and clinical outcomes. The current study aims to investigate the prognostic influence of peripheral blood absolute NK cell count after four cycles of rituximab combined with cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) treatment (NKCC4) in diffuse large B cell lymphoma (DLBCL) patients. A total of 261 DLBCL patients treated with R-CHOP from January 2018 to September 2022 were enrolled. The low NKCC4 was observed in patients who died during the study period compared with survival individuals. A NKCC4 < 135 cells/μl had a remarkable negative influence in overall survival and progression-free survival (PFS) compared to a NKCC4 ≥ 135 cells/μl (p < 0.0001 and p < 0.0004, respectively). In addition, the OS and PFS were synergistically lower in a NKCC4 < 135 cells/μl group among DLBCL patients with GCB type or high IPI. In conclusion, this study indicates NCKK4 as a valuable marker in clinical practice and provides an insight for combination treatment of R-CHOP to improve outcomes of DLBCL patients.
Collapse
Affiliation(s)
- Zhongjun Huo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Fang Chen
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Jiajia Zhao
- Department of Reproductive and Genetic Center, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Ping Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zhi Chao
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Kang Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Ji Zhou
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Dan Zhou
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Lu Zhang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Haifeng Zhen
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Wenqun Yang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zhenqing Tan
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Kaibo Zhu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Zimian Luo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, 411100, China.
| |
Collapse
|
4
|
Kalmbach S, Grau M, Zapukhlyak M, Leich E, Jurinovic V, Hoster E, Staiger AM, Kurz KS, Weigert O, Gaitzsch E, Passerini V, Engelhard M, Herfarth K, Beiske K, Micci F, Möller P, Bernd HW, Feller AC, Klapper W, Stein H, Hansmann ML, Hartmann S, Dreyling M, Holte H, Lenz G, Rosenwald A, Ott G, Horn H. Novel insights into the pathogenesis of follicular lymphoma by molecular profiling of localized and systemic disease forms. Leukemia 2023; 37:2058-2065. [PMID: 37563306 PMCID: PMC10539171 DOI: 10.1038/s41375-023-01995-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Knowledge on the pathogenesis of FL is mainly based on data derived from advanced/systemic stages of FL (sFL) and only small cohorts of localized FL (lFL) have been characterized intensively so far. Comprehensive analysis with profiling of somatic copy number alterations (SCNA) and whole exome sequencing (WES) was performed in 147 lFL and 122 sFL. Putative targets were analyzed for gene and protein expression. Overall, lFL and sFL, as well as BCL2 translocation-positive (BCL2+) and -negative (BCL2-) FL showed overlapping features in SCNA and mutational profiles. Significant differences between lFL and sFL, however, were detected for SCNA frequencies, e.g., in 18q-gains (14% lFL vs. 36% sFL; p = 0.0003). Although rare in lFL, gains in 18q21 were associated with inferior progression-free survival (PFS). The mutational landscape of lFL and sFL included typical genetic lesions. However, ARID1A mutations were significantly more often detected in sFL (29%) compared to lFL (6%, p = 0.0001). In BCL2 + FL mutations in KMT2D, BCL2, ABL2, IGLL5 and ARID1A were enriched, while STAT6 mutations more frequently occurred in BCL2- FL. Although the landscape of lFL and sFL showed overlapping features, molecular profiling revealed novel insights and identified gains in 18q21 as prognostic marker in lFL.
Collapse
Affiliation(s)
- Sabrina Kalmbach
- Department of Clinical Pathology, Robert-Bosch Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Michael Grau
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Main, Würzburg, Germany
| | - Vindi Jurinovic
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Eva Hoster
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Katrin S Kurz
- Department of Clinical Pathology, Robert-Bosch Hospital, Stuttgart, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Erik Gaitzsch
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Verena Passerini
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Marianne Engelhard
- Department for Radiotherapy, University Hospital of Essen, Essen, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Klaus Beiske
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- KG Jebsen center for B cell malignancies, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Oslo University Hospital, Oslo, Norway
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | | | | | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | - Sylvia Hartmann
- Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Martin Dreyling
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Harald Holte
- KG Jebsen center for B cell malignancies, Oslo, Norway
| | - Georg Lenz
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Main, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch Hospital, Stuttgart, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
6
|
Azoulay T, Slouzky I, Karmona M, Filatov M, Hayun M, Ofran Y, Sarig G, Ringelstein-Harlev S. Compromised activity of natural killer cells in diffuse large b-cell lymphoma is related to lymphoma-induced modification of their surface receptor expression. Cancer Immunol Immunother 2023; 72:707-718. [PMID: 36048214 DOI: 10.1007/s00262-022-03284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
While natural killer (NK) cells are essential players in detection and elimination of malignant cells, these surveillance properties can be compromised by cancer cells. Since NK cell education primarily occurs in the bone marrow and lymphoid tissue, this process might be particularly affected by their infiltration with lymphoma cells. This study aimed to explore functional properties of diffuse large B-cell lymphoma (DLBCL) patient NK cells, which could potentially promote tumour immune evasion and disease propagation.NK cells isolated from the peripheral blood (PB) of 26 DLBCL patients and 13 age-matched healthy controls (HC) were analysed. The cytotoxic CD56dim subtype was the only one identified in patients. Compared to HC, patient cells demonstrated low levels of inhibitory CD158a/b along with decreased expression of activating NKG2D and CD161 and increased inhibitory NKG2A levels. Patient NK cell cytotoxic activity was impaired, as were their degranulation and inflammatory cytokine production, which partially recovered following non-receptor-dependant stimulation.The phenotypically skewed and restricted population of patient NK cells, along with their blunted cytotoxic and immune-regulatory activity, appear to be driven by exposure to lymphoma environment. These NK cell functional aberrations could support lymphoma immune evasion and should be considered in the era of cellular therapy.
Collapse
Affiliation(s)
- Tehila Azoulay
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Ilana Slouzky
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Michal Karmona
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | | | - Michal Hayun
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Sarig
- Hematology Laboratory, Rambam Health Care Campus, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Crist M, Yaniv B, Palackdharry S, Lehn MA, Medvedovic M, Stone T, Gulati S, Karivedu V, Borchers M, Fuhrman B, Crago A, Curry J, Martinez-Outschoorn U, Takiar V, Wise-Draper TM. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J Immunother Cancer 2022; 10:jitc-2022-005632. [PMID: 36328378 PMCID: PMC9639146 DOI: 10.1136/jitc-2022-005632] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Metformin slows tumor growth and progression in vitro, and in combination with chemoradiotherapy, resulted in high overall survival in patients with head and neck cancer squamous cell carcinoma (HNSCC) in our phase 1 clinical trial (NCT02325401). Metformin is also postulated to activate an antitumor immune response. Here, we investigate immunologic effects of metformin on natural killer (NK) and natural killer T cells, including results from two phase I open-label studies in patients with HNSCC treated with metformin (NCT02325401, NCT02083692). METHODS Peripheral blood was collected before and after metformin treatment or from newly diagnosed patients with HNSCC. Peripheral immune cell phenotypes were evaluated using flow cytometry, cytokine expression by ELISA and/or IsoLight, and NK cell-mediated cytotoxicity was determined with a flow-based NK cell cytotoxicity assay (NKCA). Patient tumor immune infiltration before and after metformin treatment was analyzed with immunofluorescence. NK cells were treated with either vehicle or metformin and analyzed by RNA sequencing (RNA-seq). NK cells were then treated with inhibitors of significant pathways determined by RNA-seq and analyzed by NKCA, ELISA, and western blot analyses. RESULTS Increased peripheral NK cell activated populations were observed in patients treated with metformin. NK cell tumor infiltration was enhanced in patients with HNSCC treated with metformin preoperatively. Metformin increased antitumorigenic cytokines ex vivo, including significant increases in perforin. Metformin increased HNSCC NK cell cytotoxicity and inhibited the CXCL1 pathway while stimulating the STAT1 pathway within HNSCC NK cells. Exogenous CXCL1 prevented metformin-enhanced NK cell-mediated cytotoxicity. Metformin-mediated NK cell cytotoxicity was found to be AMP-activated protein kinase independent, but dependent on both mechanistic target of rapamycin and pSTAT1. CONCLUSIONS Our data identifies a new role for metformin-mediated immune antitumorigenic function through NK cell-mediated cytotoxicity and downregulation of CXCL1 in HNSCC. These findings will inform future immunomodulating therapies in HNSCC.
Collapse
Affiliation(s)
- McKenzie Crist
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Benyamin Yaniv
- Department of Medicine, UMass Memorial Medical Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah Palackdharry
- University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maria A Lehn
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA,Division of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental Health; Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Timothy Stone
- Department of Environmental Health; Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shuchi Gulati
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vidhya Karivedu
- Department of Medical Oncology Head and Neck Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Michael Borchers
- Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA,Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Bethany Fuhrman
- University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Audrey Crago
- University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Vinita Takiar
- Division of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA,Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Trisha M Wise-Draper
- Department of Internal Medicine; Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Franklin M, Connolly E, Hussell T. Recruited and Tissue-Resident Natural Killer Cells in the Lung During Infection and Cancer. Front Immunol 2022; 13:887503. [PMID: 35844626 PMCID: PMC9284027 DOI: 10.3389/fimmu.2022.887503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system, and have a key role in host defense against infection and in tumor surveillance. Tumors and viruses employ remarkably similar strategies to avoid recognition and killing by NK cells and so much can be learnt by comparing NK cells in these disparate diseases. The lung is a unique tissue environment and immune cells in this organ, including NK cells, exist in a hypofunctional state to prevent activation against innocuous stimuli. Upon infection, rapid NK cell infiltration into the lung occurs, the amplitude of which is determined by the extent of inflammation and damage. Activated NK cells kill infected cells and produce pro-inflammatory cytokines and chemokines to recruit cells of the adaptive immune system. More recent evidence has shown that NK cells also play an additional role in resolution of inflammation. In lung cancer however, NK cell recruitment is impaired and those that are present have reduced functionality. The majority of lung NK cells are circulatory, however recently a small population of tissue-resident lung NK cells has been described. The specific role of this subset is yet to be determined, but they show similarity to resident memory T cell subsets. Whether resident or recruited, NK cells are important in the control of pulmonary infections, but equally, can drive excessive inflammation if not regulated. In this review we discuss how NK cells are recruited, controlled and retained in the specific environment of the lung in health and disease. Understanding these mechanisms in the context of infection may provide opportunities to promote NK cell recruitment and function in the lung tumor setting.
Collapse
|
9
|
Her JH, Pretscher D, Patra-Kneuer M, Schanzer J, Cho SY, Hwang YK, Hoeres T, Boxhammer R, Heitmueller C, Wilhelm M, Steidl S, Endell J. Tafasitamab mediates killing of B-cell non-Hodgkin's lymphoma in combination with γδ T cell or allogeneic NK cell therapy. Cancer Immunol Immunother 2022; 71:2829-2836. [PMID: 35348812 PMCID: PMC9519642 DOI: 10.1007/s00262-022-03165-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022]
Abstract
Tafasitamab is an Fc-modified monoclonal antibody that binds to CD19, a cell-surface antigen that is broadly expressed on various types of B-cell non-Hodgkin’s lymphoma (NHL). Antibody-dependent cellular cytotoxicity (ADCC), a key mode of action of tafasitamab, is mediated through the binding of tafasitamab’s Fc region to FcγRIIIa receptors on immune effector cells and results in antitumor activity. Despite the proven clinical activity of tafasitamab in combination with lenalidomide in the treatment of diffuse large B-cell lymphoma (DLBCL), a higher number of immune cells in cancer patients may improve the activity of tafasitamab. Here, we characterized two ex vivo-expanded FcγRIIIa receptor—expressing cell types—γδ T and MG4101 natural killer (NK) cells—as effector cells for tafasitamab in vitro, and found that in the presence of these cells tafasitamab was able to induce ADCC against a range of NHL cell lines and patient-derived cells. We also explored the concept of effector cell supplementation during tafasitamab treatment in vivo by coadministering MG4101 NK cells in Raji and Ramos xenograft models of NHL. Combination treatment of tafasitamab and allogeneic MG4101 NK cells in these models demonstrated a survival benefit compared with tafasitamab or MG4101 monotherapy (Raji: 1.7- to 1.9-fold increase in lifespan; Ramos: 2.0- to 4.1-fold increase in lifespan). In conclusion, adoptive cell transfer of ex vivo-expanded allogeneic NK or autologous γδ T cells in combination with tafasitamab treatment may potentially be a promising novel approach to increase the number of immune effector cells and enhance the antitumor effect of tafasitamab.
Collapse
Affiliation(s)
- Jung Hyun Her
- Cell Therapy Research Center, GC LabCell, Yongin, Republic of Korea
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | | - Sung Yoo Cho
- Cell Therapy Research Center, GC LabCell, Yongin, Republic of Korea
| | - Yu Kyeong Hwang
- Cell Therapy Research Center, GC LabCell, Yongin, Republic of Korea
| | - Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | | | | |
Collapse
|
10
|
Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis. Vaccines (Basel) 2021; 9:vaccines9121488. [PMID: 34960234 PMCID: PMC8709224 DOI: 10.3390/vaccines9121488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023] Open
Abstract
The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as "soloists" or by their "dangerous liaisons", in favoring tumor progression by dissecting the cellular and molecular mechanisms involved.
Collapse
|
11
|
Manoochehri M, Hielscher T, Borhani N, Gerhäuser C, Fletcher O, Swerdlow AJ, Ko YD, Brauch H, Brüning T, Hamann U. Epigenetic quantification of circulating immune cells in peripheral blood of triple-negative breast cancer patients. Clin Epigenetics 2021; 13:207. [PMID: 34789319 PMCID: PMC8596937 DOI: 10.1186/s13148-021-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A shift in the proportions of blood immune cells is a hallmark of cancer development. Here, we investigated whether methylation-derived immune cell type ratios and methylation-derived neutrophil-to-lymphocyte ratios (mdNLRs) are associated with triple-negative breast cancer (TNBC). METHODS Leukocyte subtype-specific unmethylated/methylated CpG sites were selected, and methylation levels at these sites were used as proxies for immune cell type proportions and mdNLR estimation in 231 TNBC cases and 231 age-matched controls. Data were validated using the Houseman deconvolution method. Additionally, the natural killer (NK) cell ratio was measured in a prospective sample set of 146 TNBC cases and 146 age-matched controls. RESULTS The mdNLRs were higher in TNBC cases compared with controls and associated with TNBC (odds ratio (OR) range (2.66-4.29), all Padj. < 1e-04). A higher neutrophil ratio and lower ratios of NK cells, CD4 + T cells, CD8 + T cells, monocytes, and B cells were associated with TNBC. The strongest association was observed with decreased NK cell ratio (OR range (1.28-1.42), all Padj. < 1e-04). The NK cell ratio was also significantly lower in pre-diagnostic samples of TNBC cases compared with controls (P = 0.019). CONCLUSION This immunomethylomic study shows that a shift in the ratios/proportions of leukocyte subtypes is associated with TNBC, with decreased NK cell showing the strongest association. These findings improve our knowledge of the role of the immune system in TNBC and point to the possibility of using NK cell level as a non-invasive molecular marker for TNBC risk assessment, early detection, and prevention.
Collapse
Affiliation(s)
- Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany. .,Department of in-Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nasim Borhani
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Clarissa Gerhäuser
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Anthony J Swerdlow
- The Institute of Cancer Research, London, UK.,Division of Genetics and Epidemiology and Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, 53113, Bonn, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany.,iFIT Cluster of Excellence, University of Tübingen, 72074, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72074, Tübingen, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Nakagawa M, Iriyama N, Ishikawa T, Miura K, Uchino Y, Takahashi H, Hamada T, Iizuka K, Koike T, Kurihara K, Nakayama T, Hatta Y, Takei M. Absolute Lymphocyte Counts After Lenalidomide Initiation may Predict the Prognosis of Patients With Relapsed or Refractory Multiple Myeloma. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:221-229. [PMID: 35399319 PMCID: PMC8962793 DOI: 10.21873/cdp.10030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM We assessed the prognosis of patients with refractory or relapsed multiple myeloma (RRMM) by focusing on the change in absolute lymphocyte counts (ALCs) after lenalidomide and dexamethasone (Ld) initiation. PATIENTS AND METHODS In total, 72 patients with RRMM were treated with Ld. ALCs were evaluated before treatment and at 1, 2, and 3 months after Ld initiation. The median ALCs in the entire cohort before and at 1, 2, 3 months after Ld initiation were 1,131, 1,059, 1,222, and 1,162/μl, respectively. RESULTS ALCs before Ld initiation did not affect time to next treatment (TNT) or overall survival (OS). However, the patients with ALCs equal to or greater than the median at 3 months showed relatively better TNT than those with lower lymphocyte counts, with a significant difference. OS was also significantly longer in patients with higher ALCs. CONCLUSION Immunomodulation by lenalidomide may improve prognosis in patients with RRMM.
Collapse
Affiliation(s)
- Masaru Nakagawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | - Katsuhiro Miura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihito Uchino
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hiromichi Takahashi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Hamada
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhide Iizuka
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Koike
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuya Kurihara
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Wijaya RS, Read SA, Schibeci S, Han S, Azardaryany MK, van der Poorten D, Lin R, Yuen L, Lam V, Douglas MW, George J, Ahlenstiel G. Expansion of dysfunctional CD56-CD16+ NK cells in chronic hepatitis B patients. Liver Int 2021; 41:969-981. [PMID: 33411395 DOI: 10.1111/liv.14784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Natural killer (NK) cells are primary innate effector cells that play an important role in the control of human viral infections. During chronic viral infection, NK cells undergo significant changes in phenotype, function and subset distribution, including the appearance of CD56-CD16+ (CD56-) NK cells, previously identified in chronic human immunodeficiency virus (HIV) and hepatitis C virus infection. However, the presence of CD56- NK cells in the pathogenesis of chronic hepatitis B (CHB) remains unknown. METHODS Phenotype and function of CD56- NK cells from patients with CHB (n = 28) were assessed using flow cytometry and in vitro stimulation with HBV antigen. RESULTS CHB patients had a higher frequency of CD56- NK cells compared to healthy controls in peripheral blood (6.2% vs 1.4%, P < .0001). Compared to CD56+ NK cells, CD56- NK cells had increased expression of inhibitory receptors, and reduced expression of activating receptors, as measured by MFI and qPCR. CD56- NK cells were less responsive to target cell and cytokine stimulation compared to their CD56+ counterparts. In addition, CD56- NK cells demonstrated defective dendritic cells (DCs) interactions resulting in reduced DCs maturation, lower expression of NK CD69 and impaired capacity of NK cells to eliminate immature DCs in co-culture studies. Finally, frequency of CD56- NK cells was positively correlated with serum HBV DNA levels. CONCLUSION Chronic HBV infection induces the expansion of highly dysfunctional of CD56- NK cells that likely contribute to inefficient innate and adaptive antiviral immune response in chronic HBV infection.
Collapse
Affiliation(s)
- Ratna S Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia.,Blacktown Hospital, Blacktown, NSW, Australia
| | - Stephen Schibeci
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Shuanglin Han
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Mahmoud K Azardaryany
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | | | - Rita Lin
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Lawrence Yuen
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Westmead, NSW, Australia
| | - Vincent Lam
- Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Westmead, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.,Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia.,Blacktown Hospital, Blacktown, NSW, Australia
| |
Collapse
|
14
|
Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood 2021; 136:3004-3017. [PMID: 32818230 DOI: 10.1182/blood.2020005602] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells play critical roles in protection against hematological malignancies but can acquire a dysfunctional state, which limits antitumor immunity. However, the underlying reasons for this impaired NK cell function remain to be uncovered. We found that NK cells in aggressive B-cell lymphoma underwent substantial transcriptional reprogramming associated with increased lipid metabolism, including elevated expression of the transcriptional regulator peroxisome activator receptor-γ (PPAR-γ). Exposure to fatty acids in the lymphoma environment potently suppressed NK cell effector response and cellular metabolism. NK cells from both diffuse large B-cell lymphoma patients and Eµ-myc B-cell lymphoma-bearing mice displayed reduced interferon-γ (IFN-γ) production. Activation of PPAR-γ partially restored mitochondrial membrane potential and IFN-γ production. Overall, our data indicate that increased lipid metabolism, while impairing their function, is a functional adaptation of NK cells to the fatty-acid rich lymphoma environment.
Collapse
|
15
|
Felberg A, Taszner M, Urban A, Majeranowski A, Jaskuła K, Jurkiewicz A, Stasiłojć G, Blom AM, Zaucha JM, Okrój M. Monitoring of the Complement System Status in Patients With B-Cell Malignancies Treated With Rituximab. Front Immunol 2020; 11:584509. [PMID: 33329558 PMCID: PMC7710700 DOI: 10.3389/fimmu.2020.584509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Rituximab is a pioneering anti-CD20 monoclonal antibody that became the first-line drug used in immunotherapy of B-cell malignancies over the last twenty years. Rituximab activates the complement system in vitro, but there is an ongoing debate on the exact role of this effector mechanism in therapeutic effect. Results of both in vitro and in vivo studies are model-dependent and preclude clear clinical conclusions. Additional confounding factors like complement inhibition by tumor cells, loss of target antigen and complement depletion due to excessively applied immunotherapeutics, intrapersonal variability in the concentration of main complement components and differences in tumor burden all suggest that a personalized approach is the best strategy for optimization of rituximab dosage and therapeutic schedule. Herein we critically review the existing knowledge in support of such concept and present original data on markers of complement activation, complement consumption, and rituximab accumulation in plasma of patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphomas (NHL). The increase of markers such as C4d and terminal complement complex (TCC) suggest the strongest complement activation after the first administration of rituximab, but not indicative of clinical outcome in patients receiving rituximab in combination with chemotherapy. Both ELISA and complement-dependent cytotoxicity (CDC) functional assay showed that a substantial number of patients accumulate rituximab to the extent that consecutive infusions do not improve the cytotoxic capacity of their sera. Our data suggest that individual assessment of CDC activity and rituximab concentration in plasma may support clinicians’ decisions on further drug infusions, or instead prescribing a therapy with anti-CD20 antibodies like obinutuzumab that more efficiently activate effector mechanisms other than complement.
Collapse
Affiliation(s)
- Anna Felberg
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Taszner
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Urban
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Alan Majeranowski
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kinga Jaskuła
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Jurkiewicz
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jan M Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
16
|
Decaup E, Rossi C, Gravelle P, Laurent C, Bordenave J, Tosolini M, Tourette A, Perrial E, Dumontet C, Poupot M, Klein C, Savina A, Fournié JJ, Bezombes C. A Tridimensional Model for NK Cell-Mediated ADCC of Follicular Lymphoma. Front Immunol 2019; 10:1943. [PMID: 31475004 PMCID: PMC6702952 DOI: 10.3389/fimmu.2019.01943] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Follicular lymphoma (FL) is the second most frequent subtype of B non-Hodgkin's lymphomas (NHL) for which the treatment is based on the use of anti-CD20 mAbs. NK cells play a crucial role in their mechanism of action and the number of these cells mediating antibody-dependent cell cycotoxicity (ADCC) in the peripheral blood of FL patients predict the outcome. However, their presence in FL biopsies, their activation and their role have been poorly investigated. Moreover, in vitro studies have not deciphered the exact signaling cascades triggered by NK cells in presence of anti-CD20 mAbs on both effector and target cells in a relevant FL model. We performed in silico analyses and ex vivo functional assays to determine the presence and the activation status of NK cells in FL biopsies. We modelized ADCC phenomenon by developing a co-culture model composed by 3D-cultured FL cells and NK cells. Thus, we investigated the biological effect of anti-CD20 mAbs by fluorescent microscopy and the phosphorylation status of survival pathways by cell bar coding phosphoflow in target cells. In parallel, we measured the status of activation of downstream FcγRIIIa signaling pathways in effector cells and their activation (CD69, perforin, granzyme B, IFNγ) by flow cytometry. We determined by in vivo experiments the effects of anti-CD20 mAbs in presence of NK cells in SCID-Beige engrafted FL mice. Here, we show that functional NK cells infiltrate FL biopsies, and that their presence tends to correlate with the survival of FL patients. Using our 3D co-culture model, we show that rituximab and GA101 are able to promote degranulation, CD69 expression, IFNγ production and activate FcγRIIIa signaling cascade in NK cells, and inhibit survival pathways and induce apoptosis in FL cells. The effect of GA101 seems to be more pronounced as observed in vivo in a xenograft FL model. This study strongly supports the role of NK cells in FL and highlights the application of the 3D co-culture model for in vitro validation.
Collapse
Affiliation(s)
- Emilie Decaup
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Cédric Rossi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CHU Dijon, Hématologie Clinique, Hôpital François Mitterand, Dijon, France
| | - Pauline Gravelle
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Julie Bordenave
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Marie Tosolini
- Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Anne Tourette
- INSERM1052/CNRS5286/Université Claude Bernard, Lyon, France
| | | | | | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| | - Christine Bezombes
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France
| |
Collapse
|
17
|
Conlon KC, Potter EL, Pittaluga S, Lee CCR, Miljkovic MD, Fleisher TA, Dubois S, Bryant BR, Petrus M, Perera LP, Hsu J, Figg WD, Peer CJ, Shih JH, Yovandich JL, Creekmore SP, Roederer M, Waldmann TA. IL15 by Continuous Intravenous Infusion to Adult Patients with Solid Tumors in a Phase I Trial Induced Dramatic NK-Cell Subset Expansion. Clin Cancer Res 2019; 25:4945-4954. [PMID: 31142503 DOI: 10.1158/1078-0432.ccr-18-3468] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/26/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE The first-in-human clinical trial with human bolus intravenous infusion IL15 (rhIL15) was limited by treatment-associated toxicity. Here, we report toxicity, immunomodulation, and clinical activity of rhIL15 administered as a 10-day continuous intravenous infusion (CIV) to patients with cancers in a phase I trial. PATIENTS AND METHODS Patients received treatment for 10 days with CIV rhIL15 in doses of 0.125, 0.25, 0.5, 1, 2, or 4 μg/kg/day. Correlative laboratory tests included IL15 pharmacokinetic (PK) analyses, and assessment of changes in lymphocyte subset numbers. RESULTS Twenty-seven patients were treated with rhIL15; 2 μg/kg/day was identified as the MTD. There were eight serious adverse events including two bleeding events, papilledema, uveitis, pneumonitis, duodenal erosions, and two deaths (one due to likely drug-related gastrointestinal ischemia). Evidence of antitumor effects was observed in several patients, but stable disease was the best response noted. Patients in the 2 μg/kg/day group had a 5.8-fold increase in number of circulating CD8+ T cells, 38-fold increase in total NK cells, and 358-fold increase in CD56bright NK cells. Serum IL15 concentrations were markedly lower during the last 3 days of infusion. CONCLUSIONS This phase I trial identified the MTD for CIV rhIL15 and defined a treatment regimen that produced significant expansions of CD8+ T and NK effector cells in circulation and tumor deposits. This regimen has identified several biological features, including dramatic increases in numbers of NK cells, supporting trials of IL15 with anticancer mAbs to increase antibody-dependent cell-mediated cytotoxicity and anticancer efficacy.
Collapse
Affiliation(s)
- Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - E Lake Potter
- ImmunoTechnology Section Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Thomas A Fleisher
- NIH Clinical Center, Department of Laboratory Medicine, NIH, Bethesda, Maryland
| | - Sigrid Dubois
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Michael Petrus
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Liyanage P Perera
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jennifer Hsu
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Cody J Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Joanna H Shih
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jason L Yovandich
- Biological Resources Branch, Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, NCI, NIH, Frederick, Maryland
| | - Stephen P Creekmore
- Biological Resources Branch, Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, NCI, NIH, Frederick, Maryland
| | - Mario Roederer
- ImmunoTechnology Section Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
18
|
Klanova M, Oestergaard MZ, Trněný M, Hiddemann W, Marcus R, Sehn LH, Vitolo U, Bazeos A, Goede V, Zeuner H, Knapp A, Sahin D, Spielewoy N, Bolen CR, Cardona A, Klein C, Venstrom JM, Nielsen T, Fingerle-Rowson G. Prognostic Impact of Natural Killer Cell Count in Follicular Lymphoma and Diffuse Large B-cell Lymphoma Patients Treated with Immunochemotherapy. Clin Cancer Res 2019; 25:4634-4643. [PMID: 31053601 DOI: 10.1158/1078-0432.ccr-18-3270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Natural killer (NK) cells are key effector cells for anti-CD20 monoclonal antibodies (mAb), such as obinutuzumab and rituximab. We assessed whether low pretreatment NK-cell count (NKCC) in peripheral blood or tumor tissue was associated with worse outcome in patients receiving antibody-based therapy. PATIENTS AND METHODS Baseline peripheral blood NKCC was assessed by flow cytometry (CD3-CD56+ and/or CD16+ cells) in 1,064 of 1,202 patients with follicular lymphoma treated with obinutuzumab or rituximab plus chemotherapy in the phase III GALLIUM trial (NCT01332968) and 1,287 of 1,418 patients with diffuse large B-cell lymphoma (DLBCL) treated with obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (G-CHOP or R-CHOP) in the phase III GOYA trial (NCT01287741). The prognostic value of tumor NK-cell gene expression, as assessed by whole-transcriptome gene expression using TruSeq RNA sequencing, was also analyzed. The association of baseline variables, such as treatment arm, was evaluated using multivariate Cox regression models using a stepwise approach. RESULTS In this exploratory analysis, low baseline peripheral blood NKCC was associated with shorter progression-free survival (PFS) in both follicular lymphoma [hazard ratio (HR), 1.48; 95% confidence interval (CI), 1.02-2.14; P = 0.04] and DLBCL (HR, 1.36; 95% CI, 1.01-1.83; P = 0.04), and overall survival in follicular lymphoma (HR, 2.20; 95% CI, 1.26-3.86; P = 0.0058). Low tumor NK-cell gene expression was associated with shorter PFS in G-CHOP-treated patients with DLBCL (HR, 1.95; 95% CI, 1.22-3.15; P < 0.01). CONCLUSIONS These findings indicate that the number of NK cells in peripheral blood may affect the outcome of patients with B-cell non-Hodgkin lymphoma receiving anti-CD20-based immunochemotherapy.
Collapse
Affiliation(s)
- Magdalena Klanova
- Charles University General Hospital, Prague, Czech Republic. .,Institute of Pathological Physiology, Charles University, Prague, Czech Republic.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Marek Trněný
- Charles University General Hospital, Prague, Czech Republic
| | | | | | - Laurie H Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency and the University of British Columbia, Vancouver, Canada
| | - Umberto Vitolo
- A.O.U. Citta' Della Salute e della Scienza, S.C. Ematologia, Turin, Italy
| | | | - Valentin Goede
- Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne, Germany
| | | | | | - Deniz Sahin
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Erbe AK, Wang W, Carmichael L, Hoefges A, Grzywacz B, Reville PK, Ranheim EA, Hank JA, Kim K, Seo S, Mendonca EA, Song Y, Kenkre VP, Hong F, Gascoyne RD, Paietta E, Horning SJ, Miller JS, Kahl B, Sondel PM. Follicular lymphoma patients with KIR2DL2 and KIR3DL1 and their ligands (HLA-C1 and HLA-Bw4) show improved outcome when receiving rituximab. J Immunother Cancer 2019; 7:70. [PMID: 30871628 PMCID: PMC6419437 DOI: 10.1186/s40425-019-0538-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The ECOG-ACRIN Cancer Research Group evaluated rituximab treatment schedules for patients with newly-diagnosed low-tumor-burden follicular-lymphoma (FL). All patients received 4-weekly rituximab treatments as induction therapy. Clinically-responding patients were randomized to receive rituximab every 13 weeks ("maintenance") vs. no additional rituximab until progression ("non-maintenance"). Based on "time-to-rituximab-failure (TTRF)", the study-committee reported there was no overall-benefit for maintenance rituximab in this setting. Tumor-reactive mAbs, like rituximab, trigger natural killer (NK) cells. NK-cell responses are regulated, in part, by interactions between killer immunoglobulin-like receptors (KIRs) on NK cells and their interactions with KIR-ligands. In a separate study of children with neuroblastoma treated with a different mAb, we found certain KIR/KIR-ligand genotypes associated with improved outcome. Here, we assessed whether a subset of FL patients show improved outcome from the maintenance rituximab based on these same KIR/KIR-ligand genotypes. METHODS Genotypes for KIR/KIR-ligand were determined and assessed for associations with outcome [duration of response, TTRF and % tumor shrinkage] as a post-hoc analysis of this phase III trial. Our primary objective was to assess specific KIR/KIR-ligand genotype associations, followed by separate prespecified KIR/KIR-ligand genotype associations in follow-up analyses. Statistical analyses for association of genotype with clinical outcome included: Log-rank tests and Cox proportional hazards regression models to assess duration of response and TTRF; analysis of variance (ANOVA) was used for assessment of % tumor shrinkage. RESULTS We found that patients inheriting KIR2DL2 and its ligand (HLA-C1) along with KIR3DL1 and its ligand (HLA-Bw4) had improved outcome over patients without this genotype. In addition, patients with KIR2DL2 and HLA-C1 along with KIR3DL1 and HLA-Bw4 also showed improved duration of response and tumor shrinkage if they received maintenance, while patients without this genotype showed no such improvement when receiving maintenance. CONCLUSIONS The data presented here indicate that a subset of FL patients, identified by certain KIRs/KIR-ligands, have improved outcome and may benefit from additional rituximab treatment. Taken together, this suggests that the efficacy of tumor-reactive mAb treatment for some patients is influenced by KIRs on NK cells. However, prior to considering these genotypes in a clinically-actionable manner, these findings need independent validation in other studies.
Collapse
Affiliation(s)
- Amy K Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Wei Wang
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Lakeesha Carmichael
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Bartosz Grzywacz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patrick K Reville
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Erik A Ranheim
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Songwon Seo
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Eneida A Mendonca
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Yiqiang Song
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | | | - Fangxin Hong
- Department of Biostatistics, Harvard University, Dana Farber Cancer Institute, Boston, MA, USA
| | - Randy D Gascoyne
- Department of Pathology and Laboratory Medicine, Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Elisabeth Paietta
- Montefiore Medical Center-North Division, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brad Kahl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin-Madison, 1111 Highland Avenue, 4159 WIMR Bldg, Madison, WI, 53705, USA.
| |
Collapse
|
20
|
Ooi SL, McMullen D, Golombick T, Nut D, Pak SC. Evidence-Based Review of BioBran/MGN-3 Arabinoxylan Compound as a Complementary Therapy for Conventional Cancer Treatment. Integr Cancer Ther 2018; 17:165-178. [PMID: 29037071 PMCID: PMC6041933 DOI: 10.1177/1534735417735379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/06/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Conventional cancer treatment, including surgery, chemotherapy, and radiotherapy, may not be sufficient to eradicate all malignant cells and prevent recurrence. Intensive treatment often leads to a depressed immune system, drug resistance, and toxicity, hampering the treatment outcomes. BioBran/MGN-3 Arabinoxylan is a standardized arabinoxylan concentrate which has been proposed as a plant-based immunomodulator that can restore the tumor-induced disturbance of the natural immune system, including natural killer cell activity to fight cancer, complementing conventional therapies. OBJECTIVES To comprehensively review the available evidence on the effects and efficacies of MGN-3 as a complementary therapy for conventional cancer treatment. METHODS Systematic search of journal databases and gray literature for primary studies reporting the effects of MGN-3 on cancer and cancer treatment. RESULTS Thirty full-text articles and 2 conference abstracts were included in this review. MGN-3 has been shown to possess immunomodulating anticancer effects and can work synergistically with chemotherapeutic agents, in vitro. In murine models, MGN-3 has been shown to act against carcinogenic agents, and inhibit tumor growth, either by itself or in combination with other anticancer compounds. Fourteen successful MGN-3 treated clinical cases were found. Eleven clinical studies, including 5 nonrandomized, pre-post intervention studies and 6 randomized controlled trials (RCTs) were located. Reported effects include enhanced immunoprofile, reduced side effects, improved treatment outcomes; one RCT established significantly increased survival rates. There are no reports on adverse events on MGN-3. Most of the clinical trials are small studies with short duration. CONCLUSION There is sufficient evidence suggesting MGN-3 to be an effective immunomodulator that can complement conventional cancer treatment. However, more well-designed RCTs on MGN-3 are needed to strengthen the evidence base.
Collapse
Affiliation(s)
- Soo Liang Ooi
- Centre of Complementary & Alternative Medicine, Singapore
| | - Debbie McMullen
- Charles Sturt University, Bathurst, New South Wales, Australia
| | | | - Dipl Nut
- St George Hospital, Sydney, New South Wales, Australia
| | - Sok Cheon Pak
- Charles Sturt University, Bathurst, New South Wales, Australia
| |
Collapse
|