1
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Ma Y, Li WY, Sun T, Zhang L, Lu XH, Yang B, Wang RL. Structure-based discovery of a specific SHP2 inhibitor with enhanced blood-brain barrier penetration from PubChem database. Bioorg Chem 2022; 121:105648. [PMID: 35180489 DOI: 10.1016/j.bioorg.2022.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
Abstract
The thiophene [2,3-d]pyrimidine structure-like small molecules were discovered from structure-based virtual screening of 1 billion compounds. Base on enzyme activity assay results, a SHP2-specific molecule inhibitor Comp#2 with IC50 of 1.174 μM, 85-fold more selective for SHP2 than the highly related SHP1 (IC50 > 100 μM). The compound can effectively inhibit SHP2-mediated cell signaling and cancer cell proliferation, including cervix cancer, human pancreatic cancer, large cell lung cancer, and mouse glioma cell. Moreover, the in vivo assay indicated that Comp#2 could inhibit cervix cancer tumors growth in BABL/c mice. This work has shown the specific SHP2 inhibitor can inhibit glioblastoma growth in vivo.
Collapse
Affiliation(s)
- Ying Ma
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Wei-Ya Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ting Sun
- Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Ling Zhang
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, Hebei 050015, China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Run-Ling Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| |
Collapse
|
3
|
Tao T, Luo D, Gao C, Liu H, Lei Z, Liu W, Zhou C, Qi D, Deng Z, Sun X, Xiao J. Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Promotes Inflammation and Accelerates Osteoarthritis by Activating β-Catenin. Front Cell Dev Biol 2021; 9:646386. [PMID: 33898435 PMCID: PMC8063055 DOI: 10.3389/fcell.2021.646386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation, subchondral bone remodeling and osteophyte formation. Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) has not been fully investigated in the pathogenesis of OA. In this study, we found that SHP2 expression was significantly increased after interleukin-1β (IL-1β) treatment in primary mouse chondrocytes. Inhibition of SHP2 using siRNA reduced MMP3, MMP13 levels, but increased AGGRECAN, COL2A1, SOX9 expression in vitro. On the contrary, overexpression of SHP2 exerted the opposite results and promoted cartilage degradation. Mechanistically, SHP2 activated Wnt/β-catenin signaling possibly through directly binding to β-catenin. SHP2 also induced inflammation through activating Mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways. Our in vivo studies showed that SHP2 knockdown effectively delayed cartilage destruction and reduced osteophyte formation in the mouse model of OA induced by destabilization of the medial meniscus (DMM). Altogether, our study identifies that SHP2 is a novel and potential therapeutic target of OA.
Collapse
Affiliation(s)
- Tenghui Tao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danni Luo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Lei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dahu Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Day EK, Zhong Q, Purow B, Lazzara MJ. Data-Driven Computational Modeling Identifies Determinants of Glioblastoma Response to SHP2 Inhibition. Cancer Res 2021; 81:2056-2070. [PMID: 33574084 DOI: 10.1158/0008-5472.can-20-1756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Oncogenic protein tyrosine phosphatases have long been viewed as drug targets of interest, and recently developed allosteric inhibitors of SH2 domain-containing phosphatase-2 (SHP2) have entered clinical trials. However, the ability of phosphatases to regulate many targets directly or indirectly and to both promote and antagonize oncogenic signaling may make the efficacy of phosphatase inhibition challenging to predict. Here we explore the consequences of antagonizing SHP2 in glioblastoma, a recalcitrant cancer where SHP2 has been proposed as a useful drug target. Measuring protein phosphorylation and expression in glioblastoma cells across 40 signaling pathway nodes in response to different drugs and for different oxygen tensions revealed that SHP2 antagonism has network-level, context-dependent signaling consequences that affect cell phenotypes (e.g., cell death) in unanticipated ways. To map specific signaling consequences of SHP2 antagonism to phenotypes of interest, a data-driven computational model was constructed based on the paired signaling and phenotype data. Model predictions aided in identifying three signaling processes with implications for treating glioblastoma with SHP2 inhibitors. These included PTEN-dependent DNA damage repair in response to SHP2 inhibition, AKT-mediated bypass resistance in response to chronic SHP2 inhibition, and SHP2 control of hypoxia-inducible factor expression through multiple MAPKs. Model-generated hypotheses were validated in multiple glioblastoma cell lines, in mouse tumor xenografts, and through analysis of The Cancer Genome Atlas data. Collectively, these results suggest that in glioblastoma, SHP2 inhibitors antagonize some signaling processes more effectively than existing kinase inhibitors but can also limit the efficacy of other drugs when used in combination. SIGNIFICANCE: These findings demonstrate that allosteric SHP2 inhibitors have multivariate and context-dependent effects in glioblastoma that may make them useful components of some combination therapies, but not others.
Collapse
Affiliation(s)
- Evan K Day
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qing Zhong
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
5
|
Mitra R, Ayyannan SR. Small-Molecule Inhibitors of Shp2 Phosphatase as Potential Chemotherapeutic Agents for Glioblastoma: A Minireview. ChemMedChem 2020; 16:777-787. [PMID: 33210828 DOI: 10.1002/cmdc.202000706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a dreadful cancer characterised by poor prognosis, low survival rate and difficult clinical correlations. Several signalling pathways and molecular mediators are known to precipitate GBM, and small-molecular targets of these mediators have become a favoured thrust area for researchers to develop potent anti-GBM drugs. Shp2, an important phosphatase of the nonreceptor type protein tyrosine phosphatase (PTPN) subfamily is responsible for master regulation of several such signalling pathways in normal and glioma cells. Thus, inhibition of Shp2 is a logical strategy for the design and development of anti-neoplastic drugs against GBM. Though tapping the full potential of Shp2 binding sites has been challenging, nevertheless, many synthetic and natural scaffolds have been documented as possessing potent and selective anti-Shp2 activities in biochemical and cellular assays, through either active-site or allosteric binding. Most of these scaffolds share a few common pharmacophoric features, a thorough study of which is useful in paving the way for the design and development of improved Shp2 inhibitors. This minireview summarizes the current scenario of potent small-molecule Shp2 inhibitors and emphasizes the anti-GBM potential of some important scaffolds that have shown promising GBM-specific activity in in vitro and in vivo models, thus proving their efficacy in GBM therapy. This review could guide researchers to design new and improved anti-Shp2 pharmacophores and develop them as anti-GBM agents by employing GBM-centric drug-discovery protocols.
Collapse
Affiliation(s)
- Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Man J, Cui K, Fu X, Zhang D, Lu Z, Gao Y, Yu L, Li N, Wang J. Donepezil promotes neurogenesis via Src signaling pathway in a rat model of chronic cerebral hypoperfusion. Brain Res 2020; 1736:146782. [PMID: 32184165 DOI: 10.1016/j.brainres.2020.146782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/15/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
Donepezil, a selective acetylcholinesterase (AchE) inhibitor, enhances stroke-induced neurogenesis within subventricular zone (SVZ). Src/Pyk-2 is one of the downstream pathways of acetylcholine receptors (AchRs), and has been shown to participate in the activation of fibroblast growth factor receptor (FGFR)/epidermal growth factor receptor (EGFR) signaling in cancer cells. In this study, we investigated whether donepezil could promote SVZ neurogenesis in chronic cerebral hypoperfusion (CCH) injury via Src signaling pathway. In the bilateral carotid artery occlusion (2VO) rat model, we observed more nestin/5-bromo-2'-deoxyuridine (BrdU)-positive cells and doublecortin (DCX)/BrdU-positive cells in the SVZ than that in the sham group. Further, donepezil obviously improved neurologic function after 2VO, induced the greater number of SVZ proliferative NSCs and neuroblasts, and elevated levels of Src, p-FGFR1, p-EGFR, p-Akt and p-Raf in ipsilateral SVZ. Lastly, Src inhibitor KX-01 abolished the beneficial effects of donepezil in 2VO rats. These results suggest that donepezil could upregulate Src signaling pathway to enhance CCH-induced SVZ neurogenesis.
Collapse
Affiliation(s)
- Jiang Man
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kefei Cui
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojie Fu
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Di Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengfang Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yufeng Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lie Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianping Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Yang F, Xu M, Wang S, Song L, Yu D, Li Y, Cao R, Xiong Z, Chen Z, Zhang Q, Zhao B, Wang S. Gain-Of-Function E76K-Mutant SHP2 Promotes Cell Proliferation, Metastasis, And Tumor Growth In Glioblastoma Through Activation Of The ERK/CREB Pathway. Onco Targets Ther 2019; 12:9435-9447. [PMID: 31807022 PMCID: PMC6844267 DOI: 10.2147/ott.s222881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of this study was to investigate the effects of gain-of-function (GOF) E76K-mutant Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) on the biological behaviors of glioblastoma (GBM) cells, and explore the molecular mechanisms of GBM progression. Methods Firstly, a negative control vector and vectors overexpressing SHP2 and E76K-mutant SHP2 were transduced into GBM cells (U87 and A172) using a lentivirus. The effect of GOF-mutant SHP2 on proliferation was measured using the MTT assay, flow cytometry, colony formation assay, and soft agar assay. Moreover, the migration and invasion of GBM cells were determined through the transwell assay. Related proteins of the extracellular signal-regulated kinase/cAMP response element binding protein (ERK/CREB) pathway were detected by Western blotting analysis. A xenograft model was established to confirm the tumor-promoting effect of GOF-mutant SHP2 in vivo. Finally, ERK was inhibited using a mitogen-activated protein kinase/ERK kinase inhibitor (U0126) to further explore the molecular mechanism of GOF-mutant SHP2 affecting GBM cells. Results After transduction, the expression of SHP2 in the SHP2-mutant and SHP2-overexpression groups was higher than that observed in the control and normal groups. Our data indicated that GOF-mutant SHP2 enhanced the abilities of GBM cells for proliferation, migration, and invasion in vitro, and promoted tumor growth in vivo. Mechanistically, the ERK/CREB pathway was activated, and the levels of relevant proteins were increased in the SHP2-mutant group. Furthermore, following inhibition of ERK in the GOF-SHP2 mutant group, the activation of CREB was also depressed, and the malignant biological behaviors were weakened accordingly. Conclusion The GOF-mutant SHP2 promoted GBM cell proliferation, metastasis, and tumor growth through the ERK/CREB pathway, providing a promising target for the treatment of GBM.
Collapse
Affiliation(s)
- Fan Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Mo Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Shiqing Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Le Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Dandan Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Yao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Rui Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Zhang Xiong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhijun Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Qian Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
8
|
MicroRNA-186 serves as a tumor suppressor in oral squamous cell carcinoma by negatively regulating the protein tyrosine phosphatase SHP2 expression. Arch Oral Biol 2018; 89:20-25. [DOI: 10.1016/j.archoralbio.2018.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
|
9
|
Elson A. Stepping out of the shadows: Oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol 2017; 96:135-147. [PMID: 28941747 DOI: 10.1016/j.biocel.2017.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphorylation is critical for proper function of cells and organisms. Phosphorylation is regulated by the concerted but generically opposing activities of tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs), which ensure its proper regulation, reversibility, and ability to respond to changing physiological situations. Historically, PTKs have been associated mainly with oncogenic and pro-tumorigenic activities, leading to the generalization that protein dephosphorylation is anti-oncogenic and hence that PTPs are tumor-suppressors. In many cases PTPs do suppress tumorigenesis. However, a growing body of evidence indicates that PTPs act as dominant oncogenes and drive cell transformation in a number of contexts, while in others PTPs support transformation that is driven by other oncogenes. This review summarizes the known transforming and tumor-promoting activities of the classical, tyrosine specific PTPs and highlights their potential as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
10
|
Roccograndi L, Binder ZA, Zhang L, Aceto N, Zhang Z, Bentires-Alj M, Nakano I, Dahmane N, O'Rourke DM. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J Neurooncol 2017; 135:487-496. [PMID: 28852935 DOI: 10.1007/s11060-017-2610-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/20/2017] [Indexed: 12/15/2022]
Abstract
SHP2 is a cytoplasmic protein tyrosine phosphatase (PTPase) involved in multiple signaling pathways and was the first identified proto-oncogene PTPase. Previous work in glioblastoma (GBM) has demonstrated the role of SHP2 PTPase activity in modulating the oncogenic phenotype of adherent GBM cell lines. Mutations in PTPN11, the gene encoding SHP2, have been identified with increasing frequency in GBM. Given the importance of SHP2 in developing neural stem cells, and the importance of glioma stem cells (GSCs) in GBM oncogenesis, we explored the functional role of SHP2 in GSCs. Using paired differentiated and stem cell primary cultures, we investigated the association of SHP2 expression with the tumor stem cell compartment. Proliferation and soft agar assays were used to demonstrate the functional contribution of SHP2 to cell growth and transformation. SHP2 expression correlated with SOX2 expression in GSC lines and was decreased in differentiated cells. Forced differentiation of GSCs by removal of growth factors, as confirmed by loss of SOX2 expression, also resulted in decreased SHP2 expression. Lentiviral-mediated knockdown of SHP2 inhibited proliferation. Finally, growth in soft-agar was similarly inhibited by loss of SHP2 expression. Our results show that SHP2 function is required for cell growth and transformation of the GSC compartment in GBM.
Collapse
Affiliation(s)
- Laura Roccograndi
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 502 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Zev A Binder
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 502 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Logan Zhang
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 502 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis, University of Basel, 4058, Basel, Switzerland
| | - Zhuo Zhang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ichiro Nakano
- Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nadia Dahmane
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 502 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 502 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
谭 婉, 熊 枝. SHP-2在结直肠癌组织中的表达及临床意义. Shijie Huaren Xiaohua Zazhi 2017; 25:2039-2044. [DOI: 10.11569/wcjd.v25.i22.2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
目的 探讨SHP-2蛋白在结直肠癌中的表达情况及其与病理特征的关系.
方法 采用免疫组织化学法和Western blot方法检测SHP-2蛋白在人结直肠癌组织中的表达情况, 分析其与患者临床病理因素的关系.
结果 结直肠癌组织中SHP-2阳性表达率为25.6%(43/168), 与正常结直肠组织比较, 差异有统计学意义(P<0.05). 结直肠癌组织中SHP-2的蛋白水平为0.2396±0.0655, 与配对正常结直肠组织比较(0.7665±0.1133), 差异有统计学意义(P<0.0001). SHP-2蛋白的低表达与分化程度和淋巴结转移有关, 与性别、年龄、浸润程度、远处转移、TNM分期无关.
结论 SHP-2可能在结直肠癌的发生发展过程中起抑制作用, 并可能成为潜在的治疗靶点.
Collapse
|
12
|
Liu LH, Li H, Cheng XX, Kong QY, Chen XY, Wu ML, Li Y, Liu J, Li C. Correlative analyses of the expression levels of PIAS3, p-SHP2, SOCS1 and SOCS3 with STAT3 activation in human astrocytomas. Mol Med Rep 2016; 15:847-852. [PMID: 28035384 DOI: 10.3892/mmr.2016.6079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
The importance of signal transducer and activator of transcription 3 (STAT3) signaling in the growth and survival of glioblastoma cells has been well documented, while the reasons leading to STAT3 activation remains to be elucidated. Suppressors of cytokine signaling (SOCS) 1 and SOCS3, SH2 domain‑containing phosphatase (SHP2) and protein inhibitors of activated STAT3 (PIAS3) are known to inhibit STAT3 signal transduction, while their expression statuses in the four grades of astrocytomas and relevance with STAT3 activation remain to be described. The present study aimed to address these issues by tissue microarray‑based immunohistochemical profiling the expression levels of phosphorylated (p)‑STAT3, SOCS1, SOCS3, PIAS3 and p‑SHP2. The results revealed that p‑STAT3 nuclear translocation was rarely observed in non‑cancerous brain tissues and its frequencies were increased in a tumor grade‑associated manner (65.2, 77.1, 81.8 and 85.7% for grade I‑IV, respectively). PIAS3, p‑SHP2, SOCS1 and SOCS3 were expressed in higher levels (++ and +++) in 63.6, 90, 87.5 and 81.8% of tumor surrounding brain tissues, which reduced to 13.1, 47.8, 33.3 and 50% in grade I, 11.4, 65.7, 58.3 and 77.1% in grade II, 9.1, 63.6, 38.1 and 31.8% in grade III and 7.1, 66.7, 30.8 and 7.1% in grade IV astrocytomas. The above results revealed that although the expression levels of SOCS1, SOCS3 and, in particular, p‑SHP2, tend to decrease in the four types of astrocytomas, PIAS3 downregulation is more negatively correlated with STAT3 activation in the stepwise progress of astrocytomas and would indicate an unfavorable outcome.
Collapse
Affiliation(s)
- Li-Hong Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiao-Xin Cheng
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiao-Yan Chen
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yan Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Cong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
13
|
Kano Y, Cook JD, Lee JE, Ohh M. New structural and functional insight into the regulation of Ras. Semin Cell Dev Biol 2016; 58:70-8. [DOI: 10.1016/j.semcdb.2016.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
14
|
Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, Raught B, Zhang ZY, Zadeh G, Ohh M. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 2015; 6:8859. [PMID: 26617336 PMCID: PMC4674766 DOI: 10.1038/ncomms9859] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/12/2015] [Indexed: 11/22/2022] Open
Abstract
Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. Aberrant Ras signalling resulting in downstream Mek/Erk pathway activation is found in many cancers. Here, the authors show that the phosphatase SHP2 dephosphorylates Ras resulting in increased Ras activity, and that increased SHP2 activity is found in glioblastomas.
Collapse
Affiliation(s)
- Severa Bunda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| | - Kelly Burrell
- Brain Tumour Research Centre, Hospital for Sick Children, University Health Network, Toronto Medical Discovery Tower, 101 College Street, East Tower, Toronto, M5G1L7 Ontario, Canada
| | - Pardeep Heir
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| | - Lifan Zeng
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Amir Alamsahebpour
- Brain Tumour Research Centre, Hospital for Sick Children, University Health Network, Toronto Medical Discovery Tower, 101 College Street, East Tower, Toronto, M5G1L7 Ontario, Canada
| | - Yoshihito Kano
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto Medical Discovery Tower, 9-701A, 101 College Street, Toronto, M5G1L7 Ontario, Canada
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
| | - Gelareh Zadeh
- Brain Tumour Research Centre, Hospital for Sick Children, University Health Network, Toronto Medical Discovery Tower, 101 College Street, East Tower, Toronto, M5G1L7 Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, M5S1A8 Ontario, Canada
| |
Collapse
|
15
|
Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer. J Cell Mol Med 2015; 19:2075-83. [PMID: 26088100 PMCID: PMC4568912 DOI: 10.1111/jcmm.12618] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/15/2015] [Indexed: 01/13/2023] Open
Abstract
Diagnostics and therapies have shown evident advances. Tumour surgery, chemotherapy and radiotherapy are the main techniques in treat cancers. Targeted therapy and drug resistance are the main focus in cancer research, but many molecular intracellular mechanisms remain unknown. Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) is associated with breast cancer, leukaemia, lung cancer, liver cancer, gastric cancer, laryngeal cancer, oral cancer and other cancer types. Signalling pathways involving Shp2 have also been discovered. Shp2 is related to many diseases. Mutations in the ptpn11 gene cause Noonan syndrome, LEOPARD syndrome and childhood leukaemia. Shp2 is also involved in several cancer-related processes, including cancer cell invasion and metastasis, apoptosis, DNA damage, cell proliferation, cell cycle and drug resistance. Based on the structure and function of Shp2, scientists have investigated specific mechanisms involved in cancer. Shp2 may be a potential therapeutic target because this phosphatase is implicated in many aspects. Furthermore, Shp2 inhibitors have been used in experiments to develop treatment strategies. However, conflicting results related to Shp2 functions have been presented in the literature, and such results should be resolved in future studies.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ruifang Niu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
16
|
Han X, Zhang L, Zhang Z, Zhang Z, Wang J, Yang J, Niu J. Association between phosphatase related gene variants and coronary artery disease: case-control study and meta-analysis. Int J Mol Sci 2014; 15:14058-76. [PMID: 25123136 PMCID: PMC4159839 DOI: 10.3390/ijms150814058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/21/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022] Open
Abstract
Recent studies showed that the serum alkaline phosphatase is an independent predictor of the coronary artery disease (CAD). In this work, we aimed to summarize the association between three phosphatase related single nucleotide polymorphisms (rs12526453, rs11066301 and rs3828329) and the risk of CAD in Han Chinese. Our results showed that the rs3828329 of the ACP1 gene was closely related to the risk of CAD in Han Chinese (OR = 1.45, p = 0.0006). This significant association of rs3828329 with CAD was only found in the females (Additive model: OR = 1.80, p = 0.001; dominant model: OR = 1.69, p = 0.03; recessive model: OR = 1.96, p = 0.0008). Moreover, rs3828329 was likely to exert its effect in females aged 65 years and older (OR = 2.27, p = 0.001). Further meta-analyses showed that the rs12526453 of PHACTR11 gene (OR = 1.14, p < 0.0001, random-effect method) and the rs11066301 of PTPN11 gene (OR = 1.15, p < 0.0001, fixed-effects method) were associated with CAD risk in multiple populations. Our results showed that the polymorphisms rs12526453 and rs11066301 are significantly associated with the CAD risk in multiple populations. The rs3828329 of ACP1 gene is also a risk factor of CAD in Han Chinese females aged 65 years and older.
Collapse
Affiliation(s)
- Xia Han
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Lijun Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Zhiqiang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Zengtang Zhang
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| | - Jianchun Wang
- Department of Cardiology, Shandong Provincial Hospital, Jinan 250000, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai 264000, China.
| | - Jiamin Niu
- Department of Cardiology, Laiwu People's Hospital, Laiwu 271100, China.
| |
Collapse
|
17
|
Furcht CM, Buonato JM, Skuli N, Mathew LK, Muñoz Rojas AR, Simon MC, Lazzara MJ. Multivariate signaling regulation by SHP2 differentially controls proliferation and therapeutic response in glioma cells. J Cell Sci 2014; 127:3555-67. [PMID: 24951116 DOI: 10.1242/jcs.150862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Information from multiple signaling axes is integrated in the determination of cellular phenotypes. Here, we demonstrate this aspect of cellular decision making in glioblastoma multiforme (GBM) cells by investigating the multivariate signaling regulatory functions of the protein tyrosine phosphatase SHP2 (also known as PTPN11). Specifically, we demonstrate that the ability of SHP2 to simultaneously drive ERK1/2 and antagonize STAT3 pathway activities produces qualitatively different effects on the phenotypes of proliferation and resistance to EGFR and c-MET co-inhibition. Whereas the ERK1/2 and STAT3 pathways independently promote proliferation and resistance to EGFR and c-MET co-inhibition, SHP2-driven ERK1/2 activity is dominant in driving cellular proliferation and SHP2-mediated antagonism of STAT3 phosphorylation prevails in the promotion of GBM cell death in response to EGFR and c-MET co-inhibition. Interestingly, the extent of these SHP2 signaling regulatory functions is diminished in glioblastoma cells that express sufficiently high levels of the EGFR variant III (EGFRvIII) mutant, which is commonly expressed in GBM. In cells and tumors that express EGFRvIII, SHP2 also antagonizes the phosphorylation of EGFRvIII and c-MET and drives expression of HIF-1α and HIF-2α, adding complexity to the evolving understanding of the regulatory functions of SHP2 in GBM.
Collapse
Affiliation(s)
- Christopher M Furcht
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janine M Buonato
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lijoy K Mathew
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrés R Muñoz Rojas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Lazzara
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
|
19
|
Tou WI, Chen CYC. Traditional Chinese medicine as dual guardians against hypertension and cancer? J Biomol Struct Dyn 2012; 30:299-317. [PMID: 22694277 DOI: 10.1080/07391102.2012.680030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study utilizes the comprehensive traditional Chinese medicine database TCM Database@Taiwan ( http://tcm.cmu.edu.tw/ ) in conjunction with structure-based and ligand-based drug design to identify multi-function Src inhibitors. The three potential TCM candidates identified as having suitable docking conformations and bioactivity profiles were Angeliferulate, (3R)-2'-hydroxy-3',4'-dimethoxyisoflavan-7-O-beta-D-glucoside (HMID), and 3-[2',6-dihydroxy-5'-(2-propenyl)[1,1'-biphenyl]3-yl]-(E)-2-propenoic acid (3PA). Molecular dynamics simulation demonstrated that the TCM candidates have more stable interactions with the cleft and in complex with Src kinase compared to Saracatinib. Angeliferulate and HMID, both originated from Angelica sinensis, not only interact with Lys298 and amino acids from different loops in the cleft, but also with Asp407 located on the activation loop. These interactions are important to reduce the opening of the activation loop due to phosphorylation, hence stabilize the Src kinase cleft structure and inhibit activation. The TCM candidates also exhibited high affinity to other cancer-related target proteins (EGFR, HER2, and HSP90). Our observations suggest that the TCM candidates might have multi-targeting effects in hypertension and cancer.
Collapse
Affiliation(s)
- Weng Ieong Tou
- School of Medicine, China Medical University, Taichung, Taiwan
| | | |
Collapse
|