1
|
Liu Y, Tariq H, Fu L, Gao J, Jagtiani T, Wolniak K, Aqil B, Ji P, Chen YH, Chen QC. Usefulness of Flow Cytometry Monocyte Partitioning in the Diagnosis of Chronic Myelomonocytic Leukemia in a Real-World Setting. Cancers (Basel) 2025; 17:1229. [PMID: 40227821 PMCID: PMC11988016 DOI: 10.3390/cancers17071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Based on CD14/CD16 expression, monocytes can be divided into the following three functionally distinct subsets: classical (MO1, CD14++/CD16-), intermediate (MO2, CD14+/CD16+) and non-classical (MO3, CD14dim/CD16-). An expanded MO1 subset (cutoff, ≥94%) was found to be predictive of CMML. However, the utility of this test in routine practice has important limitations, with some reporting low sensitivity or a lack of correlation. Here, we sought to evaluate the practical usefulness of this test by using our routine antibody panel and a new gating strategy. METHODS Our study included 56 peripheral blood (PB) and 69 bone marrow (BM) samples. The PB cohort included 20 patients with CMML, 21 with no myeloid neoplasms (non-MN) and 15 with other myeloid neoplasms (non-CMML-MN). The BM cohort included 25 CMML, 16 non-MN and 28 non-CMML-MN cases. Taking advantage of an existing 8-color myelomonocytic tube routinely used in our lab, we conducted a retrospective monocyte subset analysis using a new sequential gating strategy. RESULTS The assay was able to distinguish CMML from non-CMML cases with high sensitivity (90.0%) and specificity (88.9%) in blood samples using a cutoff value of MO1 > 94%. For BM samples, a reduced MO3 < 1.24% was more closely associated with CMML with a sensitivity of 96.0% and a specificity of 79.5%. A side-by-side comparison of our assay with the original "monocyte assay" showed strong agreement. CONCLUSIONS Our study demonstrates the utility of a practical and robust approach for monocyte subset analysis in the diagnosis of CMML.
Collapse
Affiliation(s)
- Yijie Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
- Clinical Flow Cytometry Laboratory, Department of Pathology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Hamza Tariq
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| | - Lucy Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| | - Taruna Jagtiani
- Clinical Flow Cytometry Laboratory, Department of Pathology, Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Kristy Wolniak
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| | - Barina Aqil
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| | - Qing Ching Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine & Northwestern Memorial Hospital, Chicago, IL 60611, USA (Q.C.C.)
| |
Collapse
|
2
|
Jin L, Li L, Lu Y, Cai G, Lin L, Lin J. Development and Validation of a User-Friendly Predictive Model Using Demographic and Complete Blood Count Data to Facilitate Early Diagnosis on Suspicion of Myeloproliferative Neoplasms. Int J Lab Hematol 2025. [PMID: 39985224 DOI: 10.1111/ijlh.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE To develop a novel predictive model based on demographics and complete blood count (CBC) parameters to quickly identify suspicious features of myeloproliferative neoplasms (MPN), enabling prompt initiation of further investigations and referrals. METHODS 426 patients with elevated peripheral blood cell counts were referred to the Hematology Department of Ruijin Hospital from 2017 to 2023. Among them, 215 patients were diagnosed with MPN, while the remaining 211 patients formed the non-MPN group. The patients were randomly divided into a training cohort and a validation cohort. Demographic characteristics, CBC data, and other relevant laboratory information were collected. By univariable and multivariable logistic regression, significant indicators independently associated with MPN were identified and included in the nomogram. The model was evaluated by measuring the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) curve. RESULTS Five indicators were identified as independently associated with MPN, including onset age, monocyte fraction, basophil fraction, red blood cell distribution width, and platelet count. The AUC values for the training and validation cohorts were 0.912 and 0.928, respectively. The calibration curves showed good agreement between the predicted risk by the nomogram and the actual outcomes. The DCA for the training and the validation datasets revealed net benefits of 0.9026 and 0.9303, respectively. CONCLUSION We have developed and validated a prediction model for MPN based on demographics and CBC data. The model could assist general practitioners in quickly identifying patients with potential MPN and in initiating timely further investigations and referrals.
Collapse
Affiliation(s)
- Lilan Jin
- Department of Clinical Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Clinical Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Lu
- Department of Clinical Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Clinical Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Clinical Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiafei Lin
- Department of Clinical Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2024 update on diagnosis, risk stratification and management. Am J Hematol 2024; 99:1142-1165. [PMID: 38450850 PMCID: PMC11096042 DOI: 10.1002/ajh.27271] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, characterized by prominent monocytosis and an inherent risk for leukemic transformation (~15%-20% over 3-5 years). DIAGNOSIS Newly revised diagnostic criteria include sustained (>3 months) peripheral blood (PB) monocytosis (≥0.5 × 109/L; monocytes ≥10% of leukocyte count), consistent bone marrow (BM) morphology, <20% BM or PB blasts (including promonocytes), and cytogenetic or molecular evidence of clonality. Cytogenetic abnormalities occur in ~30% of patients, while >95% harbor somatic mutations: TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), RAS pathway (~30%), and others. The presence of ASXL1 and DNMT3A mutations and absence of TET2 mutations negatively impact overall survival (ASXL1WT/TET2MT genotype being favorable). RISK STRATIFICATION Several risk models serve similar purposes in identifying high-risk patients that are considered for allogeneic stem cell transplant (ASCT) earlier than later. Risk factors in the Mayo Molecular Model (MMM) include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109/L, hemoglobin <10 g/dL, platelet count <100 × 109/L, and the presence of circulating immature myeloid cells; the resulting 4-tiered risk categorization includes high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors); the corresponding median survivals were 16, 31, 59, and 97 months. CMML is also classified as being "myeloproliferative (MP-CMML)" or "myelodysplastic (MD-CMML)," based on the presence or absence of leukocyte count of ≥13 × 109/L. TREATMENT ASCT is the only treatment modality that secures cure or long-term survival and is appropriate for MMM high/intermediate-2 risk disease. Drug therapy is currently not disease-modifying and includes hydroxyurea and hypomethylating agents; a recent phase-3 study (DACOTA) comparing hydroxyurea and decitabine, in high-risk MP-CMML, showed similar overall survival at 23.1 versus 18.4 months, respectively, despite response rates being higher for decitabine (56% vs. 31%). UNIQUE DISEASE ASSOCIATIONS These include systemic inflammatory autoimmune diseases, leukemia cutis and lysozyme-induced nephropathy; the latter requires close monitoring of renal function during leukocytosis and is a potential indication for cytoreductive therapy.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Tarfi S, Kern W, Goulas E, Selimoglu-Buet D, Wagner-Ballon O. Technical, gating and interpretation recommendations for the partitioning of circulating monocyte subsets assessed by flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:203-215. [PMID: 38656036 DOI: 10.1002/cyto.b.22176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The monocyte subset partitioning by flow cytometry, known as "monocyte assay," is now integrated into the new classifications as a supporting criterion for CMML diagnosis, if a relative accumulation of classical monocytes above 94% of total circulating monocytes is observed. Here we provide clinical flow cytometry laboratories with technical support adapted for the most commonly used cytometers. Step-by-step explanations of the gating strategy developed on whole peripheral blood are presented while underlining the most common difficulties. In a second part, interpretation recommendations of circulating monocyte partitioning from the dedicated French working group "CytHem-LMMC" are shared as well as the main pitfalls, including false positive and false negative cases. The particular flow-defined inflammatory profile is described and the usefulness of the nonclassical monocyte specific marker, namely slan, highlighted. Examples of reporting to the physician with frequent situations encountered when using the monocyte assay are also presented.
Collapse
Affiliation(s)
- Sihem Tarfi
- Département d'Hématologie et Immunologie Biologiques, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, GmbH, Munich, Germany
| | - Elodie Goulas
- Département d'Hématologie et Immunologie Biologiques, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Dorothée Selimoglu-Buet
- INSERM Unité Mixte de Recherche (UMR) 1287, Faculté de Médecine, Université Paris-Sud, Villejuif, France
| | - Orianne Wagner-Ballon
- Département d'Hématologie et Immunologie Biologiques, AP-HP, Hôpital Henri Mondor, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| |
Collapse
|
5
|
Loghavi S, Kanagal-Shamanna R, Khoury JD, Medeiros LJ, Naresh KN, Nejati R, Patnaik MM. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissue: Myeloid Neoplasms. Mod Pathol 2024; 37:100397. [PMID: 38043791 DOI: 10.1016/j.modpat.2023.100397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
In this manuscript, we review myeloid neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5), focusing on changes from the revised fourth edition (WHO-HEM4R). Disease types and subtypes have expanded compared with WHO-HEM4R, mainly because of the expansion in genomic knowledge of these diseases. The revised classification is based on a multidisciplinary approach including input from a large body of pathologists, clinicians, and geneticists. The revised classification follows a hierarchical structure allowing usage of family (class)-level definitions where the defining diagnostic criteria are partially met or a complete investigational workup has not been possible. Overall, the WHO-HEM5 revisions to the classification of myeloid neoplasms include major updates and revisions with increased emphasis on genetic and molecular drivers of disease. The most notable changes have been applied to the sections of acute myeloid leukemia and myelodysplastic neoplasms (previously referred to as myelodysplastic syndrome) with incorporation of novel, disease-defining genetic changes. In this review we focus on highlighting the updates in the classification of myeloid neoplasms, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of myeloid neoplasms in routine practice.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas.
| | | | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, DC; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Minnesota
| |
Collapse
|
6
|
Abstract
Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous class of hematopoietic stem cell neoplasms characterized by ineffective hematopoiesis leading to peripheral cytopenias. This group of diseases is typically diagnosed using a combination of clinical, morphologic, and genetic criteria. Many studies have described the value of multiparametric flow cytometry (MFC) in the diagnosis, classification, and prognostication of MDS. This review summarizes the approach to MDS diagnosis and immunophenotypic characterization using MFC and describes the current state while highlighting future opportunities and potential pitfalls.
Collapse
Affiliation(s)
- Xueyan Chen
- Translational Science and Therapeutics Division, Fred Hutch Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, 825 Eastlake Avenue East, Seattle, WA 98109, USA
| | - Ulrika Johansson
- SI-HMDS, Haematology, UHBW NHS Foundation Trust, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Sindhu Cherian
- Department of Laboratory Medicine and Pathology, University of Washington, 825 Eastlake Avenue East, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Quang VT, Podvin B, Desterke C, Tarfi S, Barathon Q, Badaoui B, Freynet N, Parinet V, Leclerc M, Maury S, Solary E, Selimoglu-Buet D, Duployez N, Wagner-Ballon O, Sloma I. TET2 mutational status affects myelodysplastic syndrome evolution to chronic myelomonocytic leukemia. Haematologica 2023; 108:3135-3141. [PMID: 37102610 PMCID: PMC10620562 DOI: 10.3324/haematol.2022.282528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Affiliation(s)
- Violaine Tran Quang
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; AP-HP, Hôpital Henri Mondor, Département d'Hématologie et Immunologie, F-94010 Créteil
| | - Benjamin Podvin
- Centre hospitalier régional Universitaire de Lille, Laboratoire d'hématologie, F-59000 Lille
| | - Christophe Desterke
- Université Paris-Sud, Faculté de Médecine Kremlin Bicêtre, INSERM UMS 33 Villejuif
| | - Sihem Tarfi
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; AP-HP, Hôpital Henri Mondor, Département d'Hématologie et Immunologie, F-94010 Créteil
| | - Quentin Barathon
- AP-HP, Hôpital Henri Mondor, Département d'Hématologie et Immunologie, F-94010 Créteil
| | - Bouchra Badaoui
- AP-HP, Hôpital Henri Mondor, Département d'Hématologie et Immunologie, F-94010 Créteil
| | - Nicolas Freynet
- AP-HP, Hôpital Henri Mondor, Département d'Hématologie et Immunologie, F-94010 Créteil
| | - Vincent Parinet
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; AP-HP, Hôpital Henri Mondor, Département d'Hématologie, F-94010 Créteil
| | - Mathieu Leclerc
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; AP-HP, Hôpital Henri Mondor, Département d'Hématologie, F-94010 Créteil
| | - Sébastien Maury
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; AP-HP, Hôpital Henri Mondor, Département d'Hématologie, F-94010 Créteil
| | - Eric Solary
- INSERM Unité Mixte de Recherche (UMR) 1287, Faculté de Médecine, Université Paris-Sud, Gustave Roussy, Villejuif
| | - Dorothée Selimoglu-Buet
- INSERM Unité Mixte de Recherche (UMR) 1287, Faculté de Médecine, Université Paris-Sud, Gustave Roussy, Villejuif
| | - Nicolas Duployez
- Université Paris-Sud, Faculté de Médecine Kremlin Bicêtre, INSERM UMS 33 Villejuif
| | - Orianne Wagner-Ballon
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; AP-HP, Hôpital Henri Mondor, Département d'Hématologie et Immunologie, F-94010 Créteil
| | - Ivan Sloma
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; AP-HP, Hôpital Henri Mondor, Département d'Hématologie et Immunologie, F-94010 Créteil.
| |
Collapse
|
8
|
Patnaik MM, Tefferi A. Atypical chronic myeloid leukemia and myelodysplastic/myeloproliferative neoplasm, not otherwise specified: 2023 update on diagnosis, risk stratification, and management. Am J Hematol 2023; 98:681-689. [PMID: 36601682 DOI: 10.1002/ajh.26828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
DISEASE OVERVIEW Atypical chronic myeloid leukemia (aCML) and myelodysplastic/myeloproliferative (MDS/MPN) neoplasms, not otherwise specified (NOS), are MDS/MPN overlap neoplasms characterized by leukocytosis, in the absence of monocytosis and eosinophilia, with <20% blasts in the blood and bone marrow. DIAGNOSIS aCML, previously known as aCML, BCR::ABL1 negative, was renamed as aCML by the ICC classification, and as MDS/MPN with neutrophilia by the 5th edition of the WHO classification. This entity is characterized by dysplastic neutrophilia with immature myeloid cells comprising ≥10% of the white blood cell count, with prominent dysgranulopoiesis. MDS/MPN-NOS consists of MDS/MPN overlap neoplasms not meeting criteria for defined categories such as chronic myelomonocytic leukemia (CMML), MDS/MPN-ring sideroblasts-thrombocytosis (MDS/MPN-RS-T), and aCML. MUTATIONS AND KARYOTYPE Cytogenetic abnormalities are seen in 40-50% of patients in both categories. In aCML, somatic mutations commonly encountered include ASXL1, SETBP1, ETNK1, and EZH2 whereas MDS/MPN-NOS can be further stratified by mutational profiles into CMML-like, MDS/MPN-RS-T-like, aCML-like, TP35-mutated, and "others", respectively. RISK STRATIFICATION The Mayo Clinic aCML model stratifies patients based on age >67 years, hemoglobin <10 g/dl, and the presence of TET2 mutations into low-risk (0-1 points) and high-risk (>2 points) groups, with median survivals of 18 and 7 months, respectively. MDS/MPN-NOS patients have traditionally been risk stratified using MDS risk models such as IPSS and IPSS-R. TREATMENT Leukocytosis and anemia are managed like lower risk MPN and MDS. DNMT inhibitors have been used in both entities with suboptimal response rates. Allogeneic stem cell transplant remains the only curative strategy but is associated with high morbidity and mortality.
Collapse
MESH Headings
- Humans
- Aged
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/therapy
- Leukocytosis
- Myelodysplastic-Myeloproliferative Diseases/diagnosis
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Myelodysplastic-Myeloproliferative Diseases/therapy
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/therapy
- Thrombocytosis/genetics
- Mutation
- Risk Assessment
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Zheng G, Li P, Zhang X, Pan Z. The fifth edition of the World Health Organization Classification and the International Consensus Classification of myeloid neoplasms: evolving guidelines in the molecular era with practical implications. Curr Opin Hematol 2023; 30:53-63. [PMID: 36728868 DOI: 10.1097/moh.0000000000000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW There have been major advances in our understanding of molecular pathogenesis of myeloid neoplasms, which prompt the updates in the classification of myeloid neoplasms in the fifth edition of World Health Organization Classification (WHO-5) and the new International Consensus Classification (ICC). The purpose of this review is to provide an overview of these two classification systems for myeloid neoplasms. RECENT FINDINGS The definition, classification, and diagnostic criteria in many myeloid entities have been refined in WHO-5 and ICC with improved understanding of morphology and integration of new genetic findings. Particularly, molecular and cytogenetic studies have been increasingly incorporated into the classification, risk stratification, and selection of therapy of myeloid neoplasms. Overall, despite some revisions and discrepancies between WHO-5 and ICC, the major categories of myeloid neoplasms remain the same. Further validation studies are warranted to fine-tune and, ideally, integrate these two classifications. SUMMARY Integration of clinical information, laboratory parameters, morphologic features, and cytogenetic and molecular studies is essential for the classification of myeloid neoplasms, as recommended by both WHO-5 and ICC.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Peng Li
- Department of Pathology, University of Utah School of Medicine, ARUP Laboratories, Salt Lake City, Utah
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zenggang Pan
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Wagner-Ballon O, Bettelheim P, Lauf J, Bellos F, Della Porta M, Travaglino E, Subira D, Lopez IN, Tarfi S, Westers TM, Johansson U, Psarra K, Karathanos S, Matarraz S, Colado E, Gupta M, Ireland R, Kern W, Van De Loosdrecht AA. ELN iMDS flow working group validation of the monocyte assay for chronic myelomonocytic leukemia diagnosis by flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:66-76. [PMID: 34967500 DOI: 10.1002/cyto.b.22054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND It was proposed that peripheral blood (PB) monocyte profiles evaluated by flow cytometry, called "monocyte assay," could rapidly and efficiently distinguish chronic myelomonocytic leukemia (CMML) from other causes of monocytosis by highlighting an increase in the classical monocyte (cMo) fraction above 94%. However, the robustness of this assay requires a large multicenter validation and the assessment of its feasibility on bone marrow (BM) samples, as some centers may not have access to PB. METHODS PB and/or BM samples from patients displaying monocytosis were assessed with the "monocyte assay" by 10 ELN iMDS Flow working group centers with harmonized protocols. The corresponding files were reanalyzed in a blind fashion and the cMo percentages obtained by both analyses were compared. Confirmed diagnoses were collected when available. RESULTS The comparison between cMo percentages from 267 PB files showed a good global significant correlation (r = 0.88) with no bias. Confirmed diagnoses, available for 212 patients, achieved a 94% sensitivity and an 84% specificity. Hence, 95/101 CMML patients displayed cMo ≥94% while cMo <94% was observed in 83/99 patients with reactive monocytosis and in 10/12 patients with myeloproliferative neoplasms (MPN) with monocytosis. The established Receiver Operator Curve again provided a 94% cut-off value of cMo. The 117 BM files reanalysis led to an 87% sensitivity and an 80% specificity, with excellent correlation between the 43 paired samples to PB. CONCLUSIONS This ELN multicenter study demonstrates the robustness of the monocyte assay with only limited variability of cMo percentages, validates the 94% cutoff value, confirms its high sensitivity and specificity in PB and finally, also confirms the possibility of its use in BM samples.
Collapse
Affiliation(s)
- Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Inserm U955 IMRB, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Jeroen Lauf
- Department of Hematology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | | | - Matteo Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Erica Travaglino
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Dolores Subira
- Hematology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Irene Nuevo Lopez
- Hematology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Sihem Tarfi
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Inserm U955 IMRB, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Katherina Psarra
- Immunology Histocompatibility Dept, Evangelismos Hospital, Athens, Greece
| | | | - Sergio Matarraz
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Salamanca, Spain
| | - Enrique Colado
- Hematology Service and AGC de Laboratorio de Medicina, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Monali Gupta
- Immunophenotyping, Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| | - Robin Ireland
- Immunophenotyping, Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Arjan A Van De Loosdrecht
- Department of Hematology, Amsterdam UMC, Location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Porwit A, Béné MC, Duetz C, Matarraz S, Oelschlaegel U, Westers TM, Wagner-Ballon O, Kordasti S, Valent P, Preijers F, Alhan C, Bellos F, Bettelheim P, Burbury K, Chapuis N, Cremers E, Della Porta MG, Dunlop A, Eidenschink-Brodersen L, Font P, Fontenay M, Hobo W, Ireland R, Johansson U, Loken MR, Ogata K, Orfao A, Psarra K, Saft L, Subira D, Te Marvelde J, Wells DA, van der Velden VHJ, Kern W, van de Loosdrecht AA. Multiparameter flow cytometry in the evaluation of myelodysplasia: Analytical issues: Recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:27-50. [PMID: 36537621 PMCID: PMC10107708 DOI: 10.1002/cyto.b.22108] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Multiparameter flow cytometry (MFC) is one of the essential ancillary methods in bone marrow (BM) investigation of patients with cytopenia and suspected myelodysplastic syndrome (MDS). MFC can also be applied in the follow-up of MDS patients undergoing treatment. This document summarizes recommendations from the International/European Leukemia Net Working Group for Flow Cytometry in Myelodysplastic Syndromes (ELN iMDS Flow) on the analytical issues in MFC for the diagnostic work-up of MDS. Recommendations for the analysis of several BM cell subsets such as myeloid precursors, maturing granulocytic and monocytic components and erythropoiesis are given. A core set of 17 markers identified as independently related to a cytomorphologic diagnosis of myelodysplasia is suggested as mandatory for MFC evaluation of BM in a patient with cytopenia. A myeloid precursor cell (CD34+ CD19- ) count >3% should be considered immunophenotypically indicative of myelodysplasia. However, MFC results should always be evaluated as part of an integrated hematopathology work-up. Looking forward, several machine-learning-based analytical tools of interest should be applied in parallel to conventional analytical methods to investigate their usefulness in integrated diagnostics, risk stratification, and potentially even in the evaluation of response to therapy, based on MFC data. In addition, compiling large uniform datasets is desirable, as most of the machine-learning-based methods tend to perform better with larger numbers of investigated samples, especially in such a heterogeneous disease as MDS.
Collapse
Affiliation(s)
- Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marie C Béné
- Hematology Biology, Nantes University Hospital, CRCINA Inserm 1232, Nantes, France
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Inserm U955, Université Paris-Est Créteil, Créteil, France
| | | | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Frank Preijers
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, & University of Melbourne, Melbourne, Australia
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Eline Cremers
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon-IiSGM, Madrid, Spain
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Willemijn Hobo
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Alberto Orfao
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital and Institute Solna, Stockholm, Sweden
| | - Dolores Subira
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Jeroen Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Prakash S, Arber DA, Bueso-Ramos C, Hasserjian RP, Orazi A. Advances in myelodysplastic/myeloproliferative neoplasms. Virchows Arch 2023; 482:69-83. [PMID: 36469102 DOI: 10.1007/s00428-022-03465-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
The myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN) category includes a heterogeneous group of diseases characterized by the co-occurrence of clinical and pathologic features of both myelodysplastic and myeloproliferative neoplasms. The recently published International Consensus Classification of myeloid neoplasms revised the entities included in the MDS/MPN category as well as criteria for their diagnosis. In addition to the presence of one or more increased peripheral blood cell counts as evidence of myeloproliferative features, concomitant cytopenia as evidence of ineffective hematopoiesis is now an explicit requirement to diagnose the diseases included in this category. The increasing availability of modern gene sequencing has allowed better understanding of the biologic characteristics of these myeloid neoplasms. The presence of specific mutations in the appropriate clinicopathologic context is now included in the diagnostic criteria for some of MDS/MPN entities. In this review, we highlight what has changed in the diagnostic criteria of MDS/MPN from the WHO 2016 classification while providing practical guidance in diagnosing these diseases.
Collapse
Affiliation(s)
- Sonam Prakash
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Carlos Bueso-Ramos
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
13
|
Asaulenko ZP, Spiridonov IN, Baram DV, Krivolapov YA. [WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, 2022 (5th edition): Myeloid and Histiocytic Tumors]. Arkh Patol 2023; 85:36-44. [PMID: 37814848 DOI: 10.17116/patol20238505136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The article reviews the changes in the structure of classification, diagnostic criteria for myeloid and histiocytic neoplasms in the 5th edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues (2022). Information is presented regarding new nosological forms, renaming and abolition of some previously existing ones. The importance of molecular genetic studies in the isolation of myeloid and histiocytic neoplasms and the need to apply these studies in clinical practice are emphasized. Myeloid and histiocytic precancerous and proliferative processes, genetic tumor syndromes, introduced into the classification for the first time, are considered.
Collapse
Affiliation(s)
- Z P Asaulenko
- St. Petersburg City Hospital No 40, St. Petersburg, Russia
| | - I N Spiridonov
- St. Petersburg City Hospital No 40, St. Petersburg, Russia
| | - D V Baram
- Russian Research Institute of Hematology and Transfusiology, St. Petersburg, Russia
| | - Yu A Krivolapov
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
| |
Collapse
|
14
|
Allen SA, Ng E, Hahn UH, Banovic T, Ross DM. Flow cytometric monocyte repartition demonstrates overlap between chronic myelomonocytic leukaemia and myeloid neoplasms with monocytosis. Pathology 2022; 54:953-955. [PMID: 35304012 DOI: 10.1016/j.pathol.2021.12.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Sharon A Allen
- Royal Adelaide Hospital, Adelaide, SA, Australia; SA Pathology, Adelaide, SA, Australia.
| | - Eugene Ng
- SA Pathology, Adelaide, SA, Australia
| | - Uwe H Hahn
- Royal Adelaide Hospital, Adelaide, SA, Australia; SA Pathology, Adelaide, SA, Australia
| | - Tatjana Banovic
- Royal Adelaide Hospital, Adelaide, SA, Australia; SA Pathology, Adelaide, SA, Australia
| | - David M Ross
- Royal Adelaide Hospital, Adelaide, SA, Australia; SA Pathology, Adelaide, SA, Australia; Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
15
|
Patnaik MM, Zeidan AM, Padron E, Platzbecker U, Sallman DA, DeZern AE, Bejar R, Sekeres M, Taylor J, Little RF, Bewersdorf JP, Kim TK, Kim N, Hourigan CS, Dela Porta MG, Stahl M, Steensma D, Xu ML, Odenike O, Carraway H, Fenaux P, Nazha A, Komrokji R, Loghavi S, Xie Z, Hasserjian R, Savona M, Bennett JM. Differences in classification schemata for myelodysplastic/myeloproliferative overlap neoplasms. Leukemia 2022; 36:2934-2938. [PMID: 36335264 DOI: 10.1038/s41375-022-01754-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Eric Padron
- Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Uwe Platzbecker
- Department of Hematology, University of Leipzig, Leipzig, Germany
| | | | - Amy E DeZern
- Division of Hematologic Malignancies; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Mikkael Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richard F Little
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan P Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tae Kon Kim
- Division of Hematology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nina Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Matteo G Dela Porta
- Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, the University of Chicago Medicine, Chicago, IL, USA
| | - Hetty Carraway
- Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pierre Fenaux
- Hôpital St Louis, Assistance Publique Hôpitaux de Paris, and Université Paris Cité, Paris, France
| | - Aziz Nazha
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rami Komrokji
- Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Zhuoer Xie
- Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Hasserjian
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Savona
- Division of Hematology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John M Bennett
- Department of Medicine, Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
16
|
Mannelli F, Bencini S, Coltro G, Loscocco GG, Peruzzi B, Rotunno G, Maccari C, Gesullo F, Borella M, Paoli C, Caporale R, Mannarelli C, Annunziato F, Guglielmelli P, Vannucchi AM. Integration of multiparameter flow cytometry score improves prognostic stratification provided by standard models in primary myelofibrosis. Am J Hematol 2022; 97:846-855. [PMID: 35338671 DOI: 10.1002/ajh.26548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022]
Abstract
Prognostic modeling in myelofibrosis (MF) has classically pursued the integration of informative clinical and hematological parameters to separate patients' categories with different outcomes. Modern stratification includes also genetic data from karyotype and mutations. However, some poorly standardized variables, as peripheral blood (PB) blast count by morphology, are still included. In this study, we used multiparameter flow cytometry (MFC) with the aim of improving performance of existing scores. We studied 363 MF patients with available MFC files for PB CD34+ cells count determination at diagnosis. We adapted Ogata score to MF context including 2 parameters: absolute CD34+ cells count (/μL) and granulocytes to lymphocytes SSC ratio. A score of 1 was attributed to above-threshold values of each parameter. Accordingly, patients were categorized as MFClow (score = 0, 62.0%), MFCint (score = 1, 29.5%), and MFChigh (score = 2, 8.5%). MFClow had significantly longer median OS (not reached) compared to MFCint (55 months) and MFChigh (19 months). We integrated MFC into established models as a substitute of morphological PB blasts count. Patients were reclassified according to MFC-enhanced scores, and concordance (C-) indexes were compared. As regards IPSS, C-indexes were 0.67 and 0.74 for standard and MFC-enhanced model, respectively (Z score - 3.82; p = 0.0001). MFC-enhanced MIPSS70+ model in PMF patients yielded a C-index of 0.78, outperforming its standard counterpart (C-index 0.73; Z score - 2.88, p = 0.004). Our data suggest that the incorporation of MFC-derived parameters, easily attainable from standard assay used for CD34+ cells determination, might help to refine the current prognostic stratification models in myelofibrosis.
Collapse
Affiliation(s)
- Francesco Mannelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Sara Bencini
- Centro Diagnostico di Citofluorimetria e Immunoterapia, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Florence, Italy
| | - Giacomo Coltro
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Giuseppe G Loscocco
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
- Doctorate School GenOMec, University of Siena, Italy
| | - Benedetta Peruzzi
- Centro Diagnostico di Citofluorimetria e Immunoterapia, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Florence, Italy
| | - Giada Rotunno
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Chiara Maccari
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Francesca Gesullo
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Miriam Borella
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Chiara Paoli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Roberto Caporale
- Centro Diagnostico di Citofluorimetria e Immunoterapia, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Florence, Italy
| | - Carmela Mannarelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Francesco Annunziato
- Centro Diagnostico di Citofluorimetria e Immunoterapia, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Florence, Italy
| | - Paola Guglielmelli
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| | - Alessandro M Vannucchi
- CRIMM, Centro di Ricerca e Innovazione per le Malattie Mieloproliferative, Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, Denothe Excellence Center, Università degli Studi, Florence, Italy
| |
Collapse
|
17
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022; 36:1703-1719. [PMID: 35732831 PMCID: PMC9252913 DOI: 10.1038/s41375-022-01613-1] [Citation(s) in RCA: 2004] [Impact Index Per Article: 668.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022]
Abstract
The upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid Tumours is part of an effort to hierarchically catalogue human cancers arising in various organ systems within a single relational database. This paper summarizes the new WHO classification scheme for myeloid and histiocytic/dendritic neoplasms and provides an overview of the principles and rationale underpinning changes from the prior edition. The definition and diagnosis of disease types continues to be based on multiple clinicopathologic parameters, but with refinement of diagnostic criteria and emphasis on therapeutically and/or prognostically actionable biomarkers. While a genetic basis for defining diseases is sought where possible, the classification strives to keep practical worldwide applicability in perspective. The result is an enhanced, contemporary, evidence-based classification of myeloid and histiocytic/dendritic neoplasms, rooted in molecular biology and an organizational structure that permits future scalability as new discoveries continue to inexorably inform future editions.
Collapse
|
18
|
Outcomes and molecular profile of oligomonocytic CMML support its consideration as the first stage in the CMML continuum. Blood Adv 2022; 6:3921-3931. [PMID: 35709473 PMCID: PMC9278296 DOI: 10.1182/bloodadvances.2022007359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Oligomonocytic chronic myelomonocytic leukemia (OM-CMML) patients are currently classified into the different categories of the 2017 WHO MDS classification. However recent data support considering OM-CMML as a specific subtype of chronic myelomonocytic leukemia (CMML) given their similar clinical, genomic and immunophenotypic profiles. The main purpose of our study was to provide survival outcome data of a well-annotated series of 42 patients with OM-CMML and to compare them to 162 patients with CMML, 120 with dysplastic type (D-CMML) and 42 with proliferative type (P-CMML). OM-CMML showed significantly longer overall survival (OS) and acute myeloid leukemia-free survival than CMML patients considered as a whole group, and when compared to D-CMML and P-CMML, respectively. Moreover, gene mutations associated with increased proliferation (i.e.: ASXL1 and RAS-pathway mutations) were identified as independent adverse prognostic factors for OS in our series. We found that at a median follow-up of 53.47 months, 29.3% of our OM-CMML patients progressed to D-CMML, and at a median follow-up of 46.03 months, 28.6% of our D-CMML progressed to P-CMML. These data support the existence of an evolutionary continuum among OM-CMML, D-CMML and P-CMML. In this context, we observed that harboring more than 3 mutated genes, ASXL1 mutations and a peripheral blood monocyte percentage above 20% significantly predicted shorter time of progression of OM-CMML into overt CMML. These variables were also detected as independent adverse prognostic factors for OS in OM-CMML. These data support the consideration of OM-CMML as the first evolutionary stage within the proliferative continuum of CMML.
Collapse
|
19
|
Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 2022; 97:352-372. [PMID: 34985762 DOI: 10.1002/ajh.26455] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), usually with accompanying bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~30% of patients, while >90% have somatic gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%), and the oncogenic RAS pathway (~30%) are frequent, while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact overall survival. RISK-STRATIFICATION Molecularly integrated prognostic models include the Groupe Français des Myélodysplasies, Mayo Molecular Model (MMM), and the CMML specific prognostic model. Risk factors incorporated into the MMM include presence of truncating ASXL1 mutations, absolute monocyte count >10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L, and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups: high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor), and low (no risk factors), with median survivals of 16, 31, 59, and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
20
|
Kwon A, Ibrahim I, Le T, Jaso JM, Weinberg O, Fuda F, Chen W. CSF3R T618I mutated chronic myelomonocytic leukemia: A proliferative subtype with a distinct mutational profile. Leuk Res Rep 2022; 17:100323. [PMID: 35586707 PMCID: PMC9108757 DOI: 10.1016/j.lrr.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/26/2022] Open
|
21
|
Sorigue M, Arenillas L, Xicoy B, Andrade-Campos M, Navarro JT, Ferrer A, Zamora L, Calvo X. Monocyte subset distribution in myeloproliferative and myelodysplastic/myeloproliferative neoplasms with monocytosis. Leuk Res 2021; 112:106771. [PMID: 34902713 DOI: 10.1016/j.leukres.2021.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Marc Sorigue
- Department of Hematology, ICO-Badalona, Hospital Germans Trias i Pujol, Functional Cytomics- IJC, LCMN, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Leonor Arenillas
- Laboratori de Citologia Hematològica, Servei de Patologia, Grup de Recerca Translacional en Neoplàsies Hematològiques (GRETNHE), IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Blanca Xicoy
- Department of Hematology, ICO-Badalona, Hospital Germans Trias i Pujol, IJC, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marcio Andrade-Campos
- Servei d'Hematologia Clínica, Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Jose-Tomas Navarro
- Department of Hematology, ICO-Badalona, Hospital Germans Trias i Pujol, IJC, LCMN, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ana Ferrer
- Laboratori de Citologia Hematològica, Servei de Patologia, Grup de Recerca Translacional en Neoplàsies Hematològiques (GRETNHE), IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Lurdes Zamora
- Department of Hematology, ICO-Badalona, Hospital Germans Trias i Pujol, IJC, LCMN, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Servei de Patologia, Grup de Recerca Translacional en Neoplàsies Hematològiques (GRETNHE), IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic stem cell neoplasms comprising of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) that share driver mutations (JAK2/CALR/MPL) resulting in constitutive activation of JAK/STAT and other signaling pathways. Patients with MPN have shortened survival and an inherent risk for leukemic evolution. Prognostically relevant clinical and genetic parameters have been incorporated into mutation-enhanced scoring systems (MIPSS70-plus version 2.0, MIPSS-ET/PV). In the current review, we describe clinical and pathological features along with prognostic significance of MPN with monocytosis. RECENT FINDINGS Monocytosis, defined by an absolute monocyte count (AMC) ≥ 1 × 10 9/L, is a typical manifestation of chronic myelomonocytic leukemia (CMML) but is also associated with 21% and 17% of PV and PMF patients, respectively. Recent studies on the subject have reported that MPN patients with monocytosis are older and present with concomitant leukocytosis. In regard to PV, patients with monocytosis harbor unfavorable cytogenetic abnormalities including +8, 7/7q, i(17q), 5/5q-,12p-, inv(3), or 11q23 rearrangement and SRSF2 mutations, whereas PMF patients with monocytosis had significant thrombocytopenia, higher circulating blasts, higher symptom burden, and ASXL1 mutations. Moreover, presence of monocytosis predicted inferior survival in both PV and PMF. Monocytosis in MPN is associated with a distinct clinical and genetic profile and may serve as a marker of aggressive disease biology.
Collapse
|
23
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021; 13:5531. [PMID: 34771693 PMCID: PMC8583143 DOI: 10.3390/cancers13215531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35121 Padua, Italy;
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | | | - Francesca Palandri
- Istituto di Ematologia “Seragnoli” IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| |
Collapse
|
24
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021. [PMID: 34771693 DOI: 10.3390/cancers13215531.pmid:34771693;pmcid:pmc8583143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, 35121 Padua, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Francesca Palandri
- Istituto di Ematologia "Seragnoli" IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
25
|
Li Y, Beck RC, Moore EM. Pathogenic Mutations and Atypical Flow Cytometric Findings Characterize the Majority of Unclassifiable Myelodysplastic/Myeloproliferative Neoplasms. Am J Clin Pathol 2021; 156:634-643. [PMID: 33877292 DOI: 10.1093/ajcp/aqaa281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are a group of rare and heterogeneous hematopoietic disorders that frequently present a diagnostic challenge. Here we present our institutional experience with next-generation sequencing (NGS), together with morphologic, flow cytometric, and cytogenetic evaluation, in the diagnosis of MDS/MPN, with particular emphasis on MDS/MPN unclassifiable (MPN-U). METHODS We evaluated the morphologic, flow cytometric, cytogenetic, and molecular characteristics of all MDS/MPN cases that underwent NGS at our institution between April 2016 and February 2019. RESULTS Thirty-seven cases of MDS/MPN were identified, including 14 cases of MDS/MPN-U. Ninety-seven percent harbored mutations and immunophenotypic aberrancies (36/37), while only 38% had cytogenetic abnormalities (12/32). The MDS/MPN-U group had the highest rate of myeloblast phenotypic abnormalities and had a high mutation rate of approximately 2.7 mutated genes per case, most commonly in JAK2, SRSF2, and ASXL1. CONCLUSIONS No single ancillary study was abnormal in every case, but all cases had at least one abnormal finding, demonstrating the usefulness of a multiparameter approach to the diagnosis of MDS/MPN. Although a few specific mutations were found exclusively in MDS/MPN-U and JAK2 mutations were most prevalent, larger studies are needed to determine whether MDS/MPN-U has a mutational "fingerprint," which may aid in diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OHUSA
| | - Rose C Beck
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OHUSA
| | - Erika M Moore
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OHUSA
| |
Collapse
|
26
|
St. Martin EC, Ferrer A, Wudhikarn K, Mangaonkar A, Hogan W, Tefferi A, Gangat N, Lasho T, Altman JK, Godley LA, Patnaik MM. Clinical features and survival outcomes in patients with chronic myelomonocytic leukemia arising in the context of germline predisposition syndromes. Am J Hematol 2021; 96:E327-E330. [PMID: 34028844 DOI: 10.1002/ajh.26250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alejandro Ferrer
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Kitsada Wudhikarn
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Abhishek Mangaonkar
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - William Hogan
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Naseema Gangat
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Terra Lasho
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | | | - Lucy A. Godley
- Section of Hematology‐Oncology, Departments of Medicine and Human Genetics The University of Chicago Chicago Illinois USA
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
27
|
El Hussein S, Wang SA, Pemmaraju N, Khoury JD, Loghavi S. Chronic Myelomonocytic Leukemia: Hematopathology Perspective. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:142-149. [PMID: 35663104 PMCID: PMC9138437 DOI: 10.36401/jipo-21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/15/2023]
Abstract
Our understanding of chronic myelomonocytic leukemia (CMML) has evolved tremendously over the past decade. Large-scale sequencing studies have led to increased insight into the genomic landscape of CMML and clinical implications of these changes. This in turn has resulted in refined and improved risk stratification models, which to date remain versatile and subject to remodeling, as new and evolving studies continue to refine our understanding of this disease. In this article, we present an up-to-date review of CMML from a hematopathology perspective, while providing a clinically practical summary that sheds light on the constant evolution of our understanding of this disease.
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A. Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Chan O, Renneville A, Padron E. Chronic myelomonocytic leukemia diagnosis and management. Leukemia 2021; 35:1552-1562. [PMID: 33714974 DOI: 10.1038/s41375-021-01207-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare, heterogeneous myeloid malignancy classified as a myelodysplastic syndromes/myeloproliferative neoplasm (MDS/MPN) overlap syndrome by the World Health Organization (WHO). Its initial presentation can be incidental or associated with myelodysplastic or myeloproliferative symptoms and up to 20% of patients harbor a concurrent inflammatory or autoimmune condition. Persistent monocytosis is the hallmark of CMML but diagnosis can be challenging. Increased understanding of human monocyte subsets, chromosomal abnormalities, and somatic gene mutations have led to more accurate diagnosis and improved prognostication. A number of risk stratification systems have been developed and validated but using those that incorporate molecular information such as CMML Prognostic Scoring System (CPSS)-Mol, Mayo Molecular, and Groupe Francophone des Myelodysplasies (GFM) are preferred. Symptom-directed approaches forms the basis of CMML management. Outcomes vary substantially depending on risk ranging from observation for a number of years to rapidly progressive disease and acute myeloid leukemia (AML) transformation. Patients who are low risk but with symptoms from cytopenias or proliferative features such as splenomegaly may be treated with hypomethylating agents (HMAs) or cytoreductive therapy, respectively, with the goal of durable symptoms control. Allogeneic hematopoietic cell transplantation should be considered for intermediate to high risk patients. The lack of effective pharmaceutical options has generated interest in novel therapeutics for this disease, and early phase clinical trial results are promising.
Collapse
Affiliation(s)
- Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
29
|
Laboratory Evaluation and Pathological Workup of Neoplastic Monocytosis - Chronic Myelomonocytic Leukemia and Beyond. Curr Hematol Malig Rep 2021; 16:286-303. [PMID: 33945086 DOI: 10.1007/s11899-021-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Monocytosis is a distinct but non-specific manifestation of various physiologic and pathologic conditions. Among hematopoietic stem cell neoplasms, depending on the criteria used for disease classification, monocytosis may be a consistent and integral component of diseases such as chronic myelomonocytic leukemia or acute myeloid leukemia with monocytic differentiation, or it may represent an inconsistent finding that often provides a clue to the underlying genetic changes driving the neoplasm. The purpose of this review is to provide the readers with a laboratory-based approach to neoplastic monocytosis. RECENT FINDINGS In-depth elucidation of the genomic landscape of myeloid neoplasms within the past few years has broadened our understanding of monocytosis and its implications for diagnosis and prognosis. Genetic findings also shed light on potential disease response - or lack thereof - to various therapeutic agents used in the setting of myeloid neoplasms. In this review, we provide our approach to diagnose neoplastic monocytosis in the context of case-based studies while incorporating the most recent literature on this topic.
Collapse
|
30
|
Shallis RM, Siddon AJ, Zeidan AM. Clinical and Molecular Approach to Adult-Onset, Neoplastic Monocytosis. Curr Hematol Malig Rep 2021; 16:276-285. [PMID: 33890194 DOI: 10.1007/s11899-021-00632-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW In this review, we provide a comprehensive and contemporary understanding of malignant monocytosis and provide a framework by which the appropriate diagnosis with malignant monocytosis can be rendered. RECENT FINDINGS Increasing data support the use of molecular data to refine the diagnostic approach to persistent monocytosis. The absence of a TET2, SRSF2, or ASXL1 mutation has ≥ 90% negative predictive value for a diagnosis of CMML. These data may also reliably differentiate chronic myelomonocytic leukemia, the malignancy that is most associated with mature monocytosis, from several other diseases that can be associated with typically a lesser degree of monocytosis. These include acute myelomonocytic leukemia, acute myeloid leukemia with monocytic differentiation, myelodysplastic syndromes, and myeloproliferative neoplasms driven by BCR-ABL1, PDGFRA, PDGFRB, or FGFR1 rearrangements or PCM1-JAK2 fusions among other rarer aberrations. The combination of monocyte partitioning with molecular data in patients with persistent monocytosis may increase the predictive power for the ultimate development of CMM but has not been prospectively validated. Many conditions, both benign and malignant, can be associated with an increase in mature circulating monocytes. After reasonably excluding a secondary or reactive monocytosis, there should be a concern for and investigation of malignant monocytosis, which includes hematopathologic review of blood and marrow tissues, flow cytometric analysis, and cytogenetic and molecular studies to arrive at an appropriate diagnosis.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA
| | - Alexa J Siddon
- Departments of Laboratory Medicine & Pathology, Yale University, New Haven, CT, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
31
|
Mangaonkar AA, Tande AJ, Bekele DI. Differential Diagnosis and Workup of Monocytosis: A Systematic Approach to a Common Hematologic Finding. Curr Hematol Malig Rep 2021; 16:267-275. [PMID: 33880680 PMCID: PMC8057007 DOI: 10.1007/s11899-021-00618-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Purpose of Review Monocytosis is a frequently encountered clinical condition that needs appropriate investigation due to a broad range of differential diagnoses. This review is meant to summarize the latest literature in the diagnostic testing and interpretation and offer a stepwise diagnostic approach for a patient presenting with monocytosis. Recent Findings Basic studies have highlighted the phenotypic and functional heterogeneity in the monocyte compartment. Studies, both translational and clinical, have provided insights into why monocytosis occurs and how to distinguish the different etiologies. Flow cytometry studies have illustrated that monocyte repartitioning can distinguish chronic myelomonocytic leukemia, a prototypical neoplasm with monocytosis from other reactive or neoplastic causes. Summary In summary, we provide an algorithmic approach to the diagnosis of a patient presenting with monocytosis and expect this document to serve as a reference guide for clinicians.
Collapse
Affiliation(s)
| | - Aaron J Tande
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Delamo I Bekele
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Zhang Y, Tan Q, Cao P, Chen C, Chen W. Chronic myeloid leukemia with a significant increase of monocytes and rare karyotype: A case report and literature review. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:322-327. [PMID: 33927081 PMCID: PMC10929936 DOI: 10.11817/j.issn.1672-7347.2021.200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 11/03/2022]
Abstract
Chronic myeloid leukemia with a significant increase of monocytes is rare and difficult to identify from chronic myelo-monocytic leukemia in clinic. A 31-year-old male patient with systemic pain was initially diagnosed as chronic myelo-monocytic leukemia, who was finally diagnosed as chronic myeloid leukemia by fusion gene and chromosome examination. In addition to the typical Ph chromosome, a rare chromosome translocation t(2; 7)(p13; p22) was observed. The detection of monocyte subsets by multi-parameter flow cytometry is a diagnostic marker to distinguish the above 2 diseases. The relationship between fusion genes and mononucleosis is not clear. Tyrosine kinase inhibitors or allogeneic hematopoietic stem cell transplantation can be used in the treatment for this disease.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008.
| | - Qian Tan
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Wei Chen
- Department of Gastroenterology, Changsha Central Hospital, Changsha 410004, China.
| |
Collapse
|
33
|
Bagla S, Regling KA, Wakeling EN, Gadgeel M, Buck S, Zaidi AU, Flore LA, Chicka M, Schiffer CA, Chitlur MB, Ravindranath Y. Distinctive phenotypes in two children with novel germline RUNX1 mutations - one with myeloid malignancy and increased fetal hemoglobin. Pediatr Hematol Oncol 2021; 38:65-79. [PMID: 32990483 DOI: 10.1080/08880018.2020.1814463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX1 associated familial platelet disorder (FPD) is a rare autosomal dominant hematologic disorder characterized by thrombocytopenia and/or altered platelet function. There is an increased propensity to develop myeloid malignancy (MM) - acute myeloid leukemia, myeloproliferative neoplasms or myelodysplastic syndrome often in association with secondary somatic variants in other genes. To date, 23 FPD-MM pediatric cases have been reported worldwide. Here, we present two new kindreds with novel RUNX1 pathogenic variants in which children are probands. The first family is a daughter/mother diad, sharing a heterozygous frameshift variant in RUNX1 gene (c.501delT p.Ser167Argfs*9). The daughter, age 13 years, presented with features resembling juvenile myelomonocytic leukemia - severe anemia, thrombocytopenia, high white cell count with blast cells, monocytosis, increased nucleated red cells and had somatic mutations with high allele burden in CUX1, PHF6, and SH2B3 genes. She also had increased fetal hemoglobin and increased LIN28B expression. The mother, who had a long history of hypoplastic anemia, had different somatic mutations- a non-coding mutation in CUX1 but none in PHF6 or SH2B3. Her fetal hemoglobin and LIN28B expression were normal. In the second kindred, the proband, now 4 years old with thrombocytopenia alone, was investigated at 3 months of age for persistent neonatal thrombocytopenia with large platelets. Molecular testing identified a heterozygous intragenic deletion in RUNX1 encompassing exon 5. His father is known to have increased bruising for several years but is unavailable for testing. These two cases illustrate the significance of secondary mutations in the development and progression of RUNX1-FPD to MM.
Collapse
Affiliation(s)
- Shruti Bagla
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA
| | - Katherine A Regling
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Erin N Wakeling
- DMC University Laboratories, Detroit Medical Center, Detroit, Michigan, USA
| | - Manisha Gadgeel
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA
| | - Steven Buck
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Ahmar U Zaidi
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Leigh A Flore
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | - Charles A Schiffer
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Meera B Chitlur
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Department of Pediatrics-Hematology/Oncology, Wayne State University-School of Medicine, Detroit, Michigan, USA.,Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| |
Collapse
|
34
|
Thomopoulos TP, Bouhla A, Papageorgiou SG, Pappa V. Chronic myelomonocytic leukemia - a review. Expert Rev Hematol 2020; 14:59-77. [PMID: 33275852 DOI: 10.1080/17474086.2021.1860004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Chronic myelomonocytic leukemia (CMML) is a clonal myeloid neoplasm, denoted by overlapping myelodysplastic and myeloproliferative features, with poor overall survival and high transformation rate to acute myeloid leukemia. AREAS COVERED This review, following a thorough Medline search of pertinent published literature, discusses the diagnostic criteria, the pathogenesis, and the complex genetic landscape of the disease. Prognostication, response criteria, therapeutic management of patients, efficacy of established and novel treatment modalities are thoroughly reviewed. EXPERT OPINION Cytogenetic abnormalities and mutations in genes involved in epigenetic and transcriptional regulation, and cell-signaling are abundant in CMML and implicated in its complex pathogenesis. As presence of these mutations carry a prognostic impact, they are increasingly incorporated in risk-stratification schemes. Novel response criteria have been proposed, considering the unique features of the disease. Although allogeneic hematopoietic stem cell transplantation remains the only treatment with curative intent, it is reserved for a minority of patients; therefore, there is an unmet need for optimizing treatment modalities, such as hypomethylating agents, and introducing novel agents, which could substantially improve survival and quality of life of CMML patients. Clinical trials dedicated specifically to CMML are needed to explore the efficacy and safety of novel treatment modalities.
Collapse
Affiliation(s)
- Thomas P Thomopoulos
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| | - Anthi Bouhla
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| | - Sotirios G Papageorgiou
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| | - Vasiliki Pappa
- 2 Department of Internal Medicine - Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School, University General Hospital "Attikon" , Athens, Greece
| |
Collapse
|
35
|
Hwang SM, Ahn H, Jeon S, Park J, Chang Y, Kim H. Monocyte subsets to differentiate chronic myelomonocytic leukemia from reactive monocytosis. J Clin Lab Anal 2020; 35:e23576. [PMID: 32931067 PMCID: PMC7843289 DOI: 10.1002/jcla.23576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 11/06/2022] Open
Abstract
Background Chronic myelomonocytic leukemia (CMML) is characterized by persistent monocytosis and dysplastic features of blood cells. No specific genetic abnormalities are present in CMML, and reactive monocytosis should be excluded. An increase in classical monocytes (MO1) has been suggested as a screening tool for CMML. Methods We evaluated monocyte subsets in the peripheral blood of patients with CMML (n = 16), patients with reactive monocytosis (n = 19), and normal controls (n = 15) with flow cytometry using antibodies against CD14, CD16, CD56, CD24, CD45, and CD2. The cutoff of MO1 ≥94% was validated, and the optimal cutoff was analyzed with receiver operating curve analysis. Results The sensitivity of monocyte subset testing for screening for CMML was 0.938 (0.717‐0.997), and the specificity was 0.882 (0.734 ‐ 0.953) using the cutoff of MO1 ≥94%. Serial samples from patients who responded to hypomethylating therapy showed an MO1 < 94%. However, few patients with reactive monocytosis, including patients with nonhematologic malignancies and acute myeloid leukemia, showed an increase in the MO1 ≥ 94%. Monocyte subset results were correlated with the response to hypomethylating therapy in follow‐up samples. Conclusion Monocyte subset analysis is useful in screening for and monitoring CMML. Harmonization of the protocols for monocyte subset analysis is required.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Haejin Ahn
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seungah Jeon
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jun Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yunye Chang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyungsuk Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
36
|
Gadgeel M, Bagla S, Buck S, Shamoun M, Ravindranath Y. CD14/16 monocyte profiling in juvenile myelomonocytic leukemia. Pediatr Blood Cancer 2020; 67:e28555. [PMID: 32648963 DOI: 10.1002/pbc.28555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
Monocyte subset analysis by flow cytometry has been shown to be a useful diagnostic tool in chronic myelomonocytic leukemia in adults. An increase in the classical monocyte fraction (CD14++/CD16-) greater than 94.0% of total monocytes is considered highly sensitive and specific in distinguishing chronic myelomonocytic leukemia from other myeloproliferative disorders. In a pilot study of juvenile myelomonocytic leukemia cases, we noted that CD14++/CD16- monocyte fraction was >95% in de novo juvenile myelomonocytic leukemia (JMML) with somatic PTPN11 mutations but normal in those with monosomy 7 or Noonan syndrome. Monocyte subgroup profiling by itself is not diagnostic of JMML but may distinguish molecular subgroups within JMML.
Collapse
Affiliation(s)
- Manisha Gadgeel
- School of Medicine, Wayne State University, Detroit, Michigan
| | - Shruti Bagla
- School of Medicine, Wayne State University, Detroit, Michigan
| | - Steven Buck
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Mark Shamoun
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Yaddanapudi Ravindranath
- School of Medicine, Wayne State University, Detroit, Michigan.,Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| |
Collapse
|
37
|
Prognostic value of monocyte subset distribution in chronic myelomonocytic leukemia: results of a multicenter study. Leukemia 2020; 35:893-896. [PMID: 32684630 DOI: 10.1038/s41375-020-0955-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 11/08/2022]
|
38
|
Clinical, Hematologic, Biologic and Molecular Characteristics of Patients with Myeloproliferative Neoplasms and a Chronic Myelomonocytic Leukemia-Like Phenotype. Cancers (Basel) 2020; 12:cancers12071891. [PMID: 32674283 PMCID: PMC7409251 DOI: 10.3390/cancers12071891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 11/17/2022] Open
Abstract
Patients with a myeloproliferative neoplasm (MPN) sometimes show a chronic myelomonocytic leukemia (CMML)-like phenotype but, according to the 2016 WHO classification, a documented history of an MPN excludes the diagnosis of CMML. Forty-one patients with an MPN (35 polycythemia vera (PV), 5 primary myelofibrosis, 1 essential thrombocythemia) and a CMML-like phenotype (MPN/CMML) were comprehensively characterized regarding clinical, hematologic, biologic and molecular features. The white blood cell counts in MPN/CMML patients were not different from CMML patients and PV patients. The hemoglobin values and platelet counts of these patients were higher than in CMML but lower than in PV, respectively. MPN/CMML patients showed myelomonocytic skewing, a typical in vitro feature of CMML but not of PV. The mutational landscape of MPN/CMML was not different from JAK2-mutated CMML. In two MPN/CMML patients, development of a CMML-like phenotype was associated with a decrease in the JAK2 V617F allelic burden. Finally, the prognosis of MPN/CMML (median overall survival (OS) 27 months) was more similar to CMML (JAK2-mutated, 28 months; JAK2-nonmutated 29 months) than to PV (186 months). In conclusion, we show that patients with MPN and a CMML-like phenotype share more characteristics with CMML than with PV, which may be relevant for their classification and clinical management.
Collapse
|
39
|
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol 2020; 92:e12883. [PMID: 32243617 DOI: 10.1111/sji.12883] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Monocytes are important cells of the innate system. They are a heterogeneous type of cells consisting of phenotypically and functionally distinct subpopulations, which play a specific role in the control, development and escalation of the immunological processes. Based on the expression of superficial CD14 and CD16 in flow cytometry, they can be divided into three subsets: classical, intermediate and non-classical. Variation in the levels of human monocyte subsets in the blood can be observed in patients in numerous pathological states, such as infections, cardiovascular and inflammatory diseases, cancer and autoimmune diseases. The aim of this review is to summarize current knowledge of human monocyte subsets and their significance in homeostasis and in pathological conditions.
Collapse
|
40
|
Paraneoplastic Hyperleukocytosis Mimicking Hematologic Malignancy Revealing a Localized Lung Cancer. Ann Thorac Surg 2020; 109:e203-e206. [DOI: 10.1016/j.athoracsur.2019.06.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 11/23/2022]
|
41
|
Goyal G, Ravindran A, Liu Y, He R, Shah MV, Bennani NN, Patnaik MM, Rech KL, Go RS. Bone marrow findings in Erdheim-Chester disease: increased prevalence of chronic myeloid neoplasms. Haematologica 2020; 105:e84-e86. [PMID: 31624111 DOI: 10.3324/haematol.2019.234187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
| | | | - Yuanhang Liu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | | | | | | | - Karen L Rech
- Department of Laboratory Medicine and Pathology, Mayo Clinic
| | | | | |
Collapse
|
42
|
Patnaik MM, Tefferi A. Chronic Myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol 2020; 95:97-115. [PMID: 31736132 DOI: 10.1002/ajh.25684] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms, with an inherent risk for leukemic transformation (~15% over 3-5 years). DIAGNOSIS Diagnosis is based on the presence of sustained (>3 months) peripheral blood monocytosis (≥1 × 109 /L; monocytes ≥10%), along with bone marrow dysplasia. Clonal cytogenetic abnormalities occur in ~ 30% of patients, while >90% have gene mutations. Mutations involving TET2 (~60%), SRSF2 (~50%), ASXL1 (~40%) and the oncogenic RAS pathway (~30%) are frequent; while the presence of ASXL1 and DNMT3A mutations and the absence of TET2 mutations negatively impact over-all survival. RISK STRATIFICATION Molecularly integrated prognostic models include; the Groupe Français des Myélodysplasies (GFM), Mayo Molecular Model (MMM) and the CMML specific prognostic model (CPSS-Mol). Risk factors incorporated into the MMM include presence of nonsense or frameshift ASXL1 mutations, absolute monocyte count>10 × 109 /L, hemoglobin <10 g/dL, platelet count <100 × 109 /L and the presence of circulating immature myeloid cells. The MMM stratifies CMML patients into four groups; high (≥3 risk factors), intermediate-2 (2 risk factors), intermediate-1 (1 risk factor) and low (no risk factors), with median survivals of 16, 31, 59 and 97 months, respectively. RISK-ADAPTED THERAPY Hypomethylating agents such as 5-azacitidine and decitabine are commonly used, with overall response rates of ~40%-50% and complete remission rates of ~7%-17%; with no impact on mutational allele burdens. Allogeneic stem cell transplant is the only potentially curative option, but is associated with significant morbidity and mortality.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of MedicineMayo Clinic Rochester Minnesota
| |
Collapse
|
43
|
Sangiorgio VFI, Arber DA, Orazi A. How I investigate chronic myelomonocytic leukemia. Int J Lab Hematol 2019; 42:101-108. [PMID: 31841277 DOI: 10.1111/ijlh.13145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The 2016 revised 4th edition of the World Health Organization classification of hematopoietic neoplasms updated the diagnostic criteria for chronic myelomonocytic leukemia (CMML). Persistent peripheral blood monocytosis of at least 1 × 109 /L and a percentage of monocytes ≥10% of the circulating white blood cell count (WBC) are both prerequisite criteria for this diagnosis. CMML represents the prototype of "overlapping" myeloid neoplasms with concurrent myeloproliferative and myelodysplastic features. However, clinical presentation is heterogeneous, with cases showing prevailing "dysplastic" features and others a predominant "proliferative" phenotype. Accounting for this diversity, two variants of CMML are recognized: "dysplastic" CMML defined by WBC < 13 × 109 /L and "proliferative" CMML with WBC ≥ 13 × 109 /L often showing features mimicking a myeloproliferative neoplasm. Although not an official WHO category, the "oligomonocytic" variant of CMML is defined by relative monocytosis with an absolute monocyte count of 0.5-0.9 × 109 /L. It can be considered a "pre-phase," as it frequently anticipates the development of an overt, classic CMML. In an attempt at improving disease prognostication, the blast count based grading system for CMML of the WHO 2008 Classification has been expanded in 2016 to include a new "CMML-0" category. Lastly, the large body of knowledge on the molecular events occurring in CMML has been used to assist diagnosis and assess prognosis. Despite the step forwards, diagnosis of CMML still remains one of exclusion as no clinical, pathologic or molecular findings are specific for this disease. The current review brings insight into the spectrum of CMML and provides practical advice to approach suspected cases of CMML.
Collapse
Affiliation(s)
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Attilio Orazi
- Department of Pathology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
44
|
Valent P. Oligo-monocytic CMML and other pre-CMML states: Clinical impact, prognostication and management. Best Pract Res Clin Haematol 2019; 33:101137. [PMID: 32460976 DOI: 10.1016/j.beha.2019.101137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/18/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is defined by myelodysplasia, pathologic accumulation of monocytes and a substantial risk to transform to secondary acute myeloid leukemia (sAML). In recent years, minimal diagnostic criteria for classical CMML and CMML-variants were proposed. Moreover, potential pre-stages of CMML and interface conditions have been postulated. Oligomonocytic CMML is a condition where the absolute peripheral blood monocyte count does not reach a diagnostic level but all other criteria for CMML are fulfilled. Among potential pre-stages of CMML, clonal and non-clonal conditions have been described, including idiopathic monocytosis (IMUS) and clonal monocytosis of unknown significance (CMUS). Patients with myelodysplastic syndromes (MDS), clonal cytopenia of unknown significance (CCUS), clonal hematopoiesis of indeterminate potential (CHIP) and idiopathic cytopenia of undetermined significance (ICUS) may also progress to CMML. The current article provides an overview of pre-CMML conditions and oligomonocytic CMML, with special reference to diagnostic criteria, differential diagnoses, clinical outcomes and management.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology & Oncology, Vienna, Austria.
| |
Collapse
|
45
|
Solary E, Wagner-Ballon O, Selimoglu-Buet D. Incorporating flow cytometry and next-generation sequencing in the diagnosis of CMML. Are we ready for prime? Best Pract Res Clin Haematol 2019; 33:101134. [PMID: 32460985 DOI: 10.1016/j.beha.2019.101134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
In the last version of the WHO classification of myeloid malignancies, flow cytometry and molecular investigation are listed as potentially useful, yet non-essential diagnostic tools in hard-to-recognize chronic myelomonocytic leukemias (CMML). Flow recognition of CMML was initially based on an increase in the fraction of peripheral blood, CD14+,CD16- classical monocytes ≥94% of total monocytes. An associated inflammatory disease can preclude the detection of classical monocyte fraction increase by inducing accumulation of CD14+,CD16+ intermediate monocytes. In such a situation, decrease in the Slan+,CD14low,CD16+ non-classical monocyte fraction below 1.7% still supports CMML diagnosis. This robust, two-step flow cytometry assay identifies CMML with a very high sensitivity. Otherwise, detection of one or several acquired gene mutations with high variant allele frequency supports the diagnosis of CMML, oligomonocytic CMML or clonal monocytosis of clinical significance. Together, recent investigations support integration of flow cytometry analysis of peripheral blood monocyte subsets and new generation sequencing of a panel of 20-30 recurrently mutated genes in the diagnostic work-up of CMML.
Collapse
Affiliation(s)
- Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France; Faculté de Médicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; Département D'Hématologie, Gustave Roussy Cancer Center, Villejuif, France.
| | - Orianne Wagner-Ballon
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France; Département D'Hématologie et Immunologie Biologiques, Hôpitaux Universitaires Henri Mondor, APHP, Créteil, France
| | - Dorothée Selimoglu-Buet
- INSERM U1170, Gustave Roussy Cancer Center, Villejuif, France; Faculté de Médicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
46
|
Kuykendall AT, Padron E. Treatment of MDS/MPN and the MDS/MPN IWG International Trial: ABNL MARRO. Curr Hematol Malig Rep 2019; 14:543-549. [PMID: 31776774 DOI: 10.1007/s11899-019-00553-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW MDS/MPNs comprise a group of rare hematologic malignancies that balance features of myeloproliferation and bone marrow failure. Given overlapping clinical features and rarity of incidence, MDS/MPNs have long posed a diagnostic and therapeutic challenge. Herein, we sought to review recent advances in diagnosis and emerging therapeutic strategies and highlight the upcoming ABNL MARRO study which aims to individualize therapy for patients with MDS/MPN. RECENT FINDINGS Focused study of molecular mutations in MDS/MPNs has provided improved diagnostic clarity. Specific gene mutation or patterns of mutation have been increasingly described and have helped to distinguish between clinically similar diseases. While the current treatment landscape consists largely of therapies that have been co-opted from related disease, the emergence of prospective clinical trials specifically focused on MDS/MPN and the increased use of targeted agents represent progress for patients with MDS/MPN. An improved understanding of the molecular drivers of myeloid diseases has provided diagnostic clarity and renewed hope of targeted therapies for MDS/MPN patients. The upcoming ABNL MARRO study hopes to leverage this knowledge to match patients with targeted therapeutic options specific to molecular drivers of their disease.
Collapse
Affiliation(s)
- Andrew T Kuykendall
- H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Eric Padron
- H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
47
|
Chronic Myelomonocytic Leukemia: Insights into Biology, Prognostic Factors, and Treatment. Curr Oncol Rep 2019; 21:101. [DOI: 10.1007/s11912-019-0855-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Zhu G, Brayer J, Padron E, Mulé JJ, Mailloux AW. OMIP-049: Analysis of Human Myelopoiesis and Myeloid Neoplasms. Cytometry A 2019; 93:982-986. [PMID: 30347519 DOI: 10.1002/cyto.a.23598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/12/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Genyuan Zhu
- Departments of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jason Brayer
- Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Eric Padron
- Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - James J Mulé
- Departments of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Adam W Mailloux
- Departments of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
49
|
Loghavi S, Wang SA. Defining the Boundary Between Myelodysplastic Syndromes and Myeloproliferative Neoplasms. Surg Pathol Clin 2019; 12:651-669. [PMID: 31352979 DOI: 10.1016/j.path.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article we provide a practical and comprehensive review of myeloid neoplasms with overlapping myelodysplastic (MDS) and myeloproliferative (MPN) features, with emphasis on recent updates in classification, particularly the utility of morphologic, cytogenetic, and molecular findings in better defining and classifying these disease entities. We provide the reader with a summary of the most recent developments and updates that have helped further our understanding of the genomic landscape, clinicopathologic features, and prognostic elements of myeloid neoplasms with MDS/MPN features.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
50
|
Practical limitations of monocyte subset repartitioning by multiparametric flow cytometry in chronic myelomonocytic leukemia. Blood Cancer J 2019; 9:65. [PMID: 31420531 PMCID: PMC6697701 DOI: 10.1038/s41408-019-0231-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/10/2019] [Indexed: 11/08/2022] Open
|