1
|
Bertoni APS, Valandro C, Brasil RÁ, Zeiser FA, Wink MR, Furlanetto TW, da Costa CA. NT5E DNA methylation in papillary thyroid cancer: Novel opportunities for precision oncology. Mol Cell Endocrinol 2023; 570:111915. [PMID: 37059175 DOI: 10.1016/j.mce.2023.111915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
The ectoenzyme CD73, encoded by the NT5E gene, has emerged as a potential prognostic and therapeutic marker for papillary thyroid carcinoma (PTC), which has increased in incidence in recent decades. Here, from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) database, we extracted and combined clinical features, levels of NT5E mRNA, and DNA methylation of PTC samples and performed multivariate and random forest analyses to evaluate the prognostic relevance and the potential of discriminating between adjacent non-malignant and thyroid tumor samples. As a result, we revealed that lower levels of methylation at the cg23172664 site were independently associated with BRAF-like phenotype (p = 0.002), age over 55 years (p = 0.012), presence of capsule invasion (p = 0.007) and presence of positive lymph node metastasis (LNM) (p = 0.04). The methylation levels of cg27297263 and cg23172664 sites showed significant and inversely correlations with levels of NT5E mRNA expression (r = -0.528 and r = -0.660, respectively), and their combination was able to discriminate between adjacent non-malignant and tumor samples with a precision of 96%-97% and 84%-85%, respectively. These data suggest that combining cg23172664 and cg27297263 sites may bring new insights to reveal new subsets of patients with papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Software Innovation Laboratory - SOFTWARELAB, Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil; Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Cleiton Valandro
- Software Innovation Laboratory - SOFTWARELAB, Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil
| | - Rafael Ávila Brasil
- Software Innovation Laboratory - SOFTWARELAB, Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil
| | - Felipe André Zeiser
- Software Innovation Laboratory - SOFTWARELAB, Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil
| | - Márcia Rosângela Wink
- Software Innovation Laboratory - SOFTWARELAB, Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil
| | - Tania Weber Furlanetto
- Programa de Pós-Graduação em Medicina: Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - Cristiano André da Costa
- Software Innovation Laboratory - SOFTWARELAB, Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil.
| |
Collapse
|
2
|
Zhou Y, Jiang D, Chu X, Yan M, Qi H, Wu X, Tang Y, Dai Y. High expression of CD73 contributes to poor prognosis of clear-cell renal cell carcinoma by promoting cell proliferation and migration. Transl Cancer Res 2022; 11:3634-3644. [PMID: 36388013 PMCID: PMC9641103 DOI: 10.21037/tcr-22-544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 10/12/2024]
Abstract
BACKGROUND Accumulating data have shown that high expression of CD73 is associated with poor prognosis in various cancers, however the role and significance of CD73 in clear-cell renal cell carcinoma (ccRCC) still remain unclear. The present study aims to evaluate the prognostic significance of CD73 in ccRCC and explore the potential function in vitro and in vivo. METHODS Firstly, the expression of CD73 in ccRCC was detected using clinical tissues and verified using TCGA and GEO data. Immunohistochemistry and Kaplan-Meier test were performed for survival analysis. Furthermore, knockdown or overexpression of CD73 was conducted by lentivirus transfection in ccRCC cells. MTT assay, colony formation assay, wound healing assay, transwell assay and xenograft assay were performed in vitro or in vivo. RESULTS Our results showed that CD73 was highly expressed in ccRCC, and high expression of CD73 was negatively correlated with prognosis. In addition, CD73 promoted cell proliferation and migration in vitro and in vivo. Our data also showed that CD73 played both enzymatic and non-enzymatic functions in the regulation of cell proliferation and migration in ccRCC. CONCLUSIONS These findings suggested that CD73 might promote the growth of ccRCC and contribute to poor prognosis. Taken together, CD73 may be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Dong Jiang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xi Chu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiang Wu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
3
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Alam MS, Sultana A, Reza MS, Amanullah M, Kabir SR, Mollah MNH. Integrated bioinformatics and statistical approaches to explore molecular biomarkers for breast cancer diagnosis, prognosis and therapies. PLoS One 2022; 17:e0268967. [PMID: 35617355 PMCID: PMC9135200 DOI: 10.1371/journal.pone.0268967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Integrated bioinformatics and statistical approaches are now playing the vital role in identifying potential molecular biomarkers more accurately in presence of huge number of alternatives for disease diagnosis, prognosis and therapies by reducing time and cost compared to the wet-lab based experimental procedures. Breast cancer (BC) is one of the leading causes of cancer related deaths for women worldwide. Several dry-lab and wet-lab based studies have identified different sets of molecular biomarkers for BC. But they did not compare their results to each other so much either computationally or experimentally. In this study, an attempt was made to propose a set of molecular biomarkers that might be more effective for BC diagnosis, prognosis and therapies, by using the integrated bioinformatics and statistical approaches. At first, we identified 190 differentially expressed genes (DEGs) between BC and control samples by using the statistical LIMMA approach. Then we identified 13 DEGs (AKR1C1, IRF9, OAS1, OAS3, SLCO2A1, NT5E, NQO1, ANGPT1, FN1, ATF6B, HPGD, BCL11A, and TP53INP1) as the key genes (KGs) by protein-protein interaction (PPI) network analysis. Then we investigated the pathogenetic processes of DEGs highlighting KGs by GO terms and KEGG pathway enrichment analysis. Moreover, we disclosed the transcriptional and post-transcriptional regulatory factors of KGs by their interaction network analysis with the transcription factors (TFs) and micro-RNAs. Both supervised and unsupervised learning's including multivariate survival analysis results confirmed the strong prognostic power of the proposed KGs. Finally, we suggested KGs-guided computationally more effective seven candidate drugs (NVP-BHG712, Nilotinib, GSK2126458, YM201636, TG-02, CX-5461, AP-24534) compared to other published drugs by cross-validation with the state-of-the-art alternatives top-ranked independent receptor proteins. Thus, our findings might be played a vital role in breast cancer diagnosis, prognosis and therapies.
Collapse
Affiliation(s)
- Md. Shahin Alam
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail: (MNHM); (MSA)
| | - Adiba Sultana
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Md. Selim Reza
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Amanullah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail: (MNHM); (MSA)
| |
Collapse
|
5
|
Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans 2022; 50:921-933. [PMID: 35356965 DOI: 10.1042/bst20211166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
RAS small GTPases regulate important signalling pathways and are notorious drivers of cancer development and progression. While most research to date has focused on understanding and addressing the oncogenic potential of three RAS oncogenes: HRAS, KRAS, and NRAS; the full RAS subfamily is composed of 35 related GTPases with diverse cellular functions. Most remain deeply understudied despite strong evolutionary conservation. Here, we highlight a group of 17 poorly characterized RAS GTPases that are frequently down-regulated in cancer and evidence suggests may function not as oncogenes, but as tumour suppressors. These GTPases remain largely enigmatic in terms of their cellular function, regulation, and interaction with effector proteins. They cluster within two families we designate as 'distal-RAS' (D-RAS; comprised of DIRAS, RASD, and RASL10) and 'CaaX-Less RAS' (CL-RAS; comprised of RGK, NKIRAS, RERG, and RASL11/12 GTPases). Evidence of a tumour suppressive role for many of these GTPases supports the premise that RAS subfamily proteins may collectively regulate cellular proliferation.
Collapse
|
6
|
Zhao Q, Yuan X, Zheng L, Xue M. miR-30d-5p: A Non-Coding RNA With Potential Diagnostic, Prognostic and Therapeutic Applications. Front Cell Dev Biol 2022; 10:829435. [PMID: 35155437 PMCID: PMC8829117 DOI: 10.3389/fcell.2022.829435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer is a great challenge facing global public health. Scholars have made plentiful efforts in the research of cancer therapy, but the results are still not satisfactory. In relevant literature, the role of miRNA in cancer has been widely concerned. MicroRNAs (miRNAs) are a non-coding, endogenous, single-stranded RNAs that regulate a variety of biological functions. The abnormal level of miR-30d-5p, a type of miRNAs, has been associated with various human tumor types, including lung cancer, colorectal cancer, esophageal cancer, prostate cancer, liver cancer, cervical cancer, breast cancer and other types of human tumors. This reflects the vital function of miR-30d-5p in tumor prognosis. miR-30d-5p can be identified either as an inhibitor hindering the development of, or a promoter accelerating the occurrence of tumors. In addition, the role of miR-30d-5p in cell proliferation, motility, apoptosis, autophagy, tumorigenesis, and chemoresistance are also noteworthy. The multiple roles of miR-30d-5p in human cancer suggest that it has broad feasibility as a biomarker and therapeutic target. This review describes the connection between miR-30d-5p and the clinical indications of tumors, and summarizes the mechanisms by which miR-30d-5p mediates cancer progression.
Collapse
Affiliation(s)
- Qinlu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Lian Zheng, ; Miaomiao Xue,
| | - Miaomiao Xue
- Department of General Dentistry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Lian Zheng, ; Miaomiao Xue,
| |
Collapse
|
7
|
Zhang J, Wang F, Zhang H, Cao M. A novel circular RNA circ_HN1/miR-628-5p/Ecto-5'-nucleotidase competing endogenous RNA network regulates gastric cancer development. Bioengineered 2021; 12:9739-9752. [PMID: 34637682 PMCID: PMC8810003 DOI: 10.1080/21655979.2021.1989259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The competing endogenous RNA (ceRNA) activity of circular RNAs (circRNAs) has been implicated in the development of gastric cancer. Here, we sought to explore the ceRNA function of circRNA Jupiter microtubule associated homolog 1 (circ_HN1) in gastric tumorigenesis. Circ_HN1, microRNA (miR)-628-5p, and NT5E expression levels were quantified by qRT-PCR and western blot. Dual-luciferase reporter assays were used to assess the direct relationship between miR-628-5p and circ_HN1 or NT5E. Our data showed that circ_HN1 expression was enhanced in human gastric cancer. Depletion of circ_HN1 impeded cell proliferation, spheroid formation, invasion, and migration and promoted apoptosis in vitro, as well as diminished tumor growth in vivo. NT5E was a downstream effector of circ_HN1 function. NT5E was targeted and inhibited by miR-628-5p through the perfect complementary site in NT5E 3ʹUTR, and circ_HN1 affected NT5E expression through miR-628-5p competition. Moreover, depletion of miR-628-5p reversed the effects of circ_HN1 silencing on regulating cell functional behaviors. Our findings identify a novel ceRNA network, the circ_HN1/miR-628-5p/NT5E axis, for the oncogenic activity of circ_HN1 in gastric cancer, highlighting circ_HN1 inhibition as a promising targeted treatment against gastric cancer.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of Digestive Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fang Wang
- Department of Pharmaceutical Laboratory, Henan Vocational College of Nursing, Anyang, China
| | - Haihui Zhang
- Department of Digestive Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingbo Cao
- Department of Digestive Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Sun Y, Ma J, Lin J, Sun D, Song P, Shi L, Li H, Wang R, Wang Z, Liu S. Circular RNA circ_ASAP2 regulates drug sensitivity and functional behaviors of cisplatin-resistant gastric cancer cells by the miR-330-3p/NT5E axis. Anticancer Drugs 2021; 32:950-961. [PMID: 34016832 DOI: 10.1097/cad.0000000000001087] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aims to explore the biological actions of circular RNA (circRNA) ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 (circ_ASAP2, circ_0006089) in cisplatin (DDP) resistance of gastric cancer. Circ_ASAP2, ecto-5'-nucleotidase (NT5E) and miR-330-3p were quantified by quantitative real-time PCR or western blot. The measurements of the IC50 value and cell proliferation were done using 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell colony formation, cell cycle distribution, apoptosis, migration and invasion were evaluated by the colony formation, flow cytometry and transwell assays. Dual-luciferase reporter assay was performed to confirm the targeted relationship between different molecules. The role of circ_ASAP2 in tumor growth was gauged by in vivo animal studies. Circ_ASAP2 and NT5E were overexpressed in DDP-resistant gastric cancer tissues and cells. Knockdown of circ_ASAP2 promoted DDP sensitivity, apoptosis and repressed proliferation, migration and invasion of DDP-resistant gastric cancer cells in vitro and diminished tumor growth in vivo. Moreover, NT5E was a downstream effector of circ_ASAP2 in regulating cell DDP sensitivity and functional behaviors. Mechanistically, circ_ASAP2 directly bound to miR-330-3p to promote NT5E expression. Furthermore, circ_ASAP2 modulated cell DDP sensitivity and functional behaviors by targeting miR-330-3p. Knockdown of circ_ASAP2 promoted DDP sensitivity and suppressed malignant behaviors of DDP-resistant gastric cancer cells through targeting the miR-330-3p/NT5E axis.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Gastroenterology, Shengli Oilfield Central Hospital, Dongying, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang SC, Liao LM, Ansar M, Lin SY, Hsu WW, Su CM, Chung YM, Liu CC, Hung CS, Lin RK. Automatic Detection of the Circulating Cell-Free Methylated DNA Pattern of GCM2, ITPRIPL1 and CCDC181 for Detection of Early Breast Cancer and Surgical Treatment Response. Cancers (Basel) 2021; 13:cancers13061375. [PMID: 33803633 PMCID: PMC8002961 DOI: 10.3390/cancers13061375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
The early detection of cancer can reduce cancer-related mortality. There is no clinically useful noninvasive biomarker for early detection of breast cancer. The aim of this study was to develop accurate and precise early detection biomarkers and a dynamic monitoring system following treatment. We analyzed a genome-wide methylation array in Taiwanese and The Cancer Genome Atlas (TCGA) breast cancer (BC) patients. Most breast cancer-specific circulating methylated CCDC181, GCM2 and ITPRIPL1 biomarkers were found in the plasma. An automatic analysis process of methylated ccfDNA was established. A combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was performed in R using Recursive Partitioning and Regression Trees to establish a new prediction model. Combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was found to have a sensitivity level of 97% and an area under the curve (AUC) of 0.955 in the training set, and a sensitivity level of 100% and an AUC of 0.961 in the test set. The circulating methylated CCDC181, GCM2 and ITPRIPL1 was also significantly decreased after surgery (all p < 0.001). The aberrant methylation patterns of the CCDC181, GCM2 and ITPRIPL1 genes means that they are potential biomarkers for the detection of early BC and can be combined with breast imaging data to achieve higher accuracy, sensitivity and specificity, facilitating breast cancer detection. They may also be applied to monitor the surgical treatment response.
Collapse
Affiliation(s)
- Sheng-Chao Wang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Shih-Yun Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, 101 Dickens Hall, 1116 Mid-Campus Drive N, Manhattan, KS 66506-0802, USA;
| | - Chih-Ming Su
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
| | - Yu-Mei Chung
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Cai-Cing Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
| | - Chin-Sheng Hung
- Division of General Surgery, Department of Surgery, Taipei Medical University Shuang Ho Hospital, No.291, Zhongzheng Rd., Zhonghe District, New Taipei City 23561, Taiwan; (L.-M.L.); (C.-M.S.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| | - Ruo-Kai Lin
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, No. 250, Wuxing Street, Taipei 110, Taiwan;
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan;
- Clinical trial center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110, Taiwan
- Correspondence: (C.-S.H.); (R.-K.L.); Tel.: +886-970-405-127 (C.-S.H.); +886-2-2736-1661 (ext. 6162) (R.-K.L.)
| |
Collapse
|
10
|
Yang H, Yao F, Davis PF, Tan ST, Hall SRR. CD73, Tumor Plasticity and Immune Evasion in Solid Cancers. Cancers (Basel) 2021; 13:cancers13020177. [PMID: 33430239 PMCID: PMC7825701 DOI: 10.3390/cancers13020177] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tumors are ecosystems composed of cancer cells and non-tumor stroma together in a hypoxic environment often described as wounds that do not heal. Accumulating data suggest that solid tumors hijack cellular plasticity possibly to evade detection by the immune system. CD73-mediated generation of the purine nucleoside adenosine, is an important biochemical constituent of the immunosuppressive tumor microenvironment. In this review, the association between CD73 expression and features associated with cellular plasticity involving stemness, epithelial-to-mesenchymal transition and metastasis together with immune infiltration is summarized for a wide range of solid tumor types. Our analyses demonstrate that CD73 correlates with signatures associated with cellular plasticity in solid tumors. In addition, there are strong associations between CD73 expression and type of infiltrating lymphocytes. Collectively, the observations suggest a biomarker-based stratification to identify CD73-adenosinergic rich tumors may help identify patients with solid cancers who will respond to a combinatorial strategy that includes targeting CD73. Abstract Regulatory networks controlling cellular plasticity, important during early development, can re-emerge after tissue injury and premalignant transformation. One such regulatory molecule is the cell surface ectoenzyme ecto-5′-nucleotidase that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine (eADO). Ecto-5′-nucleotidase (NT5E) or cluster of differentiation 73 (CD73), is an enzyme that is encoded by NT5E in humans. In normal tissue, CD73-mediated generation of eADO has important pleiotropic functions ranging from the promotion of cell growth and survival, to potent immunosuppression mediated through purinergic G protein-coupled adenosine receptors. Importantly, tumors also utilize several mechanisms mediated by CD73 to resist therapeutics and in particular, evade the host immune system, leading to undesired resistance to targeted therapy and immunotherapy. Tumor cell CD73 upregulation is associated with worse clinical outcomes in a variety of cancers. Emerging evidence indicates a link between tumor cell stemness with a limited host anti-tumor immune response. In this review, we provide an overview of a growing body of evidence supporting the pro-tumorigenic role of CD73 and adenosine signaling. We also discuss data that support a link between CD73 expression and tumor plasticity, contributing to dissemination as well as treatment resistance. Collectively, targeting CD73 may represent a novel treatment approach for solid cancers.
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Sean R. R. Hall
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| |
Collapse
|
11
|
Methylation of the NT5E Gene Is Associated with Poor Prognostic Factors in Breast Cancer. Diagnostics (Basel) 2020; 10:diagnostics10110939. [PMID: 33198064 PMCID: PMC7697174 DOI: 10.3390/diagnostics10110939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cluster of differentiation (CD) 73, which is encoded by the NT5E gene, regulates production of immunosuppressive adenosine and is an emerging checkpoint in cancer immunotherapy. Despite the significance of CD73 in immuno-oncology, the roles of the NT5E gene methylation in breast cancer have not been well-defined yet. Therefore, we aimed to investigate the prognostic significance of the NT5E gene methylation in breast cancer. The DNA methylation status of the NT5E gene was analyzed using pyrosequencing in breast cancer tissues. In addition, the levels of inflammatory markers and lymphocyte infiltration were evaluated. The mean methylation level of the NT5E gene was significantly higher in breast cancer than in normal breast tissues. In the analysis of relevance with clinicopathologic characteristics, the mean methylation levels of the NT5E gene were significantly higher in patients with large tumor size, high histologic grade, negative estrogen receptor expression, negative Bcl-2 expression, and premenopausal women. There was no difference in disease-free survival according to the methylation status of the NT5E gene. We found that the NT5E gene methylation was related to breast cancer development and associated with poor prognostic factors in breast cancer. Our results suggest that the NT5E gene methylation has potential as an epigenetic biomarker in breast cancer.
Collapse
|
12
|
Harvey JB, Phan LH, Villarreal OE, Bowser JL. CD73's Potential as an Immunotherapy Target in Gastrointestinal Cancers. Front Immunol 2020; 11:508. [PMID: 32351498 PMCID: PMC7174602 DOI: 10.3389/fimmu.2020.00508] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
CD73, a cell surface 5'nucleotidase that generates adenosine, has emerged as an attractive therapeutic target for reprogramming cancer cells and the tumor microenvironment to dampen antitumor immune cell evasion. Decades of studies have paved the way for these findings, starting with the discovery of adenosine signaling, particularly adenosine A2A receptor (A2AR) signaling, as a potent suppressor of tissue-devastating immune cell responses, and evolving with studies focusing on CD73 in breast cancer, melanoma, and non-small cell lung cancer. Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. Evidence is mounting that shows promise for improving patient outcomes through incorporation of immunomodulatory strategies as single agents or in combination with current treatment options. Recently, several immune checkpoint inhibitors received FDA approval for use in GI cancers; however, clinical benefit is limited. Investigating molecular mechanisms promoting immunosuppression, such as CD73, in GI cancers can aid in current efforts to extend the efficacy of immunotherapy to more patients. In this review, we discuss current clinical and basic research studies on CD73 in GI cancers, including gastric, liver, pancreatic, and colorectal cancer, with special focus on the potential of CD73 as an immunotherapy target in these cancers. We also present a summary of current clinical studies targeting CD73 and/or A2AR and combination of these therapies with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jerry B. Harvey
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luan H. Phan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Oscar E. Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica L. Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, Nicolini G. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem 2019; 28:115300. [PMID: 31937477 DOI: 10.1016/j.bmc.2019.115300] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
The imidazobenzoxazin-5-thione MV1035, synthesized as a new sodium channel blocker, has been tested on tumoral cells that differ for origin and for expressed NaV pool (U87-MG, H460 and A549). In this paper we focus on the effect of MV1035 in reducing U87 glioblastoma cell line migration and invasiveness. Since the effect of this compound on U87-MG cells seemed not dependent on its sodium channel blocking capability, alternative off-target interaction for MV1035 have been identified using SPILLO-PBSS software. This software performs a structure-based in silico screening on a proteome-wide scale, that allows to identify off-target interactions. Among the top-ranked off-targets of MV1035, we focused on the RNA demethylase ALKBH5 enzyme, known for playing a key role in cancer. In order to prove the effect of MV1035 on ALKBH5 in vitro coincubation of MV1035 and ALKBH5 has been performed demonstrating a consequent increase of N6-methyladenosine (m6A) RNA. To further validate the pathway involving ALKBH5 inhibition by MV1035 in U87-MG reduced migration and invasiveness, we evaluated CD73 as possible downstream protein. CD73 is an extrinsic protein involved in the generation of adenosine and is overexpressed in several tumors including glioblastoma. We have demonstrated that treating U87-MG with MV1035, CD73 protein expression was reduced without altering CD73 transcription. Our results show that MV1035 is able to significantly reduce U87 cell line migration and invasiveness inhibiting ALKBH5, an RNA demethylase that can be considered an interesting target in fighting glioblastoma aggressiveness. Our data encourage to further investigate the MV1035 inhibitory effect on glioblastoma.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Mirko Rivara
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy.
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy; SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Giacomo Cislaghi
- SPILLOproject, via Stradivari 17, 20037 Paderno Dugnano, Milano, Italy(2)
| | - Mariarosaria Miloso
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| | - Valentina Zuliani
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, PR, Italy
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy
| |
Collapse
|
14
|
Soleimani A, Taghizadeh E, Shahsavari S, Amini Y, Rashidpour H, Azadian E, Jafari A, Parizadeh MR, Mashayekhi K, Soukhtanloo M, Jaafari MR. CD73; a key ectonucleotidase in the development of breast cancer: Recent advances and perspectives. J Cell Physiol 2019; 234:14622-14632. [PMID: 30693504 DOI: 10.1002/jcp.28187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Tumor cell invasion and metastasis are the definitive cause of mortality in breast cancer (BC). Hypoxia and pro-inflammatory cytokines upregulate the CD73 gene in the tumor microenvironment. Subsequently, CD73 triggers molecular and cellular signaling pathways by both enzymatic and nonenzymatic pathways, which finally leads to breast tumor progression and development. In this paper, we summarize current advances in the understanding of CD73-driven mechanisms that promote BC development and mortality. Furthermore, we evaluate the therapeutic potential of CD73 targeting in BC.
Collapse
Affiliation(s)
- Anvar Soleimani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Shahsavari
- Division of Biotechnology, Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yousef Amini
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hatam Rashidpour
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeel Azadian
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Jafari
- School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Kazem Mashayekhi
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Allard D, Chrobak P, Allard B, Messaoudi N, Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol Lett 2018; 205:31-39. [PMID: 29758241 DOI: 10.1016/j.imlet.2018.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The ectonucleotidases CD39 and CD73 are cell surface enzymes that catabolize the breakdown of extracellular ATP into adenosine. As such, they constitute critical components of the extracellular purinergic pathway and play important roles in maintaining tissue and immune homeostasis. With the coming of age of cancer immunotherapy, ectonucleotidases and adenosine receptors have emerged as novel therapeutic targets to enhance antitumor immune responses. With early-phase clinical trials showing promising results, it is becoming increasingly important to decipher the distinct mechanisms-of-action of adenosine-targeting agents, identify patients that will benefit from these agents and rationally develop novel synergistic combinations. Given the broad expression of ectonucleotidases and adenosine receptors, a better understanding of cell-specific roles will also be key for successful implementation of this new generation of immuno-oncology therapeutics. We here review the latest studies on the roles of CD73 and adenosine in cancer with a focus on cell-specific function. We also discuss ongoing clinical trials and future avenues for adenosine-targeting agents.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada
| | - Nouredin Messaoudi
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; University of Antwerp, Antwerp, Belgium
| | - John Stagg
- Centre de Recherche du Centre, Hospitalier l'Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montréal, QC, Canada; Faculté de Pharmacie de l'Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
16
|
Turcotte M, Allard D, Mittal D, Bareche Y, Buisseret L, José V, Pommey S, Delisle V, Loi S, Joensuu H, Kellokumpu-Lehtinen PL, Sotiriou C, Smyth MJ, Stagg J. CD73 Promotes Resistance to HER2/ErbB2 Antibody Therapy. Cancer Res 2017; 77:5652-5663. [PMID: 28855210 DOI: 10.1158/0008-5472.can-17-0707] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/08/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022]
Abstract
Expression of the ectonucleotidase CD73 by tumor cells, stromal cells, and immune cells is associated in cancer with immune suppression. In this study, we investigated the role of CD73 on the activity of the anti-HER2/ErbB2 monoclonal antibody (mAb) trastuzumab. In a prospective, randomized phase III clinical trial evaluating the activity of trastuzumab, high levels of CD73 gene expression were associated significantly with poor clinical outcome. In contrast, high levels of PD-1 and PD-L1 were associated with improved clinical outcome. In immunocompetent mouse models of HER2/ErbB2-driven breast cancer, CD73 expression by tumor cells and host cells significantly suppressed immune-mediated responses mediated by anti-ErbB2 mAb. Furthermore, anti-CD73 mAb therapy enhanced the activity of anti-ErbB2 mAb to treat engrafted or spontaneous tumors as well as lung metastases. Gene ontology enrichment analysis from gene-expression data revealed a positive association of CD73 expression with extracellular matrix organization, TGFβ genes, epithelial-to-mesenchymal transition (EMT) transcription factors and hypoxia-inducible-factor (HIF)-1 gene signature. Human mammary cells treated with TGFβ or undergoing EMT upregulated CD73 cell-surface expression, confirming roles for these pathways. In conclusion, our findings establish CD73 in mediating resistance to trastuzumab and provide new insights into how CD73 is regulated in breast cancer. Cancer Res; 77(20); 5652-63. ©2017 AACR.
Collapse
Affiliation(s)
- Martin Turcotte
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - David Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Yacine Bareche
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Buisseret
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Vinu José
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Pommey
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Vincent Delisle
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Sherene Loi
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Heikki Joensuu
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Christos Sotiriou
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.,Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada. .,Institut du Cancer de Montréal, Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
17
|
Xu J, Zheng J, Shen W, Ma L, Zhao M, Wang X, Tang J, Yan J, Wu Z, Zou Z, Bu S, Xi Y. Elevated SLC26A4 gene promoter methylation is associated with the risk of presbycusis in men. Mol Med Rep 2017; 16:347-352. [PMID: 28498466 DOI: 10.3892/mmr.2017.6565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/02/2017] [Indexed: 11/05/2022] Open
Abstract
Presbycusis affects approximately one-third of people over the age of 65 and is a worldwide health problem. In the current study, whether the methylation level of solute carrier family 26 member 4 (SLC26A4) predicted an increased risk of presbycusis was investigated. Peripheral blood samples from 102 patients with presbycusis and 104 controls were collected, and the methylation of the CpG sites of SLC26A4 was measured by applying pyrosequencing technology combined with sodium bisulfate DNA conversion chemistry. Within the SLC26A4 promoter region, one CpG site (CpG3) exhibited a significantly (P<0.0001) greater methylation level in the patients with presbycusis (26.5±5.56%) compared with the controls (23.8±3.85%). Significantly different CpG3 methylation levels were observed between the patients with presbycusis and the controls among the male participants (P=0.0004). In addition, a significant decrease in the transcriptional level of SLC26A4 in peripheral blood was observed in the patients with presbycusis compared with the controls. Furthermore, analyses of the receiver operating characteristic (ROC) curves indicated that CpG3 methylation at the SLC26A4 promoter predicted the risk of presbycusis in the male participants (AUC=0.684, 95% CI=0.584‑0.784, P=0.001). The results demonstrated the significance of the CpG site methylation level of SLC26A4, and thus provides a potential marker for the diagnosis of presbycusis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jiachen Zheng
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wanjing Shen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lili Ma
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ming Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xubo Wang
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jiyuan Tang
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jihong Yan
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Zhenhua Wu
- Department of Otorhinolaryngology, Lihuili Hospital, Ningbo, Zhejiang 315041, P.R. China
| | - Zuquan Zou
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yang Xi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
18
|
Zhu J, Zeng Y, Li W, Qin H, Lei Z, Shen D, Gu D, Huang JA, Liu Z. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer 2017; 16:34. [PMID: 28158983 PMCID: PMC5291990 DOI: 10.1186/s12943-017-0591-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/17/2017] [Indexed: 01/11/2023] Open
Abstract
Background CD73 (ecto-5′-nucleotidase) is implicated in the development of many types of cancer. CD73 inhibitors are currently being tested in clinical trials for the treatment of cancer. Understanding the molecular and cellular actions of CD73 inhibitors is the key to improving this line of therapy. Methods Quantitative real-time PCR (qRT-PCR) was used to detect the expression of CD73 and miR-30a-5p; Western blot and immunohistochemical assays were used to investigate the levels of CD73 and other proteins. Flow cytometry was used to determine cell cycle stage and apoptosis. CCK-8 and clonogenic assays were used to investigate cell proliferation. Wound healing, migration and invasion assays were used to investigate the motility of cells. A lung carcinoma xenograft mouse model was used to investigate the in vivo effects of CD73 and miR-30a-5p. Results In the present study, we found that CD73 is overexpressed and miR-30a-5p is underexpressed in non-small cell lung cancer tissues compared with adjacent noncancerous. Further, we showed that CD73 is a direct target of miR-30a-5p by luciferase reporter assays, qRT-PCR and western blot analysis. We also found that overexpression of miR-30a-5p in these non-small cell lung cancer cell lines inhibited cell proliferation in vitro and in vivo. Moreover, the epithelial-to-mesenchymal phenotype was suppressed and cell migration and invasion were inhibited; these effects were brought about via the EGF signaling pathway. Conclusions Our findings reveal a new post-transcriptional mechanism of CD73 regulation via miR-30a-5p and EGFR-related drug resistance in non-small cell lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0591-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hualong Qin
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhe Lei
- Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Dan Shen
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Dongmei Gu
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
19
|
Feng L, Xu Y, Zhang Y, Sun Z, Han J, Zhang C, Yang H, Shang D, Su F, Shi X, Li S, Li C, Li X. Subpathway-GMir: identifying miRNA-mediated metabolic subpathways by integrating condition-specific genes, microRNAs, and pathway topologies. Oncotarget 2016; 6:39151-64. [PMID: 26472186 PMCID: PMC4770763 DOI: 10.18632/oncotarget.5341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) regulate disease-relevant metabolic pathways. However, most current pathway identification methods fail to consider miRNAs in addition to genes when analyzing pathways. We developed a powerful method called Subpathway-GMir to construct miRNA-regulated metabolic pathways and to identify miRNA-mediated subpathways by considering condition-specific genes, miRNAs, and pathway topologies. We used Subpathway-GMir to analyze two liver hepatocellular carcinomas (LIHC), one stomach adenocarcinoma (STAD), and one type 2 diabetes (T2D) data sets. Results indicate that Subpathway-GMir is more effective in identifying phenotype-associated metabolic pathways than other methods and our results are reproducible and robust. Subpathway-GMir provides a flexible platform for identifying abnormal metabolic subpathways mediated by miRNAs, and may help to clarify the roles that miRNAs play in a variety of diseases. The Subpathway-GMir method has been implemented as a freely available R package.
Collapse
Affiliation(s)
- Li Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Zeguo Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinrui Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chunquan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.,Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
20
|
Bowser JL, Broaddus RR. CD73s protection of epithelial integrity: Thinking beyond the barrier. Tissue Barriers 2016; 4:e1224963. [PMID: 28123924 DOI: 10.1080/21688370.2016.1224963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/05/2023] Open
Abstract
The prevailing view of CD73 in cancer is that it is overexpressed in tumors and promotes cancer progression by dampening local T cell-mediated immune responses. We recently found that CD73 is down-regulated in poorly-differentiated and advanced stage endometrial carcinoma compared to normal endometrium and well-differentiated, early stage tumors. We revealed that CD73-generated adenosine induces a physiological response to protect epithelial integrity in well-differentiated, early stage endometrial carcinoma. The ability of CD73-generated adenosine to protect the barrier is not so different from its ability to induce immunosuppression and other physiological responses in cancerous tissues. In this commentary we examine the complexity of CD73 in cancer and suggest that a "one size fits all" approach to the role of CD73/adenosine in cancer is no longer warranted. Given that tumors often hijack normal cellular responses, we also provide consideration on how CD73s known role to protect barrier function may have implications in promoting tumor progression.
Collapse
Affiliation(s)
- Jessica L Bowser
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Russell R Broaddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
21
|
Allard B, Beavis PA, Darcy PK, Stagg J. Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 2016; 29:7-16. [PMID: 27209048 DOI: 10.1016/j.coph.2016.04.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
Multiple immunosuppressive mechanisms impede anti-tumor immunity. Among them, the accumulation of extracellular adenosine is a potent and widespread strategy exploited by tumors to escape immunosurveillance through the activation of purinergic receptors. In the immune system, engagement of A2a and A2b adenosine receptors is a critical regulatory mechanism that protects tissues against excessive immune reactions. In tumors, this pathway is hijacked and hinders anti-tumor immunity, promoting cancer progression. Different groups have highlighted the therapeutic potential of blocking CD73-dependent adenosine-mediated immunosuppression to reinstate anti-tumor immunity. Phase clinical trials evaluating anti-CD73 antibodies and A2a receptor antagonists in cancer patients are currently ongoing. We here review the recent literature on the immunosuppressive effects of extracellular adenosine and discuss the development of adenosine inhibitors.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, 900 Rue Saint-Denis, H2X0A9 Montréal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, Canada
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Parkville, Australia
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, 900 Rue Saint-Denis, H2X0A9 Montréal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, Canada.
| |
Collapse
|
22
|
Allard D, Allard B, Gaudreau PO, Chrobak P, Stagg J. CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy 2016; 8:145-63. [PMID: 26808918 DOI: 10.2217/imt.15.106] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has entered in a new era with the development of first-generation immune checkpoint inhibitors targeting the PD1/PD-L1 and CTLA-4 pathways. In this context, considerable research effort is being deployed to find the next generation of cancer immunotherapeutics. The CD73-adenosine axis constitutes one of the most promising pathways in immuno-oncology. We and others have demonstrated the immunosuppressive role of CD73-adenosine in cancer and established proof-of-concept that the targeted blockade of CD73 or adenosine receptors could effectively promote anti-tumor immunity and enhance the activity of first-generation immune checkpoint blockers. With Phase I clinical trials now underway evaluating anti-CD73 or anti-A2A therapies in cancer patients, we here discuss the fundamental, preclinical and clinical findings related to the role of the CD73-adenosinergic pathway in tumor immunity.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Pierre-Olivier Gaudreau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada.,Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
23
|
Terry MB, McDonald JA, Wu HC, Eng S, Santella RM. Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 882:33-68. [PMID: 26987530 PMCID: PMC5305320 DOI: 10.1007/978-3-319-22909-6_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hui Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sybil Eng
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Regina M Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Nevedomskaya E, Perryman R, Solanki S, Syed N, Mayboroda OA, Keun HC. A Systems Oncology Approach Identifies NT5E as a Key Metabolic Regulator in Tumor Cells and Modulator of Platinum Sensitivity. J Proteome Res 2015; 15:280-90. [PMID: 26629888 DOI: 10.1021/acs.jproteome.5b00793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Altered metabolism in tumor cells is required for rapid proliferation but also can influence other phenotypes that affect clinical outcomes such as metastasis and sensitivity to chemotherapy. Here, a genome-wide association study (GWAS)-guided integration of NCI-60 transcriptome and metabolome data identified ecto-5'-nucleotidase (NT5E or CD73) as a major determinant of metabolic phenotypes in cancer cells. NT5E expression and associated metabolome variations were also correlated with sensitivity to several chemotherapeutics including platinum-based treatment. NT5E mRNA levels were observed to be elevated in cells upon in vitro and in vivo acquisition of platinum resistance in ovarian cancer cells, and specific targeting of NT5E increased tumor cell sensitivity to platinum. We observed that tumor NT5E levels were prognostic for outcomes in ovarian cancer and were elevated after treatment with platinum, supporting the translational relevance of our findings. In this work, we integrated and analyzed a plethora of public data, demonstating the merit of such a systems oncology approach for the discovery of novel players in cancer biology and therapy. We experimentally validated the main findings of the NT5E gene being involved in both intrinsic and acquired resistance to platinum-based drugs. We propose that the efficacy of conventional chemotherapy could be improved by NT5E inhibition and that NT5E expression may be a useful prognostic and predictive clinical biomarker.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC) , L4-Q, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Richard Perryman
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital , London W12 0NN, United Kingdom.,Division of Brain Sciences, Department of Medicine, Imperial College London , London W12 0NN, United Kingdom
| | - Shyam Solanki
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital , London W12 0NN, United Kingdom
| | - Nelofer Syed
- Division of Brain Sciences, Department of Medicine, Imperial College London , London W12 0NN, United Kingdom
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC) , L4-Q, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital , London W12 0NN, United Kingdom
| |
Collapse
|
25
|
Diamond ML, Ritter AC, Jackson EK, Conley YP, Kochanek PM, Boison D, Wagner AK. Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia 2015; 56:1198-206. [PMID: 26040919 DOI: 10.1111/epi.13044] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Determine if genetic variation in enzymes/transporters influencing extracellular adenosine homeostasis, including adenosine kinase (ADK), [ecto-5'-nucleotidase (NT5E), cluster of differentiation 73 (CD73)], and equilibrative nucleoside transporter type-1 (ENT-1), is significantly associated with epileptogenesis and posttraumatic epilepsy (PTE) risk, as indicated by time to first seizure analyses. METHODS Nine ADK, three CD73, and two ENT-1 tagging single nucleotide polymorphisms (SNPs) were genotyped in 162 white adults with moderate/severe traumatic brain injury (TBI) and no history of premorbid seizures. Kaplan-Meier models were used to screen for genetic differences in time to first seizure occurring >1 week post-TBI. SNPs remaining significant after correction for multiple comparisons were examined using Cox proportional hazards analyses, adjusting for subdural hematoma, injury severity score, and isolated TBI status. SNPs significant in multivariate models were then entered simultaneously into an adjusted Cox model. RESULTS Comparing Kaplan-Meier curves, rs11001109 (ADK) rare allele homozygosity and rs9444348 (NT5E) heterozygosity were significantly associated with shorter time to first seizure and an increased seizure rate 3 years post-TBI. Multivariate Cox proportional hazard models showed that these genotypes remained significantly associated with increased PTE hazard up to 3 years post-TBI after controlling for variables of interest (rs11001109: hazard ratio (HR) 4.47, 95% confidence interval (CI) 1.27-15.77, p = 0.020; rs9444348: HR 2.95, 95% CI 1.19-7.31, p = 0.019) . SIGNIFICANCE Genetic variation in ADK and NT5E may help explain variability in time to first seizure and PTE risk, independent of previously identified risk factors, after TBI. Once validated, identifying genetic variation in adenosine regulatory pathways relating to epileptogenesis and PTE may facilitate exploration of therapeutic targets and pharmacotherapy development.
Collapse
Affiliation(s)
- Matthew L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Anne C Ritter
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Yvette P Conley
- Department of Health Promotion and Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Patrick M Kochanek
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Detlev Boison
- RS Dow Neurobiology Labs, Legacy Research Institute, Portland, Oregon, U.S.A
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
26
|
Minning C, Mokhtar NM, Abdullah N, Muhammad R, Emran NA, Ali SAMD, Harun R, Jamal R. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses. Int J Oncol 2014; 45:1959-68. [PMID: 25175708 DOI: 10.3892/ijo.2014.2625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/18/2014] [Indexed: 11/05/2022] Open
Abstract
There have been many DNA methylation studies on breast cancer which showed various methylation patterns involving tumour suppressor genes and oncogenes but only a few of those studies link the methylation data with gene expression. More data are required especially from the Asian region and to analyse how the epigenome data correlate with the transcriptome. DNA methylation profiling was carried out on 76 fresh frozen primary breast tumour tissues and 25 adjacent non-cancerous breast tissues using the Illumina Infinium(®) HumanMethylation27 BeadChip. Validation of methylation results was performed on 7 genes using either MS-MLPA or MS-qPCR. Gene expression profiling was done on 15 breast tumours and 5 adjacent non-cancerous breast tissues using the Affymetrix GeneChip(®) Human Gene 1.0 ST array. The overlapping genes between DNA methylation and gene expression datasets were further mapped to the KEGG database to identify the molecular pathways that linked these genes together. Supervised hierarchical cluster analysis revealed 1,389 hypermethylated CpG sites and 22 hypomethylated CpG sites in cancer compared to the normal samples. Gene expression microarray analysis using a fold-change of at least 1.5 and a false discovery rate (FDR) at p>0.05 identified 404 upregulated and 463 downregulated genes in cancer samples. Integration of both datasets identified 51 genes with hypermethylation with low expression (negative association) and 13 genes with hypermethylation with high expression (positive association). Most of the overlapping genes belong to the focal adhesion and extracellular matrix-receptor interaction that play important roles in breast carcinogenesis. The present study displayed the value of using multiple datasets in the same set of tissues and how the integrative analysis can create a list of well-focused genes as well as to show the correlation between epigenetic changes and gene expression. These gene signatures can help us understand the epigenetic regulation of gene expression and could be potential targets for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Chin Minning
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norlia Abdullah
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaizak Muhammad
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Aina Emran
- Department of Surgery, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siti Aishah M D Ali
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Roslan Harun
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 2014; 4:879-88. [PMID: 25035124 DOI: 10.1158/2159-8290.cd-14-0341] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED CD73 generation of immunosuppressive adenosine within the hypoxic tumor microenvironment causes dysregulation of immune cell infiltrates, resulting in tumor progression, metastases, and poor disease outcomes. Therapies targeted toward the adenosinergic pathway, such as antibodies targeting CD73 and CD39, have proven efficacy in mouse tumor models; however, humanized versions are only in preliminary development. In contrast, A(2A) adenosine receptor antagonists have progressed to late-stage clinical trials in Parkinson disease, yet evidence of their role in oncology is limited. This review will compare the merits and challenges of these therapeutic approaches, identifying tumor indications and combinations that may be fruitful as they progress to the clinic. SIGNIFICANCE High concentrations of immunosuppressive adenosine have been reported in cancers, and adenosine is implicated in the growth of tumors. This brief review delineates the current treatment strategies and tumor subtypes that will benefit from targeting adenosinergic pathways, alone or in combination with contemporary approaches to cancer treatment.
Collapse
Affiliation(s)
- Arabella Young
- QIMR Berghofer Medical Research Institute; School of Medicine, University of Queensland, Herston, Queensland, Australia; and
| | - Deepak Mittal
- QIMR Berghofer Medical Research Institute; School of Medicine, University of Queensland, Herston, Queensland, Australia; and
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Pharmacie et Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute; School of Medicine, University of Queensland, Herston, Queensland, Australia; and
| |
Collapse
|
28
|
Wu J, Zhang JR, Qin J. Clinical significance of methylation of E-cadherin and p14ARF gene promoters in skin squamous cell carcinoma tissues. Int J Clin Exp Med 2014; 7:1808-1812. [PMID: 25126184 PMCID: PMC4132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Epigenetic regulation of genes by DNA methylation contributes to cancer. The present study sought to identify methylation changes in the promoters of E-cadherin and p14ARF, two genes with potential cancer roles promoting in skin squamous cell carcinoma. Skin squamous cell carcinoma specimens were collected from 40 patients and normal skin tissues were collected from 30 individuals as controls. Promoter methylation was detected for E-cadherin and p14ARF by methylation-specific PCR. Correlations between E-cadherin or p14ARF methylation and clinicopathological parameters were analyzed by the Spearman rank test. Methylation of E-cadherin (37.5%) and p14ARF (60.0%) was significantly more common in skin squamous cell carcinoma than in normal skin tissue (10.0 and 6.7%, respectively; P < 0.05). Additionally, E-cadherin and p14ARF methylation were positively correlated within skin squamous cell carcinoma (r = 0.422, P = 0.007). Furthermore, methylation of these gene promoters in skin squamous cell carcinoma was correlated with differentiation, lymph node metastasis, and clinical stage (P < 0.05). Aberrant methylation in promoters of E-cadherin and p14ARF may promote occurrence and progression of skin squamous cell carcinoma.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng CityYancheng 224005, Jiangsu, China
| | - Jin-Rong Zhang
- Department of Laboratory Medicine, The People’s Hospital of Dafeng CityYancheng 224100, Jiangsu, China
| | - Jie Qin
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng CityYancheng 224005, Jiangsu, China
| |
Collapse
|
29
|
The roles of CD73 in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:460654. [PMID: 25126561 PMCID: PMC4121992 DOI: 10.1155/2014/460654] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023]
Abstract
Purinergic signaling has emerged as an important player in cancer progression and is regulated by a series of nucleotidases. Among the enzyme cascade, CD73, which catelyzes AMP breakdown to adenosine, has been found to be overexpressed in many types of cancer. Various factors and mechanisms are employed to regulate expression of CD73. Accumulating studies have shown that CD73 is a key regulatory molecule of cancer cells proliferation, migration and invasion in vitro, tumor angiogenesis, and tumor immune escape in vivo. With such important roles in cancer, CD73 has become an appealing therapy target. Recent evidences in mice models demonstrated that targeted blockade of CD73 could be a favorable therapeutic approach for cancer patients in the future. In this review, we will summarize the multiple roles of CD73 in cancer development, including its clinical significance, its promotive effects on tumor growth, metastasis, and angiogenesis, and its suppressive effects on immune response, regulatory mechanisms of CD73 expression, and current situation of anti-CD73 cancer therapy.
Collapse
|
30
|
Allard B, Turcotte M, Stagg J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opin Ther Targets 2014; 18:863-81. [PMID: 24798880 DOI: 10.1517/14728222.2014.915315] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite significant improvements in diagnosis and therapy over the past 20 years, breast cancer remains a worldwide public health issue. In particular, triple negative breast cancer (TNBC), a subset of very aggressive breast tumors, is associated with a poor prognosis and has very few efficient therapeutic options. The ectonucleotidase CD73 has recently emerged as a promising new target for TNBC in preclinical models. Pharmacological targeting of CD73 and downstream adenosine A2A/A2B receptor signaling is currently an active field of research that could lead to the development of new cancer therapeutics, including options against TNBC. AREAS COVERED This article reviews the basic structural and molecular features of CD73 and its role in the development of cancer, with a particular focus on CD73's role in the biology of TNBC. EXPERT OPINION It was recently demonstrated that CD73 expression in TNBC is associated with worse clinical outcomes and increased resistance to anthracycline chemotherapy. Targeted blockade of the CD73/A2A axis has been shown to impair various aspects of tumorigenesis and displays synergism with other anti-cancer treatments in preclinical studies. Hence, we strongly argue for the development of CD73 inhibitors and for the repositioning of A2A antagonists in cancer.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Pharmacie et Institut du Cancer de Montréal , 900 Rue Saint Denis, 10ième étage, Montréal H2X0X9, QC , Canada +514 890 8000 ext: 25170 ; +514 412 7661 ;
| | | | | |
Collapse
|
31
|
Allard B, Turcotte M, Spring K, Pommey S, Royal I, Stagg J. Anti-CD73 therapy impairs tumor angiogenesis. Int J Cancer 2013; 134:1466-73. [DOI: 10.1002/ijc.28456] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Martin Turcotte
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Kathleen Spring
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Sandra Pommey
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| | - Isabelle Royal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
- Department of Medicine; Université de Montréal; Montréal Québec Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Faculté de Pharmacie et Institut du Cancer de Montréal; Montréal Québec H2L 4M1 Canada
| |
Collapse
|
32
|
Pang JMB, Dobrovic A, Fox SB. DNA methylation in ductal carcinoma in situ of the breast. Breast Cancer Res 2013; 15:206. [PMID: 23826974 PMCID: PMC3707020 DOI: 10.1186/bcr3420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor lesion of invasive carcinoma of the breast. Current prognostic markers based on histopathological examination are unable to accurately predict which DCIS cases will progress to invasive carcinoma or recur after surgical excision. Epigenetic changes have been shown to be a significant driver of tumorigenesis, and DNA methylation of specific gene promoters provides predictive and prognostic markers in many types of cancer, including invasive breast cancer. In general, the spectrum of genes that are methylated in DCIS strongly resembles that seen in invasive ductal carcinoma. The identification of specific prognostic markers in DCIS remains elusive and awaits additional work investigating a large panel of methylatable genes by using sensitive and reproducible technologies. This review critically appraises the role of methylation in DCIS and its use as a biomarker.
Collapse
|
33
|
CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 2013; 110:11091-6. [PMID: 23776241 DOI: 10.1073/pnas.1222251110] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Using gene-expression data from over 6,000 breast cancer patients, we report herein that high CD73 expression is associated with a poor prognosis in triple-negative breast cancers (TNBC). Because anthracycline-based chemotherapy regimens are standard treatment for TNBC, we investigated the relationship between CD73 and anthracycline efficacy. In TNBC patients treated with anthracycline-only preoperative chemotherapy, high CD73 gene expression was significantly associated with a lower rate of pathological complete response or the disappearance of invasive tumor at surgery. Using mouse models of breast cancer, we demonstrated that CD73 overexpression in tumor cells conferred chemoresistance to doxorubicin, a commonly used anthracycline, by suppressing adaptive antitumor immune responses via activation of A2A adenosine receptors. Targeted blockade of CD73 enhanced doxorubicin-mediated antitumor immune responses and significantly prolonged the survival of mice with established metastatic breast cancer. Taken together, our data suggest that CD73 constitutes a therapeutic target in TNBC.
Collapse
|
34
|
Rust S, Guillard S, Sachsenmeier K, Hay C, Davidson M, Karlsson A, Karlsson R, Brand E, Lowne D, Elvin J, Flynn M, Kurosawa G, Hollingsworth R, Jermutus L, Minter R. Combining phenotypic and proteomic approaches to identify membrane targets in a 'triple negative' breast cancer cell type. Mol Cancer 2013; 12:11. [PMID: 23406016 PMCID: PMC3582597 DOI: 10.1186/1476-4598-12-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/06/2013] [Indexed: 11/28/2022] Open
Abstract
Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated using the anti-CD73 antibody, which bound other ‘triple negative’ breast cancer cell lines and produced significant tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Conclusions This study has demonstrated that multiple methods are required to successfully analyse the membranome of a desired cell type. It has also successfully demonstrated that phenotypic antibody screening provides a mechanism for rapidly discovering and evaluating antibody tractable targets, which can significantly accelerate the therapeutic discovery process.
Collapse
Affiliation(s)
- Steven Rust
- MedImmune, Granta Park, Cambridge, CB21 6GH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|