1
|
Gu S, Wang X, Zhou J, Du S, Niu T. Comparison of chemotherapy and chidamide combined with chemotherapy in patients with untreated angioimmunoblastic T-cell lymphoma. Front Oncol 2024; 14:1373127. [PMID: 38655138 PMCID: PMC11035758 DOI: 10.3389/fonc.2024.1373127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Angioimmunoblastic T-cell lymphoma (AITL) is characterized by high recurrence rates and poor prognosis, and effective first-line treatment is lacking. Recently, histone deacetylase inhibitors (HDACi), such as chidamide, have been found to induce durable remissions in AITL patients. Methods Patients with untreated AITL from March 2015 to March 2023 were retrospectively collected and divided into chemotherapy (ChT) group and chidamide combined with chemotherapy (C-ChT) group based on the first-line treatment received. The comparison of efficacy and safety between the two groups was conducted. Results 86 patients with newly diagnosed AITL were enrolled, in which 35 patients were in the ChT group and 51 in the C-ChT group. The objective response rate (ORR) of C-ChT group was significantly higher than that of ChT group (84.3% vs. 60%, P= 0.011), and had superior progression-free survival (PFS) (27 months vs. 12 months, P= 0.025). However, no significant difference in overall survival (OS) was observed between the two groups (P= 0.225). In addition, the responding patients who received autologous stem cell transplantation (ASCT) had superior PFS compared to those who did not (P= 0.015). Conclusions Compared with ChT regimen, C-ChT regimen was well tolerated and had superior ORR and PFS in patients with untreated AITL. ASCT may contribute to longer PFS in remission patients.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Zhou
- Department of Hematology, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Shanshan Du
- Department of Hematology, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
3
|
Pisano MD, Sun F, Cheng Y, Parashar D, Zhou V, Jing X, Sompallae R, Abrudan J, Zimmermann MT, Mathison A, Janz S, Pufall MA. IL6Myc mouse is an immunocompetent model for the development of aggressive multiple myeloma. Haematologica 2023; 108:3372-3383. [PMID: 37439384 PMCID: PMC10690922 DOI: 10.3324/haematol.2022.282538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/04/2023] [Indexed: 07/14/2023] Open
Abstract
Multiple Myeloma (MM) is a plasma cell neoplasm originating in the bone marrow and is the second most common blood cancer in the United States. One challenge in understanding the pathogenesis of MM and improving treatment is a lack of immunocompetent mouse models. We previously developed the IL6Myc mouse that generates plasmacytomas at 100% penetrance that phenotypically resemble aggressive MM. Using comprehensive genomic analysis, we found that the IL6Myc tumors resemble aggressive MM by RNA and protein expression. We also found that IL6Myc tumors accumulated fusions and missense mutations in genes that overlap significantly with human myeloma, indicating that the mouse is good model for studying disease etiology. Lastly, we derived cell lines from IL6Myc tumors that express cell surface markers typical of MM and readily engraft into mice, home to the bone marrow, and induce osteolytic disease. The cell lines may be useful in developing immunotherapies directed against BAFF-R and TACI, though not BCMA, and may also be a good model for studying dexamethasone resistance. These data indicate that the IL6Myc model is useful for studying development of aggressive MM and for developing new treatments against such forms of the disease.
Collapse
Affiliation(s)
- Michael D Pisano
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Fumou Sun
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Yan Cheng
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Deepak Parashar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Vivian Zhou
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Xuefang Jing
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Ramakrishna Sompallae
- Iowa Institute for Genetics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Jenica Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Angela Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Holden Comprehensive Cancer Center, Iowa City, Iowa.
| |
Collapse
|
4
|
Zhu Y, Yang Q, Yang Q, He Y, Zhou W. Intestinal Microbes and Hematological Malignancies. Cancers (Basel) 2023; 15:cancers15082284. [PMID: 37190210 DOI: 10.3390/cancers15082284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Hematological malignancies are diverse, with high malignancy characteristics, poor prognoses, and high mortality rates. The development of hematological malignancies is driven by genetic factors, tumor microenvironment factors, or metabolic factors; however, even when considering all of these factors, one still cannot fully estimate the risk of hematological malignancies. Several recent studies have demonstrated an intimate connection between intestinal microbes and the progression of hematological malignancies, and gut microbes play a primary role in the initiation and progression of hematological tumors through direct and indirect mechanisms. Thus, we summarize the correlation between intestinal microbes and hematological malignancies' onset, progression, and therapeutic effect in order to better understand how intestinal microbes affect their initiation and progression, especially in leukemia, lymphoma, and multiple myeloma, which may provide potential therapeutic targets for improving the survival of patients with hematological malignancies.
Collapse
Affiliation(s)
- Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410205, China
| | - Qin Yang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Wang J, Su N, Fang Y, Ma S, Zhang Y, Cai J, Zou Q, Tian X, Xia Y, Liu P, Li Z, Huang H, Huang H, Cai Q. Comparison of Chemotherapy Combined With Chidamide Versus Chemotherapy in the Frontline Treatment for Peripheral T-Cell Lymphoma. Front Immunol 2022; 13:835103. [PMID: 35185926 PMCID: PMC8847145 DOI: 10.3389/fimmu.2022.835103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Peripheral T-cell lymphoma (PTCL) is featured with a poor survival outcome. China has approved chidamide, an oral novel histone deacetylase inhibitor, for patients diagnosed with relapsed or refractory PTCL. Objective We compared the benefit of traditional chemotherapy alone and a combination of chidamide and traditional chemotherapy against newly diagnosed PTCL. Prognostic factors related to progression and survival in patients diagnosed with untreated PTCL were also investigated. Methods 104 patients with newly diagnosed PTCL were enrolled and divided into chemotherapy (ChT) group and chemotherapy combined with chidamide (ChT+C) group. Survival curves were plotted by the Kaplan-Meier method. Univariate and multivariate analysis were conducted with Log-rank test and Cox’s proportional hazard regression. Subgroup analysis and interaction tests were conducted to evaluate factors associated with prognostic differences between ChT and ChT+C groups. Results Compared with patients in ChT group, those in ChT+C group had superior progression-free survival (PFS) (p=0.047). However, there was no significantly statistical difference observed between the two groups in overall survival (OS) (p=0.212). High IPI scores have a negative relationship with survival. Multivariate analysis revealed that the type of frontline treatment regimen is an independent factor associated with PFS of PTCL patients (p=0.045). In the subgroup of patients with high international prognostic index scores (3-5), the HR value for PFS comparing ChT with ChT+C was 4.675. A test of interaction between IPI and treatment showed statistical significance (p = 0.037), implying that the benefits of ChT+C are higher for patients with high IPI scores. Conclusions In summary, the combination of ChT and chidamide may provide a promising prospect for patients with newly diagnosed PTCL.
Collapse
Affiliation(s)
- Jinni Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Yu Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuyun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuchen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qihua Zou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaopeng Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhiming Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - He Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Suphavilai C, Chia S, Sharma A, Tu L, Da Silva RP, Mongia A, DasGupta R, Nagarajan N. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Med 2021; 13:189. [PMID: 34915921 PMCID: PMC8680165 DOI: 10.1186/s13073-021-01000-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc's monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc .
Collapse
Affiliation(s)
| | - Shumei Chia
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Ankur Sharma
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Lorna Tu
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rafael Peres Da Silva
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Aanchal Mongia
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi, India
| | | | - Niranjan Nagarajan
- Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Trager MH, Geskin LJ. Current status of histone deacetylase inhibitors in cutaneous T-cell lymphoma. GIORN ITAL DERMAT V 2020; 154:681-695. [PMID: 31859467 DOI: 10.23736/s0392-0488.19.06503-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin's lymphoma with a heterogenous presentation and highly variable disease course. The most common subtypes of CTCL are mycosis fungoides (MF) and Sézary Syndrome (SS). Treatment varies based on the stage of the disease with skin directed therapies typically utilized for early stage disease, and systemic therapies employed for more advanced disease. There are few highly effective treatments available, and systemic therapies have limited response rates. Histone deacetylase inhibitors have emerged as mainstream treatments for MF/SS over the past several years. Here, we discuss the mechanism of action of histone deacetylase inhibitors in relation to the pathogenesis of MF/SS, evaluate the clinical trials that led to Food and Drug Administration approval of two of the histone deacetylase inhibitors for MF/SS and describe the results for those still under investigation. Additionally, we discuss the potential for combination therapies in order to optimize outcomes of treatment with histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Larisa J Geskin
- Department of Dermatology, Irving Medical Center, Columbia University, New York, NY, USA -
| |
Collapse
|
9
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
10
|
Vu K, Wu CH, Yang CY, Zhan A, Cavallone E, Berry W, Heeter P, Pincus L, Wieduwilt MJ, William BM, Andreadis C, Kaplan LK, McCormick F, Porcu P, Brammer JE, Ai WZ. Romidepsin Plus Liposomal Doxorubicin Is Safe and Effective in Patients with Relapsed or Refractory T-Cell Lymphoma: Results of a Phase I Dose-Escalation Study. Clin Cancer Res 2019; 26:1000-1008. [DOI: 10.1158/1078-0432.ccr-19-2152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
|
11
|
Effects of Intestinal Microbial⁻Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients 2019; 11:nu11051026. [PMID: 31067776 PMCID: PMC6566851 DOI: 10.3390/nu11051026] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals.
Collapse
|
12
|
Saleh A, ElFayoumi HM, Youns M, Barakat W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:165-175. [PMID: 30465055 DOI: 10.1007/s00210-018-1579-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a broad term used to describe a large number of diseases characterized by uncontrolled cell proliferation that leads to tumor production. Cancer is associated with mutations in genes controlling proliferation and apoptosis, oxidative stress, fatty acid synthase (FAS) expression, and other mechanisms. Currently, most antineoplastic drugs have severe adverse effects and new effective and safe drugs are needed. This study aims to investigate the possible anticancer activity of rutin and orlistat which are both safely used clinically in humans against two breast cancer models (in vivo EAC and in vitro MCF7) and the pancreatic cancer cell line (PANC-1). Our results have shown that both rutin and orlistat exerted an in vivo anticancer activity as evidenced by the decrease in tumor volume, CEA level, cholesterol content, FAS, and the exerted antioxidant action (reduced MDA level and increased GSH content) and through histopathological examination. In addition, both were cytotoxic to MCF-7 and Panc-1 cell lines by promoting apoptosis. In conclusion, the anticancer activity of rutin and orlistat makes them promising candidates for cancer treatment alone or in combination with other anticancer drugs specially that they are used clinically with an acceptable safety profile.
Collapse
Affiliation(s)
- Amira Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hassan M ElFayoumi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Helwan, Egypt.,Department of Biochemistry, Oman Pharmacy Institute, Ministry of Health, Muscat, Oman
| | - Waleed Barakat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia.
| |
Collapse
|
13
|
Waldschmidt JM, Keller A, Ihorst G, Grishina O, Müller S, Wider D, Frey AV, King K, Simon R, May A, Tassone P, Duyster J, Jung M, Raje N, Wäsch R, Engelhardt M. Safety and efficacy of vorinostat, bortezomib, doxorubicin and dexamethasone in a phase I/II study for relapsed or refractory multiple myeloma (VERUMM study: vorinostat in elderly, relapsed and unfit multiple myeloma). Haematologica 2018; 103:e473-e479. [PMID: 29674494 PMCID: PMC6165805 DOI: 10.3324/haematol.2018.189969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Johannes M Waldschmidt
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, University of Freiburg, Germany
| | - Alexander Keller
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, University of Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Faculty of Medicine, University of Freiburg, Germany
| | - Olga Grishina
- Clinical Trials Unit, Faculty of Medicine, University of Freiburg, Germany
| | - Stefan Müller
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Germany
| | - Dagmar Wider
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Germany
| | - Anna V Frey
- Institute of Pathology, Faculty of Medicine, University of Freiburg, Germany
| | - Kristina King
- Institute of Pharmaceutical Sciences, Faculty of Medicine, University of Freiburg, Germany
| | - Roman Simon
- Institute of Pharmaceutical Sciences, Faculty of Medicine, University of Freiburg, Germany
| | - Annette May
- Institute of Pathology, Faculty of Medicine, University of Freiburg, Germany
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Justus Duyster
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, University of Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Faculty of Medicine, University of Freiburg, Germany
| | - Noopur Raje
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ralph Wäsch
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, University of Freiburg, Germany
| | - Monika Engelhardt
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
14
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Moyal L, Goldfeiz N, Gorovitz B, Rephaeli A, Tal E, Tarasenko N, Nudelman A, Ziv Y, Hodak E. AN-7, a butyric acid prodrug, sensitizes cutaneous T-cell lymphoma cell lines to doxorubicin via inhibition of DNA double strand breaks repair. Invest New Drugs 2017; 36:1-9. [PMID: 28884410 DOI: 10.1007/s10637-017-0500-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
We previously found that the novel histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) had greater selectivity against cutaneous T-cell lymphoma (CTCL) than SAHA. AN-7 synergizes with doxorubicin (Dox), an anthracycline antibiotic that induces DNA breaks. This study aimed to elucidate the mechanism underlying the effect of AN-7 on Dox-induced double-strand DNA breaks (DSBs) in CTCL, MyLa and Hut78 cell lines. The following markers/assays were employed: comet assay; western blot of γH2AX and p-KAP1; immunofluorescence of γH2AX nuclear foci; Western blot of repair protein; quantification of DSBs-repair through homologous recombination. DSB induction by Dox was evidenced by an increase in DSB markers, and DSBs-repair, by their subsequent decrease. The addition of AN-7 slightly increased Dox induction of DSBs in MyLa cells with no effect in Hut78 cells. AN-7 inhibited the repair of Dox-induced DSBs, with a more robust effect in Hut78. Treatment with AN-7 followed by Dox reduced the expression of DSB-repair proteins, with direct interference of AN-7 with the homologous recombination repair. AN-7 sensitizes CTCL cell lines to Dox, and when combined with Dox, sustains unrepaired DSBs by suppressing repair protein expression. Our data provide a mechanistic rationale for combining AN-7 with Dox or other DSB inducers as a therapeutic modality in CTCL.
Collapse
Affiliation(s)
- Lilach Moyal
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Neta Goldfeiz
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Batia Gorovitz
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ada Rephaeli
- Laboratory for Pharmacology and Experimental Oncology, Felsenstein Medical Research Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Tal
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nataly Tarasenko
- Laboratory for Pharmacology and Experimental Oncology, Felsenstein Medical Research Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Nudelman
- Division of Medicinal Chemistry, Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Han H, Li J, Feng X, Zhou H, Guo S, Zhou W. Autophagy-related genes are induced by histone deacetylase inhibitor suberoylanilide hydroxamic acid via the activation of cathepsin B in human breast cancer cells. Oncotarget 2017; 8:53352-53365. [PMID: 28881816 PMCID: PMC5581115 DOI: 10.18632/oncotarget.18410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/10/2017] [Indexed: 01/09/2023] Open
Abstract
Autophagy is involved in modulating tumor cell motility and invasion, resistance to epithelial-to-mesenchymal transition, anoikis, and escape from immune surveillance. We have previous shown that SAHA is capable to induce several apoptosis and autophagy-related gene expression in breast cancers. However, the exact mechanisms of autophagy activation in this context have not been fully identified. Our results showed that the expression and the activity of Cathepsin B (CTSB), one of the major lysosomal cysteine proteases, were significantly increased in MDA-MB- 231 and MCF-7 cells upon SAHA treatment. We confirmed that Cystatin C, a protease inhibitor, significantly inhibited the expression of CTSB induced by SAHA on breast cancer cells. We demonstrated that SAHA is able to promote the expression of LC3II, a key member in the maturation of the autophagosome, the central organelle of autophagy in breast cancer cells. However, SAHA induced LC3II expression is effectively suppressed after the addition of Cystatin C to the cell culture. In addition, we identified a number of genes, as well as the mitogen-activated protein kinase (MAPK) signaling that is potentially involved in the action of SAHA and CTSB in the breast cancer cells. Overall, our results revealed that the autophagy-related genes are induced by SAHA via the activation of CTSB in breast cancer cells. An improved understanding of SAHA molecular mechanisms in breast cancer may facilitate SAHA clinical use and the selection of suitable combinations.
Collapse
Affiliation(s)
- Han Han
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Huanggu, Shenyang City, Liaoning Province 110034, P. R. China
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Huanggu, Shenyang City, Liaoning Province 110034, P. R. China
| | - Jing Li
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Huanggu, Shenyang City, Liaoning Province 110034, P. R. China
| | - Xiuyan Feng
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Huanggu, Shenyang City, Liaoning Province 110034, P. R. China
- The Second Affiliated Hospital of Shenyang Medical College, Heping, Shenyang City, Liaoning Province 110002, P. R. China
| | - Hui Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Huanggu, Shenyang City, Liaoning Province 110034, P. R. China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Huanggu, Shenyang City, Liaoning Province 110034, P. R. China
| |
Collapse
|
17
|
Anticancer activity of salicin and fenofibrate. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1061-1071. [DOI: 10.1007/s00210-017-1407-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
|
18
|
Voorhees PM, Gasparetto C, Moore DT, Winans D, Orlowski RZ, Hurd DD. Final Results of a Phase 1 Study of Vorinostat, Pegylated Liposomal Doxorubicin, and Bortezomib in Relapsed or Refractory Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:424-432. [PMID: 28655599 DOI: 10.1016/j.clml.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/07/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022]
Abstract
INTRODUCTION/BACKGROUND Deacetylase inhibitors have synergistic activity in combination with proteasome inhibitors and anthracyclines in preclinical models of multiple myeloma (MM). We therefore evaluated the safety and efficacy of the deacetylase inhibitor vorinostat in combination with pegylated liposomal doxorubicin (PLD) and bortezomib in relapsed/refractory MM. PATIENTS AND METHODS Thirty-two patients were treated with PLD and bortezomib in combination with escalating doses of vorinostat on days 4 to 11 or 1 to 14. RESULTS The maximum tolerated dose of vorinostat was 400 mg on days 4 to 11. Neutropenia and thrombocytopenia attributable to protocol therapy were seen in 59% and 94% of patients, of which 37% and 47% were of grade 3 or higher severity, respectively. Constitutional and gastrointestinal adverse events of all grades were common, the majority of which were less than grade 3 in severity. The overall response rate (partial response rate or better) was 65% and the clinical benefit rate (minimal response rate or better) 74%. The overall response rate was 83%, 71%, and 45% for patients with bortezomib-naive, -sensitive, and -refractory MM, respectively. The median progression-free survival was 13.9 months and the 3-year overall survival 77%. Whole blood proteasome activity assays demonstrated a potential impact of vorinostat on the chymotryptic-like activity of the proteasome. CONCLUSION Further evaluation of PLD, bortezomib, and deacetylase inhibitor combinations is warranted, with special attention directed toward strategies to improve tolerability.
Collapse
Affiliation(s)
- Peter M Voorhees
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC.
| | - Cristina Gasparetto
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC
| | - Dominic T Moore
- Division of Hematology-Oncology, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Diane Winans
- Division of Hematology-Oncology, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX
| | - David D Hurd
- Section on Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC
| |
Collapse
|
19
|
Histone deacetylase inhibitors induce proteolysis of activated CDC42-associated kinase-1 in leukemic cells. J Cancer Res Clin Oncol 2016; 142:2263-73. [PMID: 27576506 DOI: 10.1007/s00432-016-2229-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Activated CDC42-associated kinase-1 (ACK1/TNK2) and epigenetic regulators of the histone deacetylase (HDAC) family regulate the proliferation and survival of leukemic cells. 18 HDACs fall into four classes (I-IV). We tested the impact of clinically relevant histone deacetylase inhibitors (HDACi) on ACK1 and if such drugs combine favorably with the therapeutically used ACK1 inhibitor Dasatinib. METHODS We applied the broad-range HDACi Panobinostat/LBH589 and the class I HDAC-specific inhibitor Entinostat/MS-275 to various acute and chronic myeloid leukemia cells (AML/CML). We also used the replicative stress inducer Hydroxyurea (HU), a standard drug for leukemic patients, and the apoptosis inducer Staurosporine (STS). To assess cytotoxic effects of HDACi, we measured cell cycle profiles and DNA fragmentation by flow cytometry. Western blot was employed to analyze protein expression and phosphorylation. RESULTS LBH589 and MS-275 induce proteolysis of ACK1 in CML and AML cells. Panobinostat more strongly induces apoptosis than Entinostat, and this correlates with a significantly pronounced loss of ACK1. STS and HU also propel the degradation of ACK1 in leukemic cells. Moreover, the caspase inhibitor z-VAD-FMK reduces ACK1 degradation in the presence of HDACi. Concomitant with the attenuation of ACK1, we noticed decreased phosphorylation of STAT3. Direct inhibition of ACK1 with Dasatinib also suppresses STAT3 phosphorylation. Furthermore, Dasatinib and HDACi combinations are effective against CML cells. CONCLUSION HDACs sustain the ACK1-STAT3 signaling node and leukemic cell growth. Consistent with their different effects on ACK1 stability or auto-phosphorylation, Dasatinib and HDACi combinations produce beneficial antileukemic effects.
Collapse
|
20
|
Histone deacetylase inhibition is cytotoxic to oligodendrocyte precursor cells in vitro and in vivo. Int J Dev Neurosci 2016; 54:53-61. [PMID: 27587342 DOI: 10.1016/j.ijdevneu.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 11/24/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition mediated by small molecule HDAC inhibitors (HDACi) has demonstrated divergent effects including toxicity towards transformed cell lines, neuroprotection in neurological disease models, and inhibition of oligodendrocyte precursor cell (OPC) differentiation to mature oligodendrocytes (OL). However, it remains unknown if transient HDAC inhibition may promote OPC survival. Using mouse cortical OPC primary cultures, we investigated the effects of the FDA approved pan-HDACi suberoylanilide hydroxamic acid (SAHA) on OPC survival. Initial studies showed differences in the HDAC expression pattern of multiple HDAC isoforms in OPCs relative to their terminally differentiated progeny cells, OLs and astrocytes. Treatment of OPCs with SAHA for up to 72h using a maximum concentration either at or lower than those necessary for cytotoxicity in most transformed cell lines resulted in over 67% reduction in viability relative to vehicle-treated OPCs. This was at least partly due to increased apoptosis as SAHA-treated cells displayed activated caspase 3 and were protected by the general caspase inhibitor Q-VD-OPH. Additionally, SAHA treatment of whole mice at postnatal day 5 induced apoptosis of cortical OPCs. These results suggest that SAHA negatively impacts OPC survival and may be detrimental to the myelinating brain and spinal cord. Such toxicity may be relevant in a clinical context as SAHA is currently involved in numerous clinical trials and is in consideration for use in the treatment of psychiatric and neurodegenerative conditions.
Collapse
|
21
|
Sendler M, Maertin S, John D, Persike M, Weiss FU, Krüger B, Wartmann T, Wagh P, Halangk W, Schaschke N, Mayerle J, Lerch MM. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. J Biol Chem 2016; 291:14717-31. [PMID: 27226576 DOI: 10.1074/jbc.m116.718999] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific.
Collapse
Affiliation(s)
- Matthias Sendler
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandrina Maertin
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Daniel John
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Maria Persike
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - F Ulrich Weiss
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Burkhard Krüger
- the Division of Medical Biology, University of Rostock, 18057 Rostock, Germany
| | - Thomas Wartmann
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | - Preshit Wagh
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Walter Halangk
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | | | - Julia Mayerle
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Markus M Lerch
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany,
| |
Collapse
|
22
|
Stiff A, Caserta E, Sborov DW, Nuovo GJ, Mo X, Schlotter SY, Canella A, Smith E, Badway J, Old M, Jaime-Ramirez AC, Yan P, Benson DM, Byrd JC, Baiocchi R, Kaur B, Hofmeister CC, Pichiorri F. Histone Deacetylase Inhibitors Enhance the Therapeutic Potential of Reovirus in Multiple Myeloma. Mol Cancer Ther 2016; 15:830-41. [PMID: 26809490 DOI: 10.1158/1535-7163.mct-15-0240-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
Multiple myeloma remains incurable and the majority of patients die within 5 years of diagnosis. Reolysin, the infusible form of human reovirus (RV), is a novel viral oncolytic therapy associated with antitumor activity likely resulting from direct oncolysis and a virus-mediated antitumor immune response. Results from our phase I clinical trial investigating single agent Reolysin in patients with relapsed multiple myeloma confirmed tolerability, but no objective responses were evident, likely because the virus selectively entered the multiple myeloma cells but did not actively replicate. To date, the precise mechanisms underlying the RV infectious life cycle and its ability to induce oncolysis in patients with multiple myeloma remain unknown. Here, we report that junctional adhesion molecule 1 (JAM-1), the cellular receptor for RV, is epigenetically regulated in multiple myeloma cells. Treatment of multiple myeloma cells with clinically relevant histone deacetylase inhibitors (HDACi) results in increased JAM-1 expression as well as increased histone acetylation and RNA polymerase II recruitment to its promoter. Furthermore, our data indicate that the combination of Reolysin with HDACi, potentiates RV killing activity of multiple myeloma cells in vitro and in vivo This study provides the molecular basis to use these agents as therapeutic tools to increase the efficacy of RV therapy in multiple myeloma. Mol Cancer Ther; 15(5); 830-41. ©2016 AACR.
Collapse
Affiliation(s)
- Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Enrico Caserta
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Douglas W Sborov
- Department of Internal Medicine, Oncology/Hematology Fellowship, The Ohio State University, Columbus, Ohio
| | - Gerard J Nuovo
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Sarah Y Schlotter
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | - Emily Smith
- Biomedical Sciences Graduate Program, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Joseph Badway
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Matthew Old
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Pearlly Yan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Don M Benson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Robert Baiocchi
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Balveen Kaur
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Craig C Hofmeister
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Flavia Pichiorri
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
23
|
Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis. Cell Death Dis 2015; 6:e1717. [PMID: 25855965 PMCID: PMC4650549 DOI: 10.1038/cddis.2015.82] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/07/2023]
Abstract
We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM–ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM–ceramide–CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells.
Collapse
|
24
|
Khaopha S, Jogloy S, Patanothai A, Senawong T. Histone Deacetylase Inhibitory Activity of Peanut Testa Extracts against Human Cancer Cell Lines. J Food Biochem 2015. [DOI: 10.1111/jfbc.12128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Somprasong Khaopha
- Department of Biochemistry; Faculty of Science; Khon Kaen University; Khon Kaen 40002 Thailand
| | - Sanun Jogloy
- Department of Plant Science and Agricultural Resources; Faculty of Agriculture; Khon Kaen University; Khon Kaen 40002 Thailand
| | - Aran Patanothai
- Department of Plant Science and Agricultural Resources; Faculty of Agriculture; Khon Kaen University; Khon Kaen 40002 Thailand
| | - Thanaset Senawong
- Department of Biochemistry; Faculty of Science; Khon Kaen University; Khon Kaen 40002 Thailand
- Natural Products Research Unit; Khon Kaen University; Khon Kaen 40002 Thailand
- Food and Products Chemical Analysis Research Group; Faculty of Science; Khon Kaen University; Khon Kaen 40002 Thailand
| |
Collapse
|
25
|
Monitoring Tumor Response After Histone Deacetylase Inhibitor Treatment Using 3′-Deoxy-3′-[18F]-fluorothymidine PET. Mol Imaging Biol 2014; 17:394-402. [DOI: 10.1007/s11307-014-0774-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Synergistic apoptotic response between valproic acid and fludarabine in chronic lymphocytic leukaemia (CLL) cells involves the lysosomal protease cathepsin B. Blood Cancer J 2013; 3:e153. [PMID: 24141622 PMCID: PMC3816211 DOI: 10.1038/bcj.2013.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/01/2013] [Accepted: 08/19/2013] [Indexed: 01/13/2023] Open
Abstract
Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins.
Collapse
|
27
|
Senawong T, Misuna S, Khaopha S, Nuchadomrong S, Sawatsitang P, Phaosiri C, Surapaitoon A, Sripa B. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. Altern Ther Health Med 2013; 13:232. [PMID: 24053181 PMCID: PMC3848914 DOI: 10.1186/1472-6882-13-232] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022]
Abstract
Background The rhizome of Hydnophytum formicarum Jack., a medicinal plant known in Thai as Hua-Roi-Roo, has been used in Thai traditional herbal medicine for treatment of cancer. We assessed the ability of its ethanolic and phenolic-rich extracts and its major phenolic compound, sinapinic acid, possessing histone deacetylase (HDAC) inhibitory activity to inhibit proliferation of 5 human cancer cell lines. Methods HeLa cells were used to study HDAC inhibitory activity of the extracts, sinapinic acid, and a well-known HDAC inhibitor sodium butyrate. Five human cancer cell lines and one non-cancer cell line were used to study antiproliferative activities of the plant extracts, sinapinic acid and sodium butyrate, comparatively. Results Results indicated that ethanolic and phenolic-rich extracts of H. formicarum Jack. rhizome possessed both antiproliferative activity and HDAC inhibitory activity in HeLa cells. Sinapinic acid, despite its lower HDAC inhibitory activity than the well-known HDAC inhibitor sodium butyrate, inhibited the growth of HeLa and HT29 cells more effectively than sodium butyrate. However, sinapinic acid inhibited the growth of HCT116 and Jurkat cells less effectively than sodium butyrate. The non-cancer cell line (Vero cells) and breast cancer cell line (MCF-7 cells) appeared to be resistant to both sinapinic acid and sodium butyrate. The growth inhibitory effects of the ethanolic and phenolic-rich extracts and sinapinic acid in HeLa cells were mediated by induction of apoptosis. Conclusions The results of this study support the efficacy of H. formicarum Jack. rhizome ethanolic and phenolic-rich extracts for the treatment of cervical cancer, colon cancer, and T- cell leukemia in an alternative medicine. Further studies of other active ingredients from this plant are needed.
Collapse
|
28
|
Owa C, Messina ME, Halaby R. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells. Int J Womens Health 2013; 5:557-69. [PMID: 24043955 PMCID: PMC3772696 DOI: 10.2147/ijwh.s44074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3. Methods MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells. Results These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability. Conclusion Our results suggest that further studies are warranted to investigate triptolide’s potential as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Chie Owa
- Department of Biology, Montclair State University, Montclair, NJ, USA
| | | | | |
Collapse
|
29
|
Maes K, Menu E, Van Valckenborgh E, Van Riet I, Vanderkerken K, De Bruyne E. Epigenetic modulating agents as a new therapeutic approach in multiple myeloma. Cancers (Basel) 2013; 5:430-61. [PMID: 24216985 PMCID: PMC3730337 DOI: 10.3390/cancers5020430] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment.
Collapse
Affiliation(s)
- Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
30
|
Zhang H, Chen J, Zeng Z, Que W, Zhou L. Knockdown of DEPTOR induces apoptosis, increases chemosensitivity to doxorubicin and suppresses autophagy in RPMI-8226 human multiple myeloma cells in vitro. Int J Mol Med 2013; 31:1127-34. [PMID: 23503641 DOI: 10.3892/ijmm.2013.1299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/05/2013] [Indexed: 11/05/2022] Open
Abstract
DEP domain containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) is an mTOR binding protein that is overexpressed in RPMI-8226 human multiple myeloma cells, and plays an important role in maintaining cell survival. However, knowledge on the effects of DEPTOR knockdown on the biological functions of RPMI‑8226 human multiple myeloma cells, is limited. This study aimed to determine the role of DEPTOR in the proliferation, apoptosis and autophagy in these cells and to elucidate the mechanisms by which DEPTOR contributes to the chemosensitivity of myeloma cells. RNA interference was used to reduce the expression of DEPTOR. Cytotoxicity was evaluated by MTT assay. Apoptosis was examined by flow cytometry. DEPTOR mRNA and protein expression in RPMI‑8226 cells treated with DEPTOR-specific short hairpin RNA (shRNA) was evaluated by RT-PCR, quantitative PCR and western blot analysis. The expression of apoptosis‑associated proteins, autophagy‑associated proteins, and the activation of the phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway were detected by western blot analysis. Autophagy was also measured by transmission electron microscopy and monodansylcadaverine (MDC). In this study, RPMI-8226 cells were transfected with the DEPTOR-specific shRNA, which resulted in the significant inhibition of the transcription and expression of DEPTOR. The downregulation of DEPTOR inhibited proliferation, enhanced the doxorubicin‑induced growth inhibitory effects on RPMI-8226 cells, and increased the expression of cleaved caspase‑3 and cleaved poly(ADP-ribose) polymerase (PARP). Moreover, the downregulation of DEPTOR suppressed autophagy and inhibited the activation of the PI3K/Akt signaling in RPMI‑8226 cells. In conclusion, our data demonstrated that the downregulation of DEPTOR induces apoptosis, increases chemosensitivity to doxorubicin, and suppresses autophagy and the activation of the PI3K/Akt signaling pathway in RPMI‑8226 human multiple myeloma cells.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Hematology and Rheumatology, The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | | | | | | | | |
Collapse
|
31
|
Gospodinov A, Popova S, Vassileva I, Anachkova B. The inhibitor of histone deacetylases sodium butyrate enhances the cytotoxicity of mitomycin C. Mol Cancer Ther 2012; 11:2116-26. [PMID: 22891039 DOI: 10.1158/1535-7163.mct-12-0193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of histone deacetylase inhibitors has been proposed as a promising approach to increase the cell killing effect of DNA damage-inducing drugs in chemotherapy. However, the molecular mechanism of their action remains understudied. In the present article, we have assessed the effect of the histone deacetylase inhibitor sodium butyrate on the DNA damage response induced by the crosslinking agent mitomycin C. Sodium butyrate increased mitomycin C cytotoxicity, but did not impair the repair pathways required to remove mitomycin C-induced lesions as neither the rate of nucleotide excision repair nor the homologous recombination repair rate were diminished. Sodium butyrate treatment abrogated the S-phase cell-cycle checkpoint in mitomycin C-treated cells and induced the G(2)-M checkpoint. However, sodium butyrate treatment alone resulted in accumulation of reactive oxygen species, double-strand breaks in DNA, and apoptosis. These results imply that the accumulation of reactive oxygen species-mediated increase in DNA lesion burden may be the major mechanism by which sodium butyrate enhances the cytotoxicity of mitomycin C.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 21, 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
32
|
Abstract
Epigenetic modification by small-molecule histone deacetylase inhibitors (HDAC-Is) has been a promising new antineoplastic approach for various solid and hematological malignancies, particularly for cutaneous T-cell lymphoma (CTCL). Vorinostat, a pan-HDAC-I and, most recently, romidepsin, a bicyclic pan-HDAC-I, have been US FDA approved for treatment of relapsed or refractory CTCL. However, because many patients do not reach the 50% partial response mark and response is not always sustainable, overcoming HDAC-I resistance by adding other agents or finding more selective molecules is an important clinical problem in realizing the full clinical potential of HDAC-Is. In this review, we discuss the molecular basis for HDAC-I function in cancer, the clinical response and side-effect profile experienced by CTCL patients, and the progress made in attempting to identify biomarkers of response and resistance, as well as synergistic combination therapies.
Collapse
|
33
|
Dell'Aversana C, Lepore I, Altucci L. HDAC modulation and cell death in the clinic. Exp Cell Res 2012; 318:1229-44. [PMID: 22336671 DOI: 10.1016/j.yexcr.2012.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are two opposing classes of enzymes, which finely regulate the balance of histone acetylation affecting chromatin packaging and gene expression. Imbalanced acetylation has been associated with carcinogenesis and cancer progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. This implies that epigenetic alterations are amenable to pharmacological interventions. Accordingly, some epigenetic-based drugs (epidrugs) have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment. Here, we focus on the biological features of HDAC inhibitors (HDACis), analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
34
|
Colletti GA, Miedel MT, Quinn J, Andharia N, Weisz OA, Kiselyov K. Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. J Biol Chem 2012; 287:8082-91. [PMID: 22262857 DOI: 10.1074/jbc.m111.285536] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease caused by mutations in the gene MCOLN1, which codes for the transient receptor potential family ion channel TRPML1. MLIV has an early onset and is characterized by developmental delays, motor and cognitive deficiencies, gastric abnormalities, retinal degeneration, and corneal cloudiness. The degenerative aspects of MLIV have been attributed to cell death, whose mechanisms remain to be delineated in MLIV and in most other storage diseases. Here we report that an acute siRNA-mediated loss of TRPML1 specifically causes a leak of lysosomal protease cathepsin B (CatB) into the cytoplasm. CatB leak is associated with apoptosis, which can be prevented by CatB inhibition. Inhibition of the proapoptotic protein Bax prevents TRPML1 KD-mediated apoptosis but does not prevent cytosolic release of CatB. This is the first evidence of a mechanistic link between acute TRPML1 loss and cell death.
Collapse
Affiliation(s)
- Grace A Colletti
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
35
|
A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer. Cancer Chemother Pharmacol 2011; 69:743-51. [PMID: 22020318 DOI: 10.1007/s00280-011-1762-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 10/05/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Vorinostat is synergistic with 5-FU in vitro and in vivo models. A combination of these two agents was associated with clinical activity in 5-FU refractory colorectal cancer patients in a phase I clinical trial, therefore warranting the conduct of this prospective phase II study. PATIENTS AND METHODS Patients with refractory metastatic colorectal cancer were randomized in a two-stage design to receive vorinostat at 800 or 1,400 mg/day once a day × 3, every 2 weeks. 5-FU, preceded by leucovorin, was administered as a bolus followed by a 46-h infusion on days 2 and 3 of vorinostat. A pre-specified 2-month progression-free survival (PFS) rate of 27/43 patients per arm was needed to deem an arm interesting for further investigation. RESULTS The high-dose vorinostat arm did not reach the needed efficacy endpoint at completion of the first stage, with only 8 out of 15 patients being alive and progression free at 2 months. The low-dose vorinostat arm proceeded to accrue 43 patients with a 2-month PFS rate of 53% (23 out 43), including one partial response. The median PFS and overall survival on the low-dose arm were 2.4 and 6.5 months, respectively. Both treatment arms were well tolerated. No differences were noted in the pharmacokinetics of vorinostat at the 800- or 1,400-mg dose-levels, suggesting bioavailability saturation. CONCLUSIONS While the addition of vorinostat to 5-FU resulted in 1 partial response and in some disease stabilizations, the limited activity does not warrant the unselected use of this combination in chemotherapy-refractory colorectal cancer.
Collapse
|