1
|
Expression Profiles of HOXC6 Predict the Survival of Glioblastoma Patients and Correlate with Cell Cycle. JOURNAL OF ONCOLOGY 2022; 2022:8656865. [PMID: 35432534 PMCID: PMC9007636 DOI: 10.1155/2022/8656865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2021] [Accepted: 03/13/2022] [Indexed: 12/05/2022]
Abstract
The goal of this study was to investigate the homeobox (HOX) gene expression status and its prognostic value in glioblastoma multiforme (GBM) and to uncover the biological processes related to its expression. The prognostic value of HOX genes in GBM was systematically investigated by a genome-wide analysis of HOX gene expression profiles in GBM patient samples in The Cancer Genome Atlas (TCGA) project (microarray dataset) and validation datasets. Using the differentially expressed gene (DEG) analysis and a Cox regression model, we discovered that the HOXC6 could stratify patients into significantly different survival (p = 0.0012, log-rank test) groups in the training cohort. TCGA RNA-seq and GSE16011 datasets were used for validation. Multivariate Cox and stratification analysis indicated that HOXC6 was an independent prognostic factor after adjusting for other clinical covariates. Bioinformatic analysis suggested that the HOXC6 might be involved in the cell cycle-related biological processes and pathways that are well established in the context of glioblastoma tumorigenesis. We further explored the bioinformatic implications by gene set enrichment analysis (GSEA). Tumor cell biology experiments verified the role of HOXC6 in proliferation and cell cycle progression. In conclusion, HOXC6 might be a candidate biomarker gene for individual treatment optimization of glioblastoma. HOXC6 expression has a significant prognostic value and is related to the cell cycle process in glioblastoma.
Collapse
|
2
|
Ardalan Khales S, Abbaszadegan MR, Hosseini SE, Forghanifard MM. Contribution of TWIST1-EVX1 Axis in Invasiveness of Esophageal Squamous Cell Carcinoma; a Functional Study. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e2733. [PMID: 36337061 PMCID: PMC9583822 DOI: 10.30498/ijb.2022.224786.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a biological process in embryonic development and cancer progression, and different gene families, such as HOX genes, are closely related to this process. OBJECTIVES Our aim in this study was to investigate the correlation between TWIST1 and EVX1 mRNA expression in ESCC patients and also examine the probable regulatory function of TWIST1 on EVX1 expression in human ESCC cell line. MATERIALS AND METHODS TWIST1 and EVX1 gene expression patterns were assessed in ESCC patients by relative comparative Real-time PCR then correlated with their clinical characteristics. In silico analysis of the EVX1 gene was conducted. KYSE-30 cells were transduced by a retroviral system to ectopically express TWIST1, followed by qRT-PCR to reveal the correlation between TWIST1 and EVX1 gene expression. RESULTS The expression of TWIST1 and EVX1 was correlated to each other significantly (p=0.005) in ESCC. Of 28 patients with under/normal expression of TWIST1, 22 samples (78.57%) had over/normal expression of EVX1. TWIST1 overexpression was correlated with advanced stages of the tumor (III, IV) (P = 0.019) and lymph node metastasis. However, EVX1 under expression was associated with lymph node metastasis (p = 0.027) and invasiveness of the disease (P = 0.037) in ESCC. Furthermore, retroviral transduction enforced significant overexpression of TWIST1 in GFP-hTWIST-1 approximately 9-fold compared to GFP control cells, causing a - 8.83- fold reduction in EVX1 mRNA expression significantly. CONCLUSIONS Our results indicated the repressive role of TWIST1 on EVX1 gene expression in ESCC. Therefore, our findings can help dissect the molecular mechanism of ESCC tumorigenesis and discover novel therapeutic targets for ESCC invasion and metastasis.
Collapse
Affiliation(s)
| | | | - Seyed Ebrahim Hosseini
- Department of Biology, Faculty of Sciences, Zand Institute of Higher Education, Shiraz, Iran
| | | |
Collapse
|
3
|
Khemees TA, Yang B, Schultz A, Allen GO, Gawdzik J, Nihal A, Richards KA, Abel EJ, Jarrard DF. Epigenetic field alterations in non-tumor prostate tissues detect prostate cancer in urine. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:479-488. [PMID: 34993267 PMCID: PMC8727791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
Prostate cancer (PC) development involves epigenetic DNA methylation changes that occur in the tumor. However, distinct DNA methylation changes have been previously found to encompass a widespread cancer field defect involving normal prostate tissue. In the current study, we analyzed a series of DNA methylation field markers to determine if they predict the presence of PC in urine. Urine samples were collected from patients undergoing prostate biopsy with biopsy-proven PC (90), and without PC (77). From the urine pellet, methylated DNA was quantified across several previously identified CpG island regions near the caveolin 1 (CAV1), even-skipped homeobox 1 (EVX1), fibroblast growth factor 1 (FGF1), natural cytotoxicity triggering receptor 2 (NCR2) and phospholipase A and acyltransferase 3 (PLA2G16) genes using bisulfite pyrosequencing. Univariate and multivariate analyses were performed. Urine cell pellets show significant increases in methylation in four of the markers from patients with PC compared to those without PC including EVX1 12.2 vs. 7.7%, CAV1 15.7 vs. 10.36%, FGF1 12.0 vs. 7.1%, and PLA2G16 12.2 vs. 8.3% [all P<0.01]. Area under the ROC Curve (AUCs) were generated for EXV1 (0.74, Odds ratios (OR) 1.09; 95% confidence intervals (CI) 0.94-1.25, CAV1 (0.72, OR 1.18; 95% CI 1.09-1.28) and PLA2G16 (0.76, OR 1.35; 95% CI 1.199-1.51). In combination, a two-marker assay performs better than prostate specific antigen (PSA), AUC 0.77 vs. PSA AUC of 0.6 (P = 0.01) with the lowest error. In addition, FGF1 distinguished between grade group 1 (GG1) and higher grade cancers (P<0.03). In conclusion, applying methylation of field defect loci to urine samples provides a novel approach to distinguish patients with and without cancer.
Collapse
Affiliation(s)
- Tariq A Khemees
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - Bing Yang
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - Adam Schultz
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - Glenn O Allen
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - Joseph Gawdzik
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - Aman Nihal
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - Kyle A Richards
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - E Jason Abel
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
| | - David F Jarrard
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison 53705, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-MadisonMadison 53705, WI, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-MadisonMadison 53705, WI, USA
| |
Collapse
|
4
|
Jarrard WE, Schultz A, Etheridge T, Damodaran S, Allen GO, Jarrard D, Yang B. Screening of urine identifies PLA2G16 as a field defect methylation biomarker for prostate cancer detection. PLoS One 2019; 14:e0218950. [PMID: 31233548 PMCID: PMC6590820 DOI: 10.1371/journal.pone.0218950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/12/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is a multifocal disease. DNA methylation alterations are not restricted to the immediate peritumor environment, but spatially widespread in the adjacent and distant histologically normal prostate tissues. In the current study, we utilized high-throughput methylation arrays to identify epigenetic changes in the urine from men with and without cancer. DESIGN, SETTING, AND PARTICIPANTS DNA urine samples were enriched for methylated fragments using MBD methyl-binding antibodies and applied to high density CytoScanHD arrays. Significant loci were validated using quantitative pyrosequencing and binary logistic regression modeling applied to urine sample analyses in a training (n = 83) and validation approach (n = 84). Methylation alterations in prostate tissues using pyrosequencing at the PLA2G16 locus were examined in 38 histologically normal specimens from men with (TA, n = 26) and without (NTA, n = 12) cancer and correlated to gene expression. RESULTS Methylation microarrays identified 3,986 loci showing significantly altered methylation in the urine samples from patients with PC compared to those without (TA vs NTA; p<0.01). These loci were then compared against subjects with their prostates removed to exclude non-prostate cell markers yielding 196 significant regions. Multiple CpGs adjacent to PLA2G16 CpG island showed increased methylation in TA compared to NTA (p<0.01) in a large validation study of urine samples. The predictive accuracy of PLA2G16 methylation at CG2 showed the highest predictive value at 0.8 (odds ratio, 1.37; 95% confidence interval, 1.16-1.62; p<0.001). Using a probability cutoff of 0.065, the sensitivity and specificity of the multivariate model was 92% and 35%. When histologically normal prostate tissues/biopsies from patients with PC (TA) were compared to subjects without cancer, significant hypermethylation of PLA2G16 was noted (odds ratio, 1.35; 95% confidence interval, 1.07-1.71; p = 0.01). CONCLUSION PLA2G16 methylation defines an extensive field defect in histologically normal prostate tissue associated with PC. PLA2G16 methylation in urine and prostate tissues can detect the presence of PC.
Collapse
Affiliation(s)
- William E. Jarrard
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States of America
| | - Adam Schultz
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States of America
| | - Tyler Etheridge
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Shivashankar Damodaran
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Glenn O. Allen
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - David Jarrard
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States of America
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Bing Yang
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
5
|
Roy R, Kandimalla R, Sonohara F, Koike M, Kodera Y, Takahashi N, Yamada Y, Goel A. A comprehensive methylation signature identifies lymph node metastasis in esophageal squamous cell carcinoma. Int J Cancer 2018; 144:1160-1169. [PMID: 30006931 DOI: 10.1002/ijc.31755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023]
Abstract
Treatment modalities in esophageal squamous cell carcinoma (ESCC) depend largely on lymph node metastasis (LNM) status. With suboptimal detection sensitivity of existing imaging techniques, we propose a methylation signature which identifies patients with LNM with greater accuracy. This would allow precise stratification of high-risk patients requiring more aggressive treatment from low-risk ESCC patients who can forego radical surgery. An unbiased genome-wide methylation signature for LNM detection was established from an initial in silico discovery phase. The signature was tested in independent clinical cohorts comprising of 249 ESCC patients. The prognostic potential of the methylation signature was compared to clinical variables including LNM status. A 10-probe LNM associated signature (LNAS) was developed using stringent bioinformatics analyses. The area under the curve values for LNAS risk scores were 0.81 and 0.88 in the training and validation cohorts respectively, in association with lymphatic vessel invasion and tumor stage. High LNAS risk-score was also associated with worse overall survival [HR (95% CI) 3 (1.8-4.8), p < 0.0001 training and 3.9 (1.5-10.2), p = 0.001 validation cohort]. In conclusion, our novel methylation signature is a powerful biomarker that identifies LNM status robustly and is also associated with worse prognosis in ESCC patients.
Collapse
Affiliation(s)
- Roshni Roy
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Raju Kandimalla
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Takahashi
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhide Yamada
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Rodrigues MFSD, Esteves CM, Xavier FCA, Nunes FD. Methylation status of homeobox genes in common human cancers. Genomics 2016; 108:185-193. [PMID: 27826049 DOI: 10.1016/j.ygeno.2016.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/27/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Approximately 300 homeobox loci were identified in the euchromatic regions of the human genome, of which 235 are probable functional genes and 65 are likely pseudogenes. Many of these genes play important roles in embryonic development and cell differentiation. Dysregulation of homeobox gene expression is a frequent occurrence in cancer. Accumulating evidence suggests that as genetics disorders, epigenetic modifications alter the expression of oncogenes and tumor suppressor genes driving tumorigenesis and perhaps play a more central role in the evolution and progression of this disease. Here, we described the current knowledge regarding homeobox gene DNA methylation in human cancer and describe its relevance in the diagnosis, therapeutic response and prognosis of different types of human cancers.
Collapse
Affiliation(s)
| | | | | | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Truong M, Yang B, Wagner J, Desotelle J, Jarrard DF. Analysis of promoter non-CG methylation in prostate cancer. Epigenomics 2013; 5:65-71. [PMID: 23414321 DOI: 10.2217/epi.12.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In vertebrates, DNA methylation occurs primarily at CG dinucleotides but recently, non-CG methylation has been found at appreciable levels in embryonic stem cells. MATERIALS & METHODS To assess non-CG methylation in cancer, we compared the extent of non-CG methylation at several biologically important CG islands in prostate cancer and normal cell lines. An assessment of the promoter CG islands EVX1 and FILIP1L demonstrates a fourfold higher rate of non-CG methylation at EVX1 compared with FILIP1L across all cell lines. These loci are densely methylated at CG sites in cancer. RESULTS No significant difference in non-CG methylation was demonstrated between cancer and normal. Treatment of cancer cell lines with 5-azacytidine significantly reduced methylation within EVX1 at CG and CC sites, preferentially. CONCLUSION Non-CG methylation does not correlate with CG methylation at hypermethylated promoter regions in cancer. Furthermore, global inhibition of DNA methyltransferases does not affect all methylated cytosines uniformly.
Collapse
Affiliation(s)
- Matthew Truong
- Department of Urology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
8
|
Javed S, Langley SEM. Importance of HOX genes in normal prostate gland formation, prostate cancer development and its early detection. BJU Int 2013; 113:535-40. [PMID: 23937390 DOI: 10.1111/bju.12269] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aims of this paper were to review the published literature on the role of HOX genes in the development of the normal prostate gland and in prostate cancer and to discuss the potential role of the HOX family member, Engrailed-2 (EN2), as a diagnostic test of PCa. Hox genes were first described in the fruit fly Drosphila melanogaster, where they specify the body plan and control the formation of body segments. They belong to a family of homeodomain-containing transcription factors that determine cell and tissue identity during normal embryonic development. They have been shown to be re-expressed by several different types of cancers. Studies have shown that different Hox genes are responsible for the development of the separate lobes of the prostate gland, the seminal vesicles and the epididymis. All HOX13 paralogues are expressed in the adult human prostate, suggesting the possibility of similarities between the function and expression of HOX genes within urological structures at similar anterior-posterior positions. The oncogenic and tumour suppressor signalling pathways associated with PCa converge on the HOX gene network, which ultimately controls gene expression, affecting tumour formation and metastatic progression. The Engrailed genes (EN1 and EN2) from the HOX gene family show a very high degree of functional conservation during embryonic development. Urinary EN2 is being investigated as a potential diagnostic marker of early PCa. It is secreted into the urine by PCa cells but not by normal prostatic tissue. A recent study has shown an association between urinary EN2 levels and cancer volume in radical prostatectomy specimens. The ability to predict tumour volume could inform the treatment decision-making process for patients with localized PCa choosing between active surveillance and radical treatment options.
Collapse
Affiliation(s)
- Saqib Javed
- Department of Urology, Royal Surrey County Hospital, Guildford, UK
| | | |
Collapse
|
9
|
Sato T, Arai E, Kohno T, Tsuta K, Watanabe SI, Soejima K, Betsuyaku T, Kanai Y. DNA methylation profiles at precancerous stages associated with recurrence of lung adenocarcinoma. PLoS One 2013; 8:e59444. [PMID: 23544068 PMCID: PMC3609833 DOI: 10.1371/journal.pone.0059444] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/14/2013] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to clarify the significance of DNA methylation alterations at precancerous stages of lung adenocarcinoma. Using single-CpG resolution Infinium array, genome-wide DNA methylation analysis was performed in 36 samples of normal lung tissue obtained from patients without any primary lung tumor, 145 samples of non-cancerous lung tissue (N) obtained from patients with lung adenocarcinomas, and 145 samples of tumorous tissue (T). Stepwise progression of DNA methylation alterations from normal lung tissue to non-cancerous lung tissue obtained from patients with lung adenocarcinomas, and then tumorous tissue samples, was observed at 3,270 CpG sites, suggesting that non-cancerous lung tissue obtained from patients with lung adenocarcinomas was at precancerous stages with DNA methylation alterations. At CpG sites of 2,083 genes, DNA methylation status in samples of non-cancerous lung tissue obtained from patients with lung adenocarcinomas was significantly correlated with recurrence after establishment of lung adenocarcinomas. Among such recurrence-related genes, 28 genes are normally unmethylated (average β-values based on Infinium assay in normal lung tissue samples was less than 0.2) and their DNA hypermethylation at precancerous stages was strengthened during progression to lung adenocarcinomas (Δβ(T-N)>0.1). Among these 28 genes, we focused on 6 for which implications in transcription regulation, apoptosis or cell adhesion had been reported. DNA hypermethylation of the ADCY5, EVX1, GFRA1, PDE9A, and TBX20 genes resulted in reduced mRNA expression in tumorous tissue samples. 5-Aza-2'-deoxycytidine treatment of lung cancer cell lines restored the mRNA expression levels of these 5 genes. Reduced mRNA expression in tumorous tissue samples was significantly correlated with tumor aggressiveness. These data suggest that DNA methylation alterations at precancerous stages determine tumor aggressiveness and outcome through silencing of specific genes.
Collapse
Affiliation(s)
- Takashi Sato
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-ichi Watanabe
- Department of Thoracic Oncology, Thoracic Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
10
|
Keita M, Wang ZQ, Pelletier JF, Bachvarova M, Plante M, Gregoire J, Renaud MC, Mes-Masson AM, Paquet ÉR, Bachvarov D. Global methylation profiling in serous ovarian cancer is indicative for distinct aberrant DNA methylation signatures associated with tumor aggressiveness and disease progression. Gynecol Oncol 2012; 128:356-63. [PMID: 23219462 DOI: 10.1016/j.ygyno.2012.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To characterize at high resolution the DNA methylation changes which occur in the genome of serous epithelial ovarian cancer (EOC) in association with tumor aggressiveness. METHODS Methylated DNA immunoprecipitation in combination with CpG island-tiling arrays was used to compare the methylation profiles of five borderline, five grade 1/stage III/IV, five grade 3/stage I and five grade 3/stage III/IV serous EOC tumors, to those of five normal human ovarian tissue samples. RESULTS We found widespread DNA hypermethylation that occurs even in low-malignant potential (borderline) tumors and which predominantly includes key developmental/homeobox genes. Contrary to DNA hypermethylation, significant DNA hypomethylation was observed only in grade 3 serous EOC tumors. The latter observation was further confirmed when comparing the DNA methylation profiles of primary cell cultures derived from matched tumor samples obtained prior to, and following chemotherapy treatment from two serous EOC patients with advanced disease. To our knowledge this is the first report that has shown the presence of massive DNA hypomethylation in advanced serous EOC, associated with tumor malignancy and disease progression. CONCLUSIONS Our data raise the concern that demethylating drugs that are currently being used in advanced EOC disease (representing the majority of serous EOC cases) might have adverse effects due to activation of oncogenes and prometastatic genes. Understanding the relative roles of hypomethylation and hypermethylation in cancer could have clear implications on the therapeutic use of agents targeting the DNA methylation machinery.
Collapse
Affiliation(s)
- Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Truong M, Yang B, Livermore A, Wagner J, Weeratunga P, Huang W, Dhir R, Nelson J, Lin DW, Jarrard DF. Using the epigenetic field defect to detect prostate cancer in biopsy negative patients. J Urol 2012; 189:2335-41. [PMID: 23159584 DOI: 10.1016/j.juro.2012.11.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE We determined whether a novel combination of field defect DNA methylation markers could predict the presence of prostate cancer using histologically normal transrectal ultrasound guided biopsy cores. MATERIALS AND METHODS Methylation was assessed using quantitative Pyrosequencing® in a training set consisting of 65 nontumor and tumor associated prostate tissues from University of Wisconsin. A multiplex model was generated using multivariate logistic regression and externally validated in blinded fashion in a set of 47 nontumor and tumor associated biopsy specimens from University of Washington. RESULTS We observed robust methylation differences in all genes at all CpGs assayed (p <0.0001). Regression models incorporating individual genes (EVX1, CAV1 and FGF1) and a gene combination (EVX1 and FGF1) discriminated nontumor from tumor associated tissues in the original training set (AUC 0.796-0.898, p <0.001). On external validation uniplex models incorporating EVX1, CAV1 or FGF1 discriminated tumor from nontumor associated biopsy negative specimens (AUC 0.702, 0.696 and 0.658, respectively, p <0.05). A multiplex model (EVX1 and FGF1) identified patients with prostate cancer (AUC 0.774, p = 0.001) and had a negative predictive value of 0.909. Comparison between 2 separate cores in patients in this validation set revealed similar methylation defects, indicating detection of a widespread field defect. CONCLUSIONS A widespread epigenetic field defect can be used to detect prostate cancer in patients with histologically negative biopsies. To our knowledge this assay is unique, in that it detects alterations in nontumor cells. With further validation this marker combination (EVX1 and FGF1) has the potential to decrease the need for repeat prostate biopsies, a procedure associated with cost and complications.
Collapse
Affiliation(s)
- Matthew Truong
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|