1
|
Xavierselvan M, Shethia RT, Bednarke B, Yang V, Moses L, Yalamarty SSK, Cook J, Mallidi S. Oxygen-Releasing Nanodroplets Relieve Intratumoral Hypoxia and Potentiate Photodynamic Therapy in 3D Head and Neck Cancer Spheroids. ACS Biomater Sci Eng 2025. [PMID: 40041949 DOI: 10.1021/acsbiomaterials.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Hypoxia in solid tumors, including head and neck cancer (HNC), contributes to treatment resistance, aggressive tumor phenotypes, and poorer clinical outcomes. Perfluorocarbon nanodroplets have emerged as promising drugs to alleviate tumor hypoxia. These versatile nanocarriers can also encapsulate and deliver various therapeutic agents, offering a multifunctional approach to cancer treatment. However, a detailed characterization of hypoxia alleviation, particularly the duration of hypoxia treatment drug residence, has not been thoroughly investigated. In this study, we developed and characterized perfluoropentane nanodroplets (PFP NDs) for the codelivery of oxygen and the photoactivatable drug benzoporphyrin derivative (BPD) to hypoxic HNC spheroids. The PFP NDs exhibited excellent stability, efficient oxygen loading/release, and biocompatibility. Using 3D multicellular tumor spheroids of FaDu and SCC9 HNC cells, we investigated the spatiotemporal dynamics of hypoxia within these spheroids and the ability of oxygenated PFP NDs to alleviate hypoxia. Our results showed that oxygen-loaded PFP NDs effectively penetrated the core of tumor spheroids, significantly reducing hypoxia, as evidenced by the downregulation of hypoxia-inducible factors HIF-1α and HIF-2α. Importantly, we demonstrated sustained hypoxia alleviation for up to 3 h post-treatment with PFP NDs. BPD-loaded PFP NDs successfully delivered the photosensitizer into the spheroid core in a time-dependent manner. Furthermore, we evaluated the efficacy of oxygen-dependent treatment modality, namely, photodynamic therapy (PDT) with BPD and oxygen-loaded PFP NDs compared to free BPD. The NDs formulation exhibited superior PDT outcomes, which were attributed to improved oxygen availability during the treatment. This study provides comprehensive evidence for the potential of PFP NDs as a codelivery platform to overcome hypoxia-mediated treatment resistance and enhance PDT efficacy in HNC. Our findings pave the way for further investigation of this promising approach in more complex in vivo models, potentially leading to improved therapeutic strategies for hypoxic solid tumors.
Collapse
Affiliation(s)
- Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155-5801, United States
| | - Ronak Tarun Shethia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155-5801, United States
| | - Brooke Bednarke
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155-5801, United States
| | - Vicky Yang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155-5801, United States
| | - Leah Moses
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155-5801, United States
| | | | - Jason Cook
- NanoHybrids, Inc., Acton, Massachusetts 01720, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155-5801, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
2
|
Zhang Y, Qiu Y, Karimi AB, Smith BR. Systematic review: Mechanisms of photoactive nanocarriers for imaging and therapy including controlled drug delivery. Eur J Nucl Med Mol Imaging 2025; 52:1576-1595. [PMID: 39722062 PMCID: PMC11849580 DOI: 10.1007/s00259-024-07014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging. Furthermore, it highlights key challenges and future perspectives in the development of light-triggered DDS, emphasizing the potential of these systems to revolutionize targeted therapies. METHOD A systematic literature search was performed using Google Scholar as the primary database and information source. We searched the recently published literature (within 15 years) with the following keywords individually and in relevant combinations: light responsive, nanoparticle, drug release, mechanism, photothermal, photosensitization, photopolymerization, photocleavage, and photoisomerization. RESULTS We selected 117 scientific articles to assess the strength of evidence after screening titles and abstracts. We found that six mechanisms (photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement) have primarily been used for light-triggered drug release and categorized our review accordingly. Azobenzene/spiropyran-based derivatives and o-nitrobenzyl/Coumarin derivatives are often used for photoisomerization and photocleavage-enabled drug delivery, while free radical polymerization and cationic polymerization comprise two main mechanisms of photopolymerization. One hundred two is the primary active radical oxygen species employed for photosensitization, which is a key factor that impacts the therapeutic effects in Photodynamic therapy, but not in photothermal therapy. CONCLUSION The comprehensive review serves as a guiding compass for light-triggered DDS for biomedical applications. This rapidly advancing field is poised to generate breakthroughs for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunxiu Qiu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ali Bavandpour Karimi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Lee JH, Lee CG, Kim MS, Kim S, Song M, Zhang H, Yang E, Kwon YH, Jung YH, Hyeon DY, Choi YJ, Oh S, Joe DJ, Kim TS, Jeon S, Huang Y, Kwon TH, Lee KJ. Deeply Implantable, Shape-Morphing, 3D MicroLEDs for Pancreatic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411494. [PMID: 39679727 DOI: 10.1002/adma.202411494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/07/2024] [Indexed: 12/17/2024]
Abstract
Controlled photooxidation-mediated disruption of collagens in the tumor microenvironment can reduce desmoplasia and enhance immune responsiveness. However, achieving effective light delivery to solid tumors, particularly those with dynamic volumetric changes like pancreatic ductal adenocarcinoma (PDAC), remains challenging and limits the repeated and sustained photoactivation of drugs. Here, 3D, shape-morphing, implantable photonic devices (IPDs) are introduced that enable tumor-specific and continuous light irradiation for effective metronomic photodynamic therapy (mPDT). This IPD adheres seamlessly to the surface of orthotopic PDAC tumors, mitigating issues related to mechanical mismatch, delamination, and internal lesions. In freely moving mouse models, mPDT using the IPD with close adhesion significantly reduces desmoplastic tumor volume without causing cytotoxic effects in healthy tissues. These promising in vivo results underscore the potential of an adaptable and unidirectional IPD design in precisely targeting cancerous organs, suggesting a meaningful advance in light-based therapeutic technologies.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Chae Gyu Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Min Seo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungyeob Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eunbyeol Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon Hee Kwon
- O2MEDi Incorporation, Ulsan, 44919, Republic of Korea
| | - Young Hoon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Yeol Hyeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoon Ji Choi
- In Vivo Research Center, UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seyong Oh
- Division of Electrical Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Daniel J Joe
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghun Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- O2MEDi Incorporation, Ulsan, 44919, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Alekseeva P, Makarov V, Efendiev K, Shiryaev A, Reshetov I, Loschenov V. Devices and Methods for Dosimetry of Personalized Photodynamic Therapy of Tumors: A Review on Recent Trends. Cancers (Basel) 2024; 16:2484. [PMID: 39001546 PMCID: PMC11240380 DOI: 10.3390/cancers16132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Significance: Despite the widespread use of photodynamic therapy in clinical practice, there is a lack of personalized methods for assessing the sufficiency of photodynamic exposure on tumors, depending on tissue parameters that change during light irradiation. This can lead to different treatment results. Aim: The objective of this article was to conduct a comprehensive review of devices and methods employed for the implicit dosimetric monitoring of personalized photodynamic therapy for tumors. Methods: The review included 88 peer-reviewed research articles published between January 2010 and April 2024 that employed implicit monitoring methods, such as fluorescence imaging and diffuse reflectance spectroscopy. Additionally, it encompassed computer modeling methods that are most often and successfully used in preclinical and clinical practice to predict treatment outcomes. The Internet search engine Google Scholar and the Scopus database were used to search the literature for relevant articles. Results: The review analyzed and compared the results of 88 peer-reviewed research articles presenting various methods of implicit dosimetry during photodynamic therapy. The most prominent wavelengths for PDT are in the visible and near-infrared spectral range such as 405, 630, 660, and 690 nm. Conclusions: The problem of developing an accurate, reliable, and easily implemented dosimetry method for photodynamic therapy remains a current problem, since determining the effective light dose for a specific tumor is a decisive factor in achieving a positive treatment outcome.
Collapse
Affiliation(s)
- Polina Alekseeva
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
| | - Vladimir Makarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Kanamat Efendiev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Artem Shiryaev
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Igor Reshetov
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Victor Loschenov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
5
|
Krupka-Olek M, Bożek A, Czuba ZP, Kłósek M, Cieślar G, Kawczyk-Krupka A. Cytotoxic and Immunomodulatory Effects of Hypericin as a Photosensitizer in Photodynamic Therapy Used on Skin Cell Cultures. Pharmaceutics 2024; 16:696. [PMID: 38931819 PMCID: PMC11207107 DOI: 10.3390/pharmaceutics16060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Determination of the hypericin-photodynamic (HY-PDT) effect on the secretion of cytokines secreted by the skin cells, may be the basis for using the immunomodulatory effect of photodynamic action in the treatment of inflammatory skin diseases. The study aimed to evaluate the cytotoxic and immunomodulatory effects of hypericin (HY) in photodynamic therapy (PDT) performed in vitro on cultures of selected skin cell lines. The study used two human cell lines, primary dermal fibroblast (HDFa) and primary epidermal keratinocytes (HEKa). The MTT test was used to define the metabolic activity of treated cells. Cell supernatants subjected to sublethal PDT were assessed to determine the interleukins: IL-2, IL-8, IL-10, IL-11, IL-19, IL-22, and metalloproteinase 1 (MMP-1). The results confirm the destructive effect of HY-PDT and the immunomodulatory effects of sublethal doses on the selected skin cells, depending on the concentration of HY and the light doses. No statistically significant differences were noted in IL-2 and IL-10 concentration after HY-PDT for HEKa and HDFa lines. After using HY-PDT, the concentration of IL-8, MMP-1, IL-22, and IL-11 significantly decreased in the HEKa line. Moreover, the concentration of IL-19 and MMP-1 significantly decreased in the HDFa line. The concentration of IL-11 in the HDFa line after using only the HY, without the light, increased but decreased after HY-PDT. Our experiment confirmed that HY-PDT has not only a cytotoxic effect but, used in sublethal doses, also presents immunomodulatory properties. These may be an advantage of HY-PDT when used in the treatment of persistent skin inflammation, connected with the release of pro-inflammatory cytokines resistant to conventional treatment methods.
Collapse
Affiliation(s)
- Magdalena Krupka-Olek
- Doctoral School of the Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Andrzej Bożek
- Clinical Department of Internal Diseases and Geriatrics, Chair of Internal Diseases, Dermatology and Allergology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Z.P.C.); (M.K.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
6
|
Baydoun M, Boidin L, Leroux B, Vignion-Dewalle AS, Quilbe A, Grolez GP, Azaïs H, Frochot C, Moralès O, Delhem N. Folate Receptor Targeted Photodynamic Therapy: A Novel Way to Stimulate Anti-Tumor Immune Response in Intraperitoneal Ovarian Cancer. Int J Mol Sci 2023; 24:11288. [PMID: 37511049 PMCID: PMC10378870 DOI: 10.3390/ijms241411288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) has shown improvements in cancer treatment and in the induction of a proper anti-tumor immune response. However, current photosensitizers (PS) lack tumor specificity, resulting in reduced efficacy and side effects in patients with intraperitoneal ovarian cancer (OC). In order to target peritoneal metastases of OC, which overexpress folate receptor (FRα) in 80% of cases, we proposed a targeted PDT using a PS coupled with folic acid. Herein, we applied this targeted PDT in an in vivo mouse model of peritoneal ovarian carcinomatosis. The efficacy of the treatment was evaluated in mice without and with human peripheral blood mononuclear cell (PBMC) reconstitution. When mice were reconstituted, using a fractionized PDT protocol led to a significantly higher decrease in the tumor growth than that obtained in the non-reconstituted mice (p = 0.0469). Simultaneously, an immune response was reflected by an increase in NK cells, and both CD4+ and CD8+ T cells were activated. A promotion in cytokines IFNγ and TNFα and an inhibition in cytokines TGFβ, IL-8, and IL-10 was also noticed. Our work showed that a fractionized FRα-targeted PDT protocol is effective for the treatment of OC and goes beyond local induction of tumor cell death, with the promotion of a subsequent anti-tumor response.
Collapse
Affiliation(s)
- Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Léa Boidin
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Anne-Sophie Vignion-Dewalle
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Alexandre Quilbe
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Guillaume Paul Grolez
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Henri Azaïs
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Céline Frochot
- Laboratoire des Réactions et Génie des Procédés (LRGP), CNRS-Université de Lorraine, 1 Rue Grandville, 54000 Nancy, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
- INSERM UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| |
Collapse
|
7
|
Saad MA, Hasan T. Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjug Chem 2022; 33:2041-2064. [PMID: 36197738 DOI: 10.1021/acs.bioconjchem.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of photoactivating certain molecules, photosensitizers (PS), resulting in photochemical processes, has long been realized in the form of photodynamic therapy (PDT) for the management of several cancerous and noncancerous pathologies. With an improved understanding of the photoactivation process and its broader implications, efforts are being made to exploit the various facets of photoactivation, PDT, and the associated phenomenon of photodynamic priming in enhancing treatment outcomes, specifically in cancer therapeutics. The parallel emergence of nanomedicine, specifically liposome-based nanoformulations, and the convergence of the two fields of liposome-based drug delivery and PDT have led to the development of unique hybrid systems, which combine the exciting features of liposomes with adequate complementation through the photoactivation process. While initially liposomes carrying photosensitizers (PSs) were developed for enhancing the pharmacokinetics and the general applicability of PSs, more recently, PS-loaded liposomes, apart from their utility in PDT, have found several applications including enhanced targeting of drugs, coloading multiple therapeutic agents to enhance synergistic effects, imaging, priming, triggering drug release, and facilitating the escape of therapeutic agents from the endolysosomal complex. This review discusses the design strategies, potential, and unique attributes of these hybrid systems, with not only photoactivation as an attribute but also the ability to encapsulate multiple agents for imaging, biomodulation, priming, and therapy referred to as photoactivatable multiagent/inhibitor liposomes (PMILS) and their targeted versions─targeted PMILS (TPMILS). While liposomes have formed their own niche in nanotechnology and nanomedicine with several clinically approved formulations, we try to highlight how using PS-loaded liposomes could address some of the limitations and concerns usually associated with liposomes to overcome them and enhance their preclinical and clinical utility in the future.
Collapse
Affiliation(s)
- Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Peng R, Luo Y, Yao C, Cui Q, Wu Q, Li L. Intramolecular Charge Transfer-Based Conjugated Oligomer with Fluorescence, Efficient Photodynamics, and Photothermal Activities. ACS APPLIED BIO MATERIALS 2021; 4:6565-6574. [PMID: 35006900 DOI: 10.1021/acsabm.1c00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To develop efficient photoactive agents with satisfactory fluorescence, photodynamic, and photothermal effects is crucial for a phototherapeutic strategy to combat cancer diseases and pathogenic microbes. Herein, a water-soluble donor-acceptor-donor (D-A-D) structured conjugated oligomer was designed and synthesized, consisting of two cyclopenta-dithiophene (CDT) units as the electron donor and boron dipyrromethene (BODIPY) as the electron acceptor. Upon excitation, dual emission was observed for CDT-BODIPY with blue and red fluorescence peaks at 463 nm and at 730 nm, respectively, which was ascribed to intramolecular charge transfer (ICT). Due to the ICT effect, the singlet-to-triplet intersystem crossing rate of CDT-BODIPY was also enhanced, leading to an outstanding photodynamic behavior to produce reactive oxygen species (ROS). Meanwhile, its low bandgap also enabled it a moderate photothermal capability with a conversion efficiency of 33.1%. Taking advantage of its phototriggered activities, this conjugated oligomer exhibited an effective inhibition behavior on the pathogenic growth of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans), which can be guided by dual-wavelength fluorescence imaging. This D-A-D type conjugated oligomer with balanced photophysical characteristics provides a promising strategy to imaging-guided photoactive therapy.
Collapse
Affiliation(s)
- Rui Peng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yufeng Luo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qianling Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qing Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Han Z, Tu X, Qiao L, Sun Y, Li Z, Sun X, Wu Z. Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. J Mater Chem B 2021; 9:6751-6769. [PMID: 34346475 DOI: 10.1039/d1tb00554e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT), possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor hypoxia microenvironments could severely reduce the efficacy of oxygen-consuming phototherapies. Perfluorocarbon (PFC) nanomaterials have shown great practical value in carrying and transporting oxygen, which makes them promising agents to overcome tumor hypoxia and extend reactive oxygen species (ROS) lifetime to improve the efficacy of phototherapy. In this review, we summarize the latest advances in PFC-based PDT and PTT, and combined multimodal imaging technologies in various cancer types, aiming to facilitate their application-oriented clinical translation in the future.
Collapse
Affiliation(s)
- Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Velalopoulou A, Karagounis IV, Cramer GM, Kim MM, Skoufos G, Goia D, Hagan S, Verginadis II, Shoniyozov K, Chiango J, Cerullo M, Varner K, Yao L, Qin L, Hatzigeorgiou AG, Minn AJ, Putt M, Lanza M, Assenmacher CA, Radaelli E, Huck J, Diffenderfer E, Dong L, Metz J, Koumenis C, Cengel KA, Maity A, Busch TM. FLASH proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response. Cancer Res 2021; 81:4808-4821. [PMID: 34321243 DOI: 10.1158/0008-5472.can-21-1500] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
In studies of electron and proton radiotherapy, ultrahigh dose rates of FLASH radiation therapy appear to produce fewer toxicities than standard dose rates while maintaining local tumor control. FLASH-proton radiotherapy (F-PRT) brings the spatial advantages of PRT to FLASH dose rates (>40 Gy/sec), making it important to understand if and how F-PRT spares normal tissues while providing anti-tumor efficacy that is equivalent to standard-proton radiotherapy (S-PRT). Here we studied PRT damage to skin and mesenchymal tissues of muscle and bone and found that F-PRT of the C57BL/6 murine hind leg produced fewer severe toxicities leading to death or requiring euthanasia than S-PRT of the same dose. RNAseq analyses of murine skin and bone revealed pathways upregulated by S-PRT yet unaltered by F-PRT, such as apoptosis signaling and keratinocyte differentiation in skin, as well as osteoclast differentiation and chondrocyte development in bone. Corroborating these findings, F-PRT reduced skin injury, stem cell depletion, and inflammation, mitigated late effects including lymphedema, and decreased histopathologically detected myofiber atrophy, bone resorption, hair follicle atrophy, and epidermal hyperplasia. F-PRT was equipotent to S-PRT in control of two murine sarcoma models, including at an orthotopic intramuscular site, thereby establishing its relevance to mesenchymal cancers. Finally, S-PRT produced greater increases in TGF-β1 in murine skin and the skin of canines enrolled in a phase 1 study of F-PRT versus S-PRT. Collectively, these data provide novel insights into F-PRT-mediated tissue sparing and support its ongoing investigation in applications that would benefit from this sparing of skin and mesenchymal tissues.
Collapse
Affiliation(s)
| | | | | | - Michele M Kim
- Radiation Oncology, University of Pennsylvania School of Medicine
| | | | - Denisa Goia
- Radiation Oncology, University of Pennsylvania
| | - Sarah Hagan
- Radiation Oncology, University of Pennsylvania
| | | | | | - June Chiango
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine
| | - Michelle Cerullo
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine
| | - Kelley Varner
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine
| | - Lutian Yao
- Orthopedic Surgery, University of Pennsylvania
| | - Ling Qin
- Orthopedic Surgery, University of Pennsylvania
| | | | - Andy J Minn
- Abramson Family Cancer Research Institute, Philadelphia
| | - Mary Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania
| | - Matthew Lanza
- Pathobiology, University of Pennsylvania School of Veterinary Medicine
| | | | | | - Jennifer Huck
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine
| | | | - Lei Dong
- Radiation Oncology, University of Pennsylvania
| | - James Metz
- Radiation Oncology, University of Pennsylvania
| | | | | | - Amit Maity
- Radiation Oncology, University of Pennsylvania School of Medicine
| | | |
Collapse
|
11
|
Wu Q, Peng R, Luo Y, Cui Q, Zhu S, Li L. Antibacterial Activity of Porous Gold Nanocomposites via NIR Light-Triggered Photothermal and Photodynamic Effects. ACS APPLIED BIO MATERIALS 2021; 4:5071-5079. [PMID: 35007055 DOI: 10.1021/acsabm.1c00318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phototherapeutic approaches, including photothermal therapy (PTT) and photodynamic therapy (PDT), have become a promising strategy to combat microbial pathogens and tackle the crisis brought about by antibiotic-resistant strains. Herein, porous gold nanoparticles (AuPNs) were synthesized as photothermal agents and loaded with indocyanine green (ICG), a common photosensitizer for PDT, to fabricate a nanosystem presenting near-infrared (NIR) light-triggered synchronous PTT and PDT effects. The AuPNs can not only convert NIR light into heat with a high photothermal conversion efficiency (50.6-68.5%), but also provide a porous structure to facilely load ICG molecules. The adsorption of ICG onto AuPNs was mainly driven by electrostatic and hydrophobic interactions with the surfactant layer of AuPNs, and the aggregate state of ICG significantly enhanced its generation of reactive oxygen species. Moreover, taking advantage of its synergistic PTT and PDT effect, the hybrid nanocomposites displayed a remarkable antibacterial effect to the gram-positive pathogen Staphylococcus aureus (S. aureus) upon 808 nm laser irradiation.
Collapse
Affiliation(s)
- Qing Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Peng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yufeng Luo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianling Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuxian Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
12
|
Yang D, Lei S, Pan K, Chen T, Lin J, Ni G, Liu J, Zeng X, Chen Q, Dan H. Application of photodynamic therapy in immune-related diseases. Photodiagnosis Photodyn Ther 2021; 34:102318. [PMID: 33940209 DOI: 10.1016/j.pdpdt.2021.102318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that utilizes photodamage caused by photosensitizers and oxygen after exposure to a specific wavelength of light. Owing to its low toxicity, high selectivity, and minimally invasive properties, PDT has been widely applied to treat various malignant tumors, premalignant lesions, and infectious diseases. Moreover, there is growing evidence of its immunomodulatory effects and potential for the treatment of immune-related diseases. This review mainly focuses on the effect of PDT on immunity and its application in immune-related diseases.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Keran Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Guangcheng Ni
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
13
|
Chen D, Wang Y, Zhao H, Qiu H, Wang Y, Yang J, Gu Y. Monitoring perfusion and oxygen saturation in port-wine stains during vascular targeted photodynamic therapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:214. [PMID: 33708841 PMCID: PMC7940906 DOI: 10.21037/atm-20-3210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Vascular targeted photodynamic therapy (V-PDT) is a safe and effective therapeutic modality for port-wine stains (PWS) by targetedly damaging the dilated and malformed blood vessels. This study aims to monitor and quantify the changes in oxygen saturation (StO2), blood volume fraction (BVF) and perfusion in PWS lesions before and during V-PDT. Methods Microvascular parameters (i.e., StO2 and BVF) and skin perfusion were measured noninvasively by using diffuse reflectance spectroscopy (DRS) and laser Doppler imaging (LDI), respectively. The change in StO2, BVF and perfusion that occurred in the PWS lesions of 26 patients were monitored and investigated before and during V-PDT in vivo with the systematic administration of the porphyrin-based photosensitizer HiPorfin. Results The mean StO2 (P<0.05), BVF (P<0.05), and perfusion (P<0.001) in PWS lesions of all subjects significantly increased by 6%, 34%, and 113%, respectively, 3 min after the initiation of V-PDT. The StO2 increased first and fluctuated during V-PDT. The overall trend of BVF change was consistent with the perfusion change. The BVF and the perfusion of PWS lesions increased after the initiation of V-PDT, and then gradually decreased. Conclusions V-PDT is an effective therapeutic modality in treating PWS. Results showed that LDI and DRS permitted the noninvasive monitoring of the changes in StO2, BVF, and perfusion in PWS lesions during V-PDT, and these methods can be useful in facilitating our understanding of the basic physiological mechanisms during V-PDT.
Collapse
Affiliation(s)
- Defu Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China.,Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China
| | - Ying Wang
- Department of Laser Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Haixia Qiu
- Department of Laser Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, China
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China.,Precision laser medical diagnosis and treatment Innovation unit, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Qin Y, Cao B, Li J, Liao S, Lin C, Qing X, Zhang Q, Yu X. An Oxygen-Enriched Photodynamic Nanospray for Postsurgical Tumor Regression. ACS Biomater Sci Eng 2020; 6:6415-6423. [PMID: 33449640 DOI: 10.1021/acsbiomaterials.0c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Postoperative local recurrence and metastasis are non-negligible challenges in clinical cancer treatment. Photodynamic therapy (PDT) has presented a great potential in preventing cancer recurrence owing to its noninvasiveness and high specificity for local irradiation of tumor sites. However, the application of conventional PDT is often limited by insufficient oxygen supply, making it difficult to achieve high PDT efficacy. Herein, we combined liposomes with photosensitizer indocyanine green (ICG) and perfluorooctyl bromide (PFOB) to develop a new oxygen-enriched photodynamic nanospray (Lip-PFOB-ICG) for cancer postoperative treatment. The Lip-PFOB-ICG not only has good biocompatibility but also enhanced the PDT effect under near-infrared light. More importantly, PFOB can continuously absorb oxygen, thus improving the collision energy transfer between the ICG photosensitizer and oxygen, and significantly inhibit local tumor recurrence in the subcutaneous tumor recurrence model. This oxygen-enriched photodynamic nanospray strategy may open up new avenues for effective postoperative cancer therapy in the clinic.
Collapse
Affiliation(s)
- Yi Qin
- Department of Spine Orthopedics, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Boling Cao
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Jiamin Li
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Shuting Liao
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Chuxin Lin
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Xueqin Qing
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiangrong Yu
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| |
Collapse
|
15
|
Xu M, Wang P, Sun S, Gao L, Sun L, Zhang L, Zhang J, Wang S, Liang X. Smart strategies to overcome tumor hypoxia toward the enhancement of cancer therapy. NANOSCALE 2020; 12:21519-21533. [PMID: 33095224 DOI: 10.1039/d0nr05501h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hypoxia, as a typical factor in a tumor microenvironment, plays a vital role in tumor treatment resistance, tumor invasion and migration. Hypoxia inducible factor (HIF), as the vital response element of hypoxia, mediates these untoward effects through a series of downstream reactions. Cancer treatments such as photodynamic therapy (PDT), radiotherapy (RT) and chemotherapy are severely hindered by hypoxia and HIF, back, however, could be intelligently manipulated through nanocomposite materials for their great potentiality to combine different functions. Herein, we reviewed the smart strategies in emerging research studies to overcome hypoxia toward the enhancement of tumor therapy.
Collapse
Affiliation(s)
- Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lifshits LM, Roque Iii JA, Konda P, Monro S, Cole HD, von Dohlen D, Kim S, Deep G, Thummel RP, Cameron CG, Gujar S, McFarland SA. Near-infrared absorbing Ru(ii) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chem Sci 2020; 11:11740-11762. [PMID: 33976756 PMCID: PMC8108386 DOI: 10.1039/d0sc03875j] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mounting evidence over the past 20 years suggests that photodynamic therapy (PDT), an anticancer modality known mostly as a local treatment, has the capacity to invoke a systemic antitumor immune response, leading to protection against tumor recurrence. For aggressive cancers such as melanoma, where chemotherapy and radiotherapy are ineffective, immunomodulating PDT as an adjuvant to surgery is of interest. Towards the development of specialized photosensitizers (PSs) for treating pigmented melanomas, nine new near-infrared (NIR) absorbing PSs based on a Ru(ii) tris-heteroleptic scaffold [Ru(NNN)(NN)(L)]Cln, were explored. Compounds 2, 6, and 9 exhibited high potency toward melanoma cells, with visible EC50 values as low as 0.292–0.602 μM and PIs as high as 156–360. Single-micromolar phototoxicity was obtained with NIR-light (733 nm) with PIs up to 71. The common feature of these lead NIR PSs was an accessible low-energy triplet intraligand (3IL) excited state for high singlet oxygen (1O2) quantum yields (69–93%), which was only possible when the photosensitizing 3IL states were lower in energy than the lowest triplet metal-to-ligand charge transfer (3MLCT) excited states that typically govern Ru(ii) polypyridyl photophysics. PDT treatment with 2 elicited a pro-inflammatory response alongside immunogenic cell death in mouse B16F10 melanoma cells and proved safe for in vivo administration (maximum tolerated dose = 50 mg kg−1). Female and male mice vaccinated with B16F10 cells that were PDT-treated with 2 and challenged with live B16F10 cells exhibited 80 and 55% protection from tumor growth, respectively, leading to significantly improved survival and excellent hazard ratios of ≤0.2. Ru(ii) photosensitizers (PSs) destroy aggressive melanoma cells, triggering an immune response that leads to protection against tumor challenge and mouse survival.![]()
Collapse
Affiliation(s)
- Liubov M Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - John A Roque Iii
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA .,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada
| | - Susan Monro
- Department of Chemistry, Acadia University Wolfville Nova Scotia B4P 2R6 Canada
| | - Houston D Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston 112 Fleming Building Houston Texas 77204-5003 USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada .,Department of Pathology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Department of Biology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Beatrice Hunter Cancer Research Institute Halifax Nova Scotia B3H 4R2 Canada
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| |
Collapse
|
17
|
Suzuki T, Tanaka M, Sasaki M, Ichikawa H, Nishie H, Kataoka H. Vascular Shutdown by Photodynamic Therapy Using Talaporfin Sodium. Cancers (Basel) 2020; 12:cancers12092369. [PMID: 32825648 PMCID: PMC7563359 DOI: 10.3390/cancers12092369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is an attractive cancer treatment modality. Talaporfin sodium, a second-generation photosensitizer, results in lower systemic toxicity and relatively better selective tumor destruction than first-generation photosensitizers. However, the mechanism through which PDT induces vascular shutdown is unclear. In this study, the in vitro effects of talaporfin sodium-based PDT on human umbilical vein endothelial cells (HUVECs) were determined through cell viability and endothelial tube formation assays, and evaluation of the tubulin and F-actin dynamics and myosin light chain (MLC) phosphorylation. Additionally, the effects on tumor blood flow and tumor vessel destruction were assessed in vivo. In the HUVECs, talaporfin sodium-based PDT induced endothelial tube destruction and microtubule depolymerization, triggering the formation of F-actin stress fibers and a significant increase in MLC phosphorylation. However, pretreatment with the Rho-associated protein kinase (ROCK) inhibitor, Y27632, completely prevented PDT-induced stress fiber formation and MLC phosphorylation. The in vivo analysis and pathological examination revealed that the PDT had significantly decreased the tumor blood flow and the active area of the tumor vessel. We concluded that talaporfin sodium-based PDT induces the shutdown of existing tumor vessels via the RhoA/ROCK pathway by activating the Rho-GTP pathway and decreasing the tumor blood flow.
Collapse
Affiliation(s)
| | - Mamoru Tanaka
- Correspondence: ; Tel.: +81-52-853-8211; Fax: +81-52-852-0952
| | | | | | | | | |
Collapse
|
18
|
Blood Flow Measurements Enable Optimization of Light Delivery for Personalized Photodynamic Therapy. Cancers (Basel) 2020; 12:cancers12061584. [PMID: 32549354 PMCID: PMC7353010 DOI: 10.3390/cancers12061584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Fluence rate is an effector of photodynamic therapy (PDT) outcome. Lower light fluence rates can conserve tumor perfusion during some illumination protocols for PDT, but then treatment times are proportionally longer to deliver equivalent fluence. Likewise, higher fluence rates can shorten treatment time but may compromise treatment efficacy by inducing blood flow stasis during illumination. We developed blood-flow-informed PDT (BFI-PDT) to balance these effects. BFI-PDT uses real-time noninvasive monitoring of tumor blood flow to inform selection of irradiance, i.e., incident fluence rate, on the treated surface. BFI-PDT thus aims to conserve tumor perfusion during PDT while minimizing treatment time. Pre-clinical studies in murine tumors of radiation-induced fibrosarcoma (RIF) and a mesothelioma cell line (AB12) show that BFI-PDT preserves tumor blood flow during illumination better than standard PDT with continuous light delivery at high irradiance. Compared to standard high irradiance PDT, BFI-PDT maintains better tumor oxygenation during illumination and increases direct tumor cell kill in a manner consistent with known oxygen dependencies in PDT-mediated cytotoxicity. BFI-PDT promotes vascular shutdown after PDT, thereby depriving remaining tumor cells of oxygen and nutrients. Collectively, these benefits of BFI-PDT produce a significantly better therapeutic outcome than standard high irradiance PDT. Moreover, BFI-PDT requires ~40% less time on average to achieve outcomes that are modestly better than those with standard low irradiance treatment. This contribution introduces BFI-PDT as a platform for personalized light delivery in PDT, documents the design of a clinically-relevant instrument, and establishes the benefits of BFI-PDT with respect to treatment outcome and duration.
Collapse
|
19
|
Stájer A, Kajári S, Gajdács M, Musah-Eroje A, Baráth Z. Utility of Photodynamic Therapy in Dentistry: Current Concepts. Dent J (Basel) 2020; 8:E43. [PMID: 32392793 PMCID: PMC7345245 DOI: 10.3390/dj8020043] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
The significant growth in scientific and technological advancements within the field of dentistry has resulted in a wide range of novel treatment modalities for dentists to use. Photodynamic therapy (PDT) is an emerging, non-invasive treatment method, involving photosensitizers, light of a specific wavelength and the generation of singlet oxygen and reactive oxygen species (ROS) to eliminate unwanted eukaryotic cells (e.g., malignancies in the oral cavity) or pathogenic microorganisms. The aim of this review article is to summarize the history, general concepts, advantages and disadvantages of PDT and to provide examples for current indications of PDT in various subspecialties of dentistry (oral and maxillofacial surgery, oral medicine, endodontics, preventive dentistry, periodontology and implantology), in addition to presenting some images from our own experiences about the clinical success with PDT.
Collapse
Affiliation(s)
- Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Szilvia Kajári
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| | - Aima Musah-Eroje
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary; (A.M.-E.); (Z.B.)
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62-64, 6720 Szeged, Hungary; (A.M.-E.); (Z.B.)
| |
Collapse
|
20
|
Visentin S, Sedić M, Pavelić SK, Pavelić K. Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Curr Med Chem 2020; 27:1367-1381. [DOI: 10.2174/0929867326666181220095343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/13/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.
Collapse
Affiliation(s)
- Sarah Visentin
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejcic 2, 51 000 Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebacka 30, 52 100 Pula, Croatia
| |
Collapse
|
21
|
Kim MM, Darafsheh A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem Photobiol 2020; 96:280-294. [PMID: 32003006 DOI: 10.1111/php.13219] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Effective treatment delivery in photodynamic therapy (PDT) requires coordination of the light source, the photosensitizer, and the delivery device appropriate to the target tissue. Lasers, light-emitting diodes (LEDs), and lamps are the main types of light sources utilized for PDT applications. The choice of light source depends on the target location, photosensitizer used, and light dose to be delivered. Geometry of minimally accessible areas also plays a role in deciding light applicator type. Typically, optical fiber-based devices are used to deliver the treatment light close to the target. The optical properties of tissue also affect the distribution of the treatment light. Treatment light undergoes scattering and absorption in tissue. Most tissue will scatter light, but highly pigmented areas will absorb light, especially at short wavelengths. This review will summarize the basic physics of light sources, and describe methods for determining the dose delivered to the patient.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
22
|
Dupre PJ, Ong YH, Friedberg J, Singhal S, Carter S, Simone CB, Finlay JC, Zhu TC, Cengel KA, Busch TM. Light Fluence Rate and Tissue Oxygenation (S t O 2 ) Distributions Within the Thoracic Cavity of Patients Receiving Intraoperative Photodynamic Therapy for Malignant Pleural Mesothelioma. Photochem Photobiol 2020; 96:417-425. [PMID: 32048732 PMCID: PMC11855480 DOI: 10.1111/php.13224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/29/2019] [Indexed: 01/22/2023]
Abstract
The distributions of light and tissue oxygenation (St O2 ) within the chest cavity were determined for 15 subjects undergoing macroscopic complete resection followed by intraoperative photodynamic therapy (PDT) as part of a clinical trial for the treatment of malignant pleural mesothelioma (MPM). Over the course of light delivery, detectors at each of eight different sites recorded exposure to variable fluence rate. Nevertheless, the treatment-averaged fluence rate was similar among sites, ranging from a median of 40-61 mW cm-2 during periods of light exposure to a detector. St O2 at each tissue site varied by subject, but posterior mediastinum and posterior sulcus were the most consistently well oxygenated (median St O2 >90%; interquartile ranges ~85-95%). PDT effect on St O2 was characterized as the St O2 ratio (post-PDT St O2 /pre-PDT St O2 ). High St O2 pre-PDT was significantly associated with oxygen depletion (St O2 ratio < 1), although the extent of oxygen depletion was mild (median St O2 ratio of 0.8). Overall, PDT of the thoracic cavity resulted in moderate treatment-averaged fluence rate that was consistent among treated tissue sites, despite instantaneous exposure to high fluence rate. Mild oxygen depletion after PDT was experienced at tissue sites with high pre-PDT St O2 , which may suggest the presence of a treatment effect.
Collapse
Affiliation(s)
- Pamela J. Dupre
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Hong Ong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Friedberg
- Division of Thoracic Surgery, University of Maryland Medical Center, Baltimore, Maryland
| | - Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Center, New York NY, USA
| | - Jarod C. Finlay
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Hu D, Pan M, Yu Y, Sun A, Shi K, Qu Y, Qian Z. Application of nanotechnology for enhancing photodynamic therapy via ameliorating, neglecting, or exploiting tumor hypoxia. VIEW 2020. [DOI: 10.1002/viw2.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- DanRong Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Yan Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Ao Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of HematologyState Key Laboratory of BiotherapyWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| |
Collapse
|
24
|
Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2020; 25:401-412. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
As irreplaceable energy sources of minimally invasive treatment, light and sound have, separately, laid solid foundations in their clinic applications. Constrained by the relatively shallow penetration depth of light, photodynamic therapy (PDT) typically involves involves superficial targets such as shallow seated skin conditions, head and neck cancers, eye disorders, early-stage cancer of esophagus, etc. For ultrasound-driven sonodynamic therapy (SDT), however, to various organs is facilitated by the superior... transmission and focusing ability of ultrasound in biological tissues, enabling multiple therapeutic applications including treating glioma, breast cancer, hematologic tumor and opening blood-brain-barrier (BBB). Considering the emergence of theranostics and precision therapy, these two classic energy sources and corresponding sensitizers are worth reevaluating. In this review, three typical therapies using light and sound as a trigger, PDT, SDT, and combined PDT and SDT are introduced. The therapeutic dynamics and current designs of pharmacological sensitizers involved in these therapies are presented. By introducing both the history of the field and the most up-to-date design strategies, this review provides a systemic summary on the development of PDT and SDT and fosters inspiration for researchers working on 'multi-modal' therapies involving light and sound.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Ronald A Roy
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.,Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
26
|
Peng R, Luo Y, Cui Q, Wang J, Li L. Near-Infrared Conjugated Oligomer for Effective Killing of Bacterial through Combination of Photodynamic and Photothermal Treatment. ACS APPLIED BIO MATERIALS 2020; 3:1305-1311. [DOI: 10.1021/acsabm.9b01242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Peng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yufeng Luo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianling Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Santos AF, Almeida DRQ, Terra LF, Wailemann RA, Gomes VM, Arini GS, Ravagnani FG, Baptista MS, Labriola L. Fluence Rate Determines PDT Efficiency in Breast Cancer Cells Displaying Different GSH Levels. Photochem Photobiol 2019; 96:658-667. [DOI: 10.1111/php.13182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ancély F. Santos
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | | | - Letícia F. Terra
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | | | - Vinícius M. Gomes
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Gabriel S. Arini
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Felipe G. Ravagnani
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Maurício S. Baptista
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Leticia Labriola
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
28
|
Ji Y, Lu F, Hu W, Zhao H, Tang Y, Li B, Hu X, Li X, Lu X, Fan Q, Huang W. Tandem activated photodynamic and chemotherapy: Using pH-Sensitive nanosystems to realize different tumour distributions of photosensitizer/prodrug for amplified combination therapy. Biomaterials 2019; 219:119393. [DOI: 10.1016/j.biomaterials.2019.119393] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
|
29
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
30
|
Belkahla H, Mazarío E, Sangnier AP, Lomas JS, Gharbi T, Ammar S, Micheau O, Wilhelm C, Hémadi M. TRAIL acts synergistically with iron oxide nanocluster-mediated magneto- and photothermia. Theranostics 2019; 9:5924-5936. [PMID: 31534529 PMCID: PMC6735372 DOI: 10.7150/thno.36320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023] Open
Abstract
Targeting TRAIL (Tumor necrosis factor (TNF)-Related Apoptosis-Inducing Ligand) receptors for cancer therapy remains challenging due to tumor cell resistance and poor preparations of TRAIL or its derivatives. Herein, to optimize its therapeutic use, TRAIL was grafted onto iron oxide nanoclusters (NCs) with the aim of increasing its pro-apoptotic potential through nanoparticle-mediated magnetic hyperthermia (MHT) or photothermia (PT). Methods: The nanovector, NC@TRAIL, was characterized in terms of size, grafting efficiency, and potential for MHT and PT. The therapeutic function was assessed on a TRAIL-resistant breast cancer cell line, MDA-MB-231, wild type (WT) or TRAIL-receptor-deficient (DKO), by combining complementary methylene blue assay and flow cytometry detection of apoptosis and necrosis. Results: Combined with MHT or PT under conditions of "moderate hyperthermia" at low concentrations, NC@TRAIL acts synergistically with the TRAIL receptor to increase the cell death rate beyond what can be explained by the mere global elevation of temperature. In contrast, all results are consistent with the idea that there are hotspots, close to the nanovector and, therefore, to the membrane receptor, which cause disruption of the cell membrane. Furthermore, nanovectors targeting other membrane receptors, unrelated to the TNF superfamily, were also found to cause tumor cell damage upon PT. Indeed, functionalization of NCs by transferrin (NC@Tf) or human serum albumin (NC@HSA) induces tumor cell killing when combined with PT, albeit less efficiently than NC@TRAIL. Conclusions: Given that magnetic nanoparticles can easily be functionalized with molecules or proteins recognizing membrane receptors, these results should pave the way to original remote-controlled antitumoral targeted thermal therapies.
Collapse
Affiliation(s)
- Hanene Belkahla
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
- Nanomedicine, Imagery and Therapeutics, EA 4662, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon Cedex, France
- Lipides nutrition cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Eva Mazarío
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Anouchka Plan Sangnier
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS-UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - John S. Lomas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Tijani Gharbi
- Nanomedicine, Imagery and Therapeutics, EA 4662, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Souad Ammar
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Olivier Micheau
- Lipides nutrition cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Claire Wilhelm
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS-UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Miryana Hémadi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| |
Collapse
|
31
|
Ge R, Cao J, Chi J, Han S, Liang Y, Xu L, Liang M, Sun Y. NIR-guided dendritic nanoplatform for improving antitumor efficacy by combining chemo-phototherapy. Int J Nanomedicine 2019; 14:4931-4947. [PMID: 31371941 PMCID: PMC6635674 DOI: 10.2147/ijn.s203171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), is a promising noninvasive strategy in the treatment of cancers due to its highly localized specificity to tumors and minimal side effects to normal tissues. However, single phototherapy often causes tumor recurrence which hinders its clinical applications. Therefore, developing a NIR-guided dendritic nanoplatform for improving the phototherapy effect and reducing the recurrence of tumors by synergistic chemotherapy and phototherapy is essential. Methods A fluorescent targeting ligand, insisting of ICG derivative cypate and a tumor penetration peptide iRGD (CRGDKGPDC), was covalently combined with PAMAM dendrimer to prepare a single agent-based dendritic theranostic nanoplatform iRGD-cypate-PAMAM-DTX (RCPD). Results Compared with free cypate, the resulted RCPD could generate enhanced singlet oxygen species while maintaining its fluorescence intensity and heat generation ability when subjected to NIR irradiation. Furthermore, our in vitro and in vivo therapeutic studies demonstrated that compared with phototherapy or chemotherapy alone, the combinatorial chemo-photo treatment of RCPD with the local exposure of NIR light can significantly improve anti-tumor efficiency and reduce the risk of recurrence of tumors. Conclusion The multifunctional theranostic platform (RCPD) could be used as a promising method for NIR fluorescence image-guided combinatorial treatment of tumor cancers.
Collapse
Affiliation(s)
- Ruifen Ge
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Jinnan Chi
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Lisa Xu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Mingtao Liang
- Department of Pharmaceutics, School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
32
|
Chen J, Li D, Huo B, Zhang F, Zhao X, Yuan G, Chen D, Song M, Xue J. Epidermal Growth Factor Receptor-Targeted Delivery of a Singlet-Oxygen Sensitizer with Thermal Controlled Release for Efficient Anticancer Therapy. Mol Pharm 2019; 16:3703-3710. [DOI: 10.1021/acs.molpharmaceut.9b00670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Dongyao Li
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Beibei Huo
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Fengling Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xuan Zhao
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Gankun Yuan
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Dan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Meiru Song
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
33
|
Jing Y, Xu Q, Chen M, Shao X. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy. Bioorg Med Chem 2019; 27:2201-2208. [DOI: 10.1016/j.bmc.2019.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
|
34
|
Computational study of necrotic areas in rat liver tissue treated with photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:40-48. [DOI: 10.1016/j.jphotobiol.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
|
35
|
|
36
|
Hackbarth S, Islam W, Fang J, Šubr V, Röder B, Etrych T, Maeda H. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem Photobiol Sci 2019; 18:1304-1314. [DOI: 10.1039/c8pp00570b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extracorporeal measurements through the skin achieve sufficient SNR to analyze 1O2 kinetics and evaluate PDT efficiency.
Collapse
Affiliation(s)
- Steffen Hackbarth
- Photobiophysics
- Institute of Physics
- Humboldt University of Berlin
- 12489 Berlin
- Germany
| | - Waliul Islam
- Department of Microbiology
- Graduate School of Medical Sciences
- Kumamoto University
- Kumamoto 860-8556
- Japan
| | - Jun Fang
- Laboratory of Microbiology and Oncology
- Faculty of Pharmaceutical Sciences
- Sojo University
- Kumamoto 860-0082
- Japan
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 16206 Prague
- Czech Republic
| | - Beate Röder
- Photobiophysics
- Institute of Physics
- Humboldt University of Berlin
- 12489 Berlin
- Germany
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry
- Czech Academy of Sciences
- 16206 Prague
- Czech Republic
| | - Hiroshi Maeda
- BioDynamics Research Foundation
- Kumamoto 862-0954
- Japan
| |
Collapse
|
37
|
Abstract
Photoactivated chemotherapy is an approach where a biologically active compound is protected against interaction with the cell environment by a light-cleavable protecting group, and unprotected by light irradiation. As such, PACT represents a major scientific opportunity for developing new bioactive inorganic compounds. However, the societal impact of this approach will only take off if the PACT field is used to address real societal challenges, i.e., therapeutic questions that make sense in a clinical context, rather than purely chemical questions. In particular, I advocate here that the field has become mature enough to switch from a compound-based approach, where a particular cancer model is chosen only to demonstrate the utility of a compound, to a disease-based approach, where the question of which disease to cure comes first: which PACT compound should I make to solve that particular clinical problem? The advantages and disadvantages of PACT vs. other phototherapeutic techniques are discussed, and a roadmap towards real clinical applications of PACT is drawn.
Collapse
Affiliation(s)
- Sylvestre Bonnet
- Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| |
Collapse
|
38
|
Hally C, Rodríguez-Amigo B, Bresolí-Obach R, Planas O, Nos J, Boix-Garriga E, Ruiz-González R, Nonell S. Photodynamic Therapy. THERANOSTICS AND IMAGE GUIDED DRUG DELIVERY 2018. [DOI: 10.1039/9781788010597-00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photodynamic therapy is a clinical technique for the treatment of cancers, microbial infections and other medical conditions by means of light-induced generation of reactive oxygen species using photosensitising drugs. The intrinsic fluorescence of many such drugs make them potential theranostic agents for simultaneous diagnosis and therapy. This chapter reviews the basic chemical and biological aspects of photodynamic therapy with an emphasis on its applications in theranostics. The roles of nanotechnology is highlighted, as well as emerging trends such as photoimmunotherapy, image-guided surgery and light- and singlet-oxygen dosimetry.
Collapse
Affiliation(s)
- Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | | | - Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Jaume Nos
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Ester Boix-Garriga
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva Switzerland
| | - Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| |
Collapse
|
39
|
Wang Q, Li JM, Yu H, Deng K, Zhou W, Wang CX, Zhang Y, Li KH, Zhuo RX, Huang SW. Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. Biomater Sci 2018; 6:3096-3107. [DOI: 10.1039/c8bm00852c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Perfluoroalkyl groups-containing polymeric micelles were constructed to transport oxygen, overcome the hypoxia of tumours and enhance photodynamic cancer therapy.
Collapse
|
40
|
Li SY, Xie BR, Cheng H, Li CX, Zhang MK, Qiu WX, Liu WL, Wang XS, Zhang XZ. A biomimetic theranostic O 2 -meter for cancer targeted photodynamic therapy and phosphorescence imaging. Biomaterials 2018; 151:1-12. [DOI: 10.1016/j.biomaterials.2017.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/24/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
|
41
|
Yang T, Liu L, Deng Y, Guo Z, Zhang G, Ge Z, Ke H, Chen H. Ultrastable Near-Infrared Conjugated-Polymer Nanoparticles for Dually Photoactive Tumor Inhibition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700487. [PMID: 28626897 DOI: 10.1002/adma.201700487] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Indexed: 05/22/2023]
Abstract
It is highly desired that satisfactory photoactive agents with ideal photophysical characteristics are explored for potent cancer phototherapeutics. Herein, bifunctional nanoparticles of low-bandgap donor-acceptor (D-A)-type conjugated-polymer nanoparticles (CP-NPs) are developed to afford a highly efficient singlet-to-triplet transition and photothermal conversion for near-infrared (NIR) light-induced photodynamic (PDT)/photothermal (PTT) treatment. CP-NPs display remarkable NIR absorption with the peak at 782 nm, and perfect resistance to photobleaching. Photoexcited CP-NPs undergo singlet-to-triplet intersystem crossing through charge transfer in the excited D-A system and simultaneous nonradiative decay from the electron-deficient electron acceptor isoindigo derivative under single-wavelength NIR light irradiation, leading to distinct singlet oxygen quantum yield and high photothermal conversion efficiency. Moreover, the CP-NPs display effective cellular uptake and cytoplasmic translocation from lysosomes, as well as effective tumor accumulation, thus promoting severe light-triggered damage caused by favorable reactive oxygen species (ROS) generation and potent hyperthermia. Thus, CP-NPs achieve photoactive cell damage through their photoconversion ability for synergistic PDT/PTT treatment with tumor ablation. The proof-of-concept design of D-A-type conjugated-polymer nanoparticles with ideal photophysical characteristics provides a general approach to afford potent photoactive cancer therapy.
Collapse
Affiliation(s)
- Tao Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ling Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhengqing Guo
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Guobing Zhang
- Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
42
|
Osaki T, Kawase Y, Iseki H, Kishimoto S, Ikuta S, Muragaki Y, Yamashita M, Azuma K, Murahata Y, Tsuka T, Itoh N, Imagawa T, Okamoto Y. Effects of photodynamic therapy with talaporfin sodium on squamous cell carcinoma and sarcoma cells. Photodiagnosis Photodyn Ther 2017; 18:213-220. [DOI: 10.1016/j.pdpdt.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 12/27/2022]
|
43
|
Overcome the limitation of hypoxia against photodynamic therapy to treat cancer cells by using perfluorocarbon nanodroplet for photosensitizer delivery. Biochem Biophys Res Commun 2017; 487:483-487. [DOI: 10.1016/j.bbrc.2017.03.142] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/26/2017] [Indexed: 11/17/2022]
|
44
|
Schreurs TJL, Gorkum RV, Zhang XU, Faber DJ, van Leeuwen TG, Nicolay K, Strijkers GJ. Noninvasive fluence rate mapping in living tissues using magnetic resonance thermometry. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:36001. [PMID: 28246674 DOI: 10.1117/1.jbo.22.3.036001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
A noninvasive method is introduced for quantification and visualization of fluence rate in light-irradiated biological tissues. The method is based on magnetic resonance thermometry (MRT) measurements of tissue temperature changes resulting from absorption of light. From the spatial–temporal temperature data, the generated heat is calculated. Finally, fluence rate maps are reconstructed by dividing the heat data by the tissue absorption coefficient. Simulations were performed using virtual MRT datasets based on analytically described fluence rate distributions, which could be accurately reconstructed by the method. Next, the approach was tested in gel phantoms. Resulting fluence rate maps matched well with theoretical predictions in a nonscattering phantom ( R 2 = 0.93 ). Experimental validation was further obtained in a scattering phantom, by comparing fluence rates to invasive fluence rate probe measurements along and perpendicular to the optical axis ( R 2 ? 0.71 for both cases). Finally, our technique was applied in vivo in a mouse tumor model. The resulting fluence rates matched invasive probe measurements (Pearson’s ? = 0.90 , p = 0.0026 ). The method may be applied to investigate the relation between light dose and biological response in light-based treatments, such as photodynamic therapy. It may also be useful for experimental validation of light transport models.
Collapse
Affiliation(s)
- Tom J L Schreurs
- Eindhoven University of Technology, Biomedical Engineering, Biomedical NMR, Eindhoven, The Netherlands
| | - Robbert van Gorkum
- Swiss Federal Institute of Technology Zürich, Institute for Biomedical Engineering, Zürich, Switzerland
| | - Xu U Zhang
- Academic Medical Center, Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Dirk J Faber
- Academic Medical Center, Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Ton G van Leeuwen
- Academic Medical Center, Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Klaas Nicolay
- Eindhoven University of Technology, Biomedical Engineering, Biomedical NMR, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Academic Medical Center, Biomedical Engineering and Physics, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Qiu H, Kim MM, Penjweini R, Finlay JC, Busch TM, Wang T, Guo W, Cengel KA, Simone CB, Glatstein E, Zhu TC. A Comparison of Dose Metrics to Predict Local Tumor Control for Photofrin-mediated Photodynamic Therapy. Photochem Photobiol 2017; 93:1115-1122. [PMID: 28083883 DOI: 10.1111/php.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
This preclinical study examines light fluence, photodynamic therapy (PDT) dose and "apparent reacted singlet oxygen," [1 O2 ]rx , to predict local control rate (LCR) for Photofrin-mediated PDT of radiation-induced fibrosarcoma (RIF) tumors. Mice bearing RIF tumors were treated with in-air fluences (50-250 J cm-2 ) and in-air fluence rates (50-150 mW cm-2 ) at Photofrin dosages of 5 and 15 mg kg-1 and a drug-light interval of 24 h using a 630-nm, 1-cm-diameter collimated laser. A macroscopic model was used to calculate [1 O2 ]rx and PDT dose based on in vivo explicit dosimetry of the drug concentration, light fluence and tissue optical properties. PDT dose and [1 O2 ]rx were defined as a temporal integral of drug concentration and fluence rate, and singlet oxygen concentration consumed divided by the singlet oxygen lifetime, respectively. LCR was stratified for different dose metrics for 74 mice (66 + 8 control). Complete tumor control at 14 days was observed for [1 O2 ]rx ≥ 1.1 mm or PDT dose ≥1200 μm J cm-2 but cannot be predicted with fluence alone. LCR increases with increasing [1 O2 ]rx and PDT dose but is not well correlated with fluence. Comparing dosimetric quantities, [1 O2 ]rx outperformed both PDT dose and fluence in predicting tumor response and correlating with LCR.
Collapse
Affiliation(s)
- Haixia Qiu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.,Department of Laser Medicine, Chinese PLA General Hospital, Beijing, China
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Rozhin Penjweini
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Tianhao Wang
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Wensheng Guo
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Charles B Simone
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Eli Glatstein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
46
|
Feng L, Cheng L, Dong Z, Tao D, Barnhart TE, Cai W, Chen M, Liu Z. Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. ACS NANO 2017; 11:927-937. [PMID: 28027442 PMCID: PMC5372701 DOI: 10.1021/acsnano.6b07525] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT), a noninvasive cancer therapeutic method triggered by light, would lead to severe tumor hypoxia after treatment. Utilizing a hypoxia-activated prodrug, AQ4N, which only shows toxicity to cancer cells under hypoxic environment, herein, a multipurpose liposome is prepared by encapsulating hydrophilic AQ4N and hydrophobic hexadecylamine conjugated chlorin e6 (hCe6), a photosensitizer, into its aqueous cavity and hydrophobic bilayer, respectively. After chelating a 64Cu isotope with Ce6, the obtained AQ4N-64Cu-hCe6-liposome is demonstrated to be an effective imaging probe for in vivo positron emission tomography, which together with in vivo fluorescence and photoacoustic imaging uncovers efficient passive homing of those liposomes after intravenous injection. After being irradiated with the 660 nm light-emitting diode light, the tumor bearing mice with injection of AQ4N-hCe6-liposome show severe tumor hypoxia, which in turn would trigger activation of AQ4N, and finally contributes to remarkably improved cancer treatment outcomes via sequential PDT and hypoxia-activated chemotherapy. This work highlights a liposome-based theranostic nanomedicine that could utilize tumor hypoxia, a side effect of PDT, to trigger chemotherapy, resulting in greatly improved efficacy compared to conventional cancer PDT.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Danlei Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Todd E. Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Corresponding Authors: . .
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Corresponding Authors: . .
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Corresponding Authors: . .
| |
Collapse
|
47
|
Rodríguez ME, Catrinacio C, Ropolo A, Rivarola VA, Vaccaro MI. A novel HIF-1α/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem Photobiol Sci 2017; 16:1631-1642. [DOI: 10.1039/c7pp00161d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This is the first report showing that PDT-induced autophagy is directly mediated by HIF-1α and linked to VMP1 as a PDT-induced resistance mechanism.
Collapse
Affiliation(s)
- M. E. Rodríguez
- Universidad Nacional de Río Cuarto
- Departamento de Biología Molecular. Río Cuarto (5800)
- Córdoba
- Argentina
- Universidad de Buenos Aires. CONICET. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular (IBIMOL)
| | - C. Catrinacio
- Universidad de Buenos Aires. CONICET. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular (IBIMOL)
- Buenos Aires
- Argentina
| | - A. Ropolo
- Universidad de Buenos Aires. CONICET. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular (IBIMOL)
- Buenos Aires
- Argentina
| | - V. A. Rivarola
- Universidad Nacional de Río Cuarto
- Departamento de Biología Molecular. Río Cuarto (5800)
- Córdoba
- Argentina
| | - M. I. Vaccaro
- Universidad de Buenos Aires. CONICET. Facultad de Farmacia y Bioquímica. Instituto de Bioquímica y Medicina Molecular (IBIMOL)
- Buenos Aires
- Argentina
| |
Collapse
|
48
|
Megna M, Fabbrocini G, Marasca C, Monfrecola G. Photodynamic Therapy and Skin Appendage Disorders: A Review. Skin Appendage Disord 2016; 2:166-176. [PMID: 28232927 DOI: 10.1159/000453273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive treatment that utilizes light treatment along with application of a photosensitizing agent. In dermatology, PDT is commonly used and approved for the treatment of oncological conditions such as actinic keratosis, Bowen disease and superficial basal cell carcinoma. In the last 2 decades however, PDT has also been used for the treatment of several nonneoplastic dermatological diseases. The present review summarizes published data on PDT application in skin appendage disorders. Our literature review shows that: (a) PDT may be a suitable treatment for acne, folliculitis decalvans, hidradenitis suppurativa, nail diseases, and sebaceous hyperplasia; (b) there is a lack of agreement on PDT features (type, concentrations and incubation period of used substances, number and frequency of PDT sessions, optimal parameters of light sources, and patient characteristics [e.g., failure to previous treatments, disease severity, body surface area involved, etc.] which should guide PDT use in these diseases);
Collapse
Affiliation(s)
- Matteo Megna
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Claudio Marasca
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Monfrecola
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
49
|
Miao W, Kim H, Gujrati V, Kim JY, Jon H, Lee Y, Choi M, Kim J, Lee S, Lee DY, Kang S, Jon S. Photo-decomposable Organic Nanoparticles for Combined Tumor Optical Imaging and Multiple Phototherapies. Am J Cancer Res 2016; 6:2367-2379. [PMID: 27877241 PMCID: PMC5118601 DOI: 10.7150/thno.15829] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/07/2016] [Indexed: 01/31/2023] Open
Abstract
Combination of photodynamic therapy (PDT) with photothermal therapy (PTT) has achieved significantly improved therapeutic efficacy compared to a single phototherapy modality. However, most nanomaterials used for combined PDT/PTT are made of non-biodegradable materials (e.g., gold nanorods, carbon nanotubes, and graphenes) and may remain intact in the body for long time, raising concerns over their potential long-term toxicity. Here we report a new combined PDT/PTT nanomedicine, designated SP3NPs, that exhibit photo-decomposable, photodynamic and photothermal properties. SP3NPs were prepared by self-assembly of PEGylated cypate, comprising FDA-approved PEG and an ICG derivative. We confirmed the ability of SP3NPs to generate both singlet oxygen for a photodynamic effect and heat for photothermal therapy in response to NIR laser irradiation in vitro. Also, the unique ability of SP3NPs to undergo irreversible decomposition upon NIR laser irradiation was demonstrated. Further our experimental results demonstrated that SP3NPs strongly accumulated in tumor tissue owing to their highly PEGylated surface and relatively small size (~60 nm), offering subsequent imaging-guided combined PDT/PTT treatment that resulted in tumor eradication and prolonged survival of mice. Taken together, our SP3NPs described here may represent a novel and facile approach for next-generation theranostics with great promise for translation into clinical practice in the future.
Collapse
|
50
|
Jin CS, Wada H, Anayama T, McVeigh PZ, Hu HP, Hirohashi K, Nakajima T, Kato T, Keshavjee S, Hwang D, Wilson BC, Zheng G, Yasufuku K. An Integrated Nanotechnology-Enabled Transbronchial Image-Guided Intervention Strategy for Peripheral Lung Cancer. Cancer Res 2016; 76:5870-5880. [PMID: 27543602 DOI: 10.1158/0008-5472.can-15-3196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Abstract
Early detection and efficient treatment modality of early-stage peripheral lung cancer is essential. Current nonsurgical treatments for peripheral lung cancer show critical limitations associated with various complications, requiring alternative minimally invasive therapeutics. Porphysome nanoparticle-enabled fluorescence-guided transbronchial photothermal therapy (PTT) of peripheral lung cancer was developed and demonstrated in preclinical animal models. Systemically administered porphysomes accumulated in lung tumors with significantly enhanced disease-to-normal tissue contrast, as confirmed in three subtypes of orthotopic human lung cancer xenografts (A549, H460, and H520) in mice and in an orthotopic VX2 tumor in rabbits. An in-house prototype fluorescence bronchoscope demonstrated the capability of porphysomes for in vivo imaging of lung tumors in the mucosal/submucosal layers, providing real-time fluorescence guidance for transbronchial PTT. Porphysomes also enhanced the efficacy of transbronchial PTT significantly and resulted in selective and efficient tumor tissue ablation in the rabbit model. A clinically used cylindrical diffuser fiber successfully achieved tumor-specific thermal ablation, showing promising evidence for the clinical translation of this novel platform to impact upon nonsurgical treatment of early-stage peripheral lung cancer. Cancer Res; 76(19); 5870-80. ©2016 AACR.
Collapse
Affiliation(s)
- Cheng S Jin
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. Princess Margaret Cancer Centre and TECHNA Institute, University Health Network, Toronto, Ontario, Canada
| | - Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Takashi Anayama
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Patrick Z McVeigh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hsin Pei Hu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kentaro Hirohashi
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Takahiro Nakajima
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - David Hwang
- Division of Experimental Therapeutics, Respiratory & Critical Care, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre and TECHNA Institute, University Health Network, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. Princess Margaret Cancer Centre and TECHNA Institute, University Health Network, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre and TECHNA Institute, University Health Network, Toronto, Ontario, Canada. Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|