1
|
Houlahan KE, Bihie M, Contreras JG, Fulop DJ, Lopez G, Huang HH, Van Loo P, Curtis C, Boutros PC, Huang KL. Deletions Rate-Limit Breast and Ovarian Cancer Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618945. [PMID: 39484366 PMCID: PMC11526986 DOI: 10.1101/2024.10.17.618945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Optimizing prevention and early detection of cancer requires understanding the number, types and timing of driver mutations. To quantify this, we exploited the elevated cancer incidence and mutation rates in germline BRCA1 and BRCA2 (gBRCA1/2) carriers. Using novel statistical models, we identify genomic deletions as the likely rate-limiting mutational processes, with 1-3 deletions required to initiate breast and ovarian tumors. gBRCA1/2 -driven hereditary and sporadic tumors undergo convergent evolution to develop a similar set of driver deletions, and deletions explain the elevated cancer risk of gBRCA1/2 -carriers. Orthogonal mutation timing analysis identifies deletions of chromosome 17 and 13q as early, recurrent events. Single-cell analyses confirmed deletion rate differences in gBRCA1/2 vs. non-carrier tumors as well as cells engineered to harbor gBRCA1/2 . The centrality of deletion-associated chromosomal instability to tumorigenesis shapes interpretation of the somatic evolution of non-malignant tissue and guides strategies for precision prevention and early detection.
Collapse
|
2
|
Longo MA, Ahmed SM, Chen Y, Tsai CL, Namjoshi S, Wang X, Perera RL, Arvai A, Lee M, Kong LR, Engl W, Shyuan W, Zhao ZW, Venkitaraman AR, Tainer JA, Schlacher K. BRCA2 C-terminal clamp restructures RAD51 dimers to bind B-DNA for replication fork stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614229. [PMID: 39345573 PMCID: PMC11429943 DOI: 10.1101/2024.09.21.614229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Tumor suppressor protein BRCA2 acts with RAD51 in replication-fork protection (FP) and homology-directed DNA break repair (HDR). Critical for cancer etiology and therapy resistance, BRCA2 C-terminus was thought to stabilize RAD51-filaments after they assemble on single-stranded (ss)DNA. Here we determined the detailed crystal structure for BRCA2 C-terminal interaction-domain (TR2i) with ATP-bound RAD51 prior to DNA binding. In contrast to recombinogenic RAD51-filaments comprising extended ATP-bound RAD51 dimers, TR2i unexpectedly reshapes ATP-RAD51 into a unique dimer conformation accommodating double-stranded B-DNA binding unsuited for HDR initiation. Structural, biochemical, and molecular results with interface-guided mutations uncover TR2i's FP mechanism. Proline-driven secondary-structure stabilizes residue triads and spans the RAD51 dimer engaging pivotal interactions of RAD51 M210 and BRCA2 S3291/P3292, the cyclin-dependent kinase (CDK) phosphorylation site that toggles between FP during S-phase and HDR in G2. TR2i evidently acts as an allosteric clamp switching RAD51 from ssDNA to double-stranded and B-DNA binding enforcing FP over HDR.
Collapse
|
3
|
Chen M, van den Tempel N, Bhattacharya A, Yu S, Rutgers B, Fehrmann RS, de Haas S, van der Vegt B, van Vugt MA. Functional ex vivo DNA fibre assay to measure replication dynamics in breast cancer tissue. J Pathol 2024; 264:90-100. [PMID: 39022850 DOI: 10.1002/path.6328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Replication stress (RS) is a key trait of cancer cells, and a potential actionable target in cancer treatment. Accurate methods to measure RS in tumour samples are currently lacking. DNA fibre analysis has been used as a common technique to measure RS in cell lines. Here, we investigated DNA fibre analysis on fresh breast cancer specimens and correlated DNA replication kinetics to known RS markers and genomic alterations. Fresh, treatment-naïve primary breast cancer samples (n = 74) were subjected to ex vivo DNA fibre analysis to measure DNA replication kinetics. Tumour cell proliferation was confirmed by EdU incorporation and cytokeratin AE1/AE3 (CK) staining. The RS markers phospho-S33-RPA and γH2AX and the RS-inducing proto-oncogenes Cyclin E1 and c-Myc were analysed by immunohistochemistry. Copy number variations (CNVs) were assessed from genome-wide single nucleotide polymorphism (SNP) arrays. We found that the majority of proliferating (EdU-positive) cells in each sample were CK-positive and therefore considered to be tumour cells. DNA fibre lengths varied largely in most tumour samples. The median DNA fibre length showed a significant inverse correlation with pRPA expression (r = -0.29, p = 0.033) but was not correlated with Cyclin E1 or c-Myc expression and global CNVs in this study. Nuclear Cyclin E1 expression showed a positive correlation with pRPA levels (r = 0.481, p < 0.0001), while cytoplasmic Cyclin E1 expression exhibited an inverse association with pRPA expression (r = -0.353, p = 0.002) and a positive association with global CNVs (r = 0.318, p = 0.016). In conclusion, DNA fibre analysis performed with fresh primary breast cancer samples is feasible. Fibre lengths were associated with pRPA expression. Cyclin E1 expression was associated with pRPA and the percentage of CNVs. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arkajyoti Bhattacharya
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shibo Yu
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf Sn Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sander de Haas
- Division of Pathology, Martini Hospital, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel Atm van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Safonov A, Marra A, Bandlamudi C, O'Leary B, Wubbenhorst B, Ferraro E, Moiso E, Lee M, An J, Donoghue MTA, Will M, Pareja F, Nizialek E, Lukashchuk N, Sofianopoulou E, Liu Y, Huang X, Ahmed M, Mehine MM, Ross D, Mandelker D, Ladanyi M, Schultz N, Berger MF, Scaltriti M, Reis-Filho JS, Li BT, Offit K, Norton L, Shen R, Shah S, Maxwell KN, Couch F, Domchek SM, Solit DB, Nathanson KL, Robson ME, Turner NC, Chandarlapaty S, Razavi P. Tumor suppressor heterozygosity and homologous recombination deficiency mediate resistance to front-line therapy in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578934. [PMID: 39253462 PMCID: PMC11383285 DOI: 10.1101/2024.02.05.578934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The co-occurrence of germline and somatic oncogenic alterations is frequently observed in breast cancer, but their combined biologic and clinical significance has not been evaluated. To assess the role of germline-somatic interactions on outcomes in routine practice, we developed an integrated clinicogenomic pipeline to analyze the genomes of over 4,500 patients with breast cancer. We find that germline (g) BRCA2 -associated tumors are enriched for RB1 loss-of-function mutations and manifest poor outcomes on standard-of-care, front-line CDK4/6 inhibitor (CDK4/6i) combinations. Amongst these tumors, g BRCA2 -related homologous recombination deficiency (HRD) as well as baseline RB1 LOH status promote acquisition of RB1 loss-of- function mutations under the selective pressure of CDK4/6i, causing therapy resistance. These findings suggest an alternative therapeutic strategy using sequential targeting of HRD in g BRCA- associated breast cancers through PARP inhibitors prior to CDK4/6i therapy to intercept deleterious RB1 -loss trajectories and thus suppress the emergence of CDK4/6 inhibitor resistance. More broadly, our findings demonstrate how germline-somatic driven genomic configurations shape response to systemic therapy and can be exploited therapeutically as part of biomarker-directed clinical strategies.
Collapse
|
5
|
Dinh KN, Vázquez-García I, Chan A, Malhotra R, Weiner A, McPherson AW, Tavaré S. CINner: modeling and simulation of chromosomal instability in cancer at single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587939. [PMID: 38617259 PMCID: PMC11014621 DOI: 10.1101/2024.04.03.587939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cancer development is characterized by chromosomal instability, manifesting in frequent occurrences of different genomic alteration mechanisms ranging in extent and impact. Mathematical modeling can help evaluate the role of each mutational process during tumor progression, however existing frameworks can only capture certain aspects of chromosomal instability (CIN). We present CINner, a mathematical framework for modeling genomic diversity and selection during tumor evolution. The main advantage of CINner is its flexibility to incorporate many genomic events that directly impact cellular fitness, from driver gene mutations to copy number alterations (CNAs), including focal amplifications and deletions, missegregations and whole-genome duplication (WGD). We apply CINner to find chromosome-arm selection parameters that drive tumorigenesis in the absence of WGD in chromosomally stable cancer types. We found that the selection parameters predict WGD prevalence among different chromosomally unstable tumors, hinting that the selective advantage of WGD cells hinges on their tolerance for aneuploidy and escape from nullisomy. Direct application of CINner to model the WGD proportion and fraction of genome altered (FGA) further uncovers the increase in CNA probabilities associated with WGD in each cancer type. CINner can also be utilized to study chromosomally stable cancer types, by applying a selection model based on driver gene mutations and focal amplifications or deletions. Finally, we used CINner to analyze the impact of CNA probabilities, chromosome selection parameters, tumor growth dynamics and population size on cancer fitness and heterogeneity. We expect that CINner will provide a powerful modeling tool for the oncology community to quantify the impact of newly uncovered genomic alteration mechanisms on shaping tumor progression and adaptation.
Collapse
Affiliation(s)
- Khanh N. Dinh
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Ignacio Vázquez-García
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chan
- Case Western Reserve University, Cleveland, OH, USA
| | - Rhea Malhotra
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Stanford University, Palo Alto, CA, USA
| | - Adam Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew W. McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Tavaré
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Schouten PC, Richters L, Vis DJ, Kommoss S, van Dijk E, Ernst C, Kluin RJ, Marmé F, Lips EH, Schmidt S, Scheerman E, Prieske K, van Deurzen CH, Burges A, Ewing-Graham PC, Dietrich D, Jager A, de Gregorio N, Hauke J, du Bois A, Nederlof PM, Wessels LF, Hahnen E, Harter P, Linn SC, Schmutzler RK. Ovarian Cancer-Specific BRCA-like Copy-Number Aberration Classifiers Detect Mutations Associated with Homologous Recombination Deficiency in the AGO-TR1 Trial. Clin Cancer Res 2021; 27:6559-6569. [PMID: 34593530 PMCID: PMC9401539 DOI: 10.1158/1078-0432.ccr-21-1673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Previously, we developed breast cancer BRCA1-like and BRCA2-like copy-number profile shrunken centroid classifiers predictive for mutation status and response to therapy, targeting homologous recombination deficiency (HRD). Therefore, we investigated BRCA1- and BRCA2-like classification in ovarian cancer, aiming to acquire classifiers with similar properties as those in breast cancer.Experimental Design: We analyzed DNA copy-number profiles of germline BRCA1- and BRCA2-mutant ovarian cancers and control tumors and observed that existing breast cancer classifiers did not sufficiently predict mutation status. Hence, we trained new shrunken centroid classifiers on this set and validated them in the independent The Cancer Genome Atlas dataset. Subsequently, we assessed BRCA1/2-like classification and obtained germline and tumor mutation and methylation status of cancer predisposition genes, among them several involved in HR repair, of 300 ovarian cancer samples derived from the consecutive cohort trial AGO-TR1 (NCT02222883). RESULTS The detection rate of the BRCA1-like classifier for BRCA1 mutations and promoter hypermethylation was 95.6%. The BRCA2-like classifier performed less accurately, likely due to a smaller training set. Furthermore, three quarters of the BRCA1/2-like tumors could be explained by (epi)genetic alterations in BRCA1/2, germline RAD51C mutations and alterations in other genes involved in HR. Around half of the non-BRCA-mutated ovarian cancer cases displayed a BRCA-like phenotype. CONCLUSIONS The newly trained classifiers detected most BRCA-mutated and methylated cancers and all tumors harboring a RAD51C germline mutations. Beyond that, we found an additional substantial proportion of ovarian cancers to be BRCA-like.
Collapse
Affiliation(s)
- Philip C. Schouten
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Author: Philip C. Schouten, Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands. Phone: 312-051-2449; E-mail:
| | - Lisa Richters
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Daniel J. Vis
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Ewald van Dijk
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Roelof J.C. Kluin
- Genomics Core Facility, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Frederik Marmé
- Department of Gynecologic Oncology, Medical Faculty Mannheim, University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Esther H. Lips
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sandra Schmidt
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Esther Scheerman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Katharina Prieske
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Alexander Burges
- Department of Gynecology and Obstetrics, University Hospital Munich-Großhadern, Munich, Germany
| | | | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC, Rotterdam, the Netherlands
| | - Nikolaus de Gregorio
- Department of Gynecology and Obstetrics, University Hospital, University of Ulm, Ulm, Germany
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Petra M. Nederlof
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F. Wessels
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - Sabine C. Linn
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
7
|
Teng K, Ford MJ, Harwalkar K, Li Y, Pacis AS, Farnell D, Yamanaka N, Wang YC, Badescu D, Ton Nu TN, Ragoussis J, Huntsman DG, Arseneau J, Yamanaka Y. Modeling High-Grade Serous Ovarian Carcinoma Using a Combination of In Vivo Fallopian Tube Electroporation and CRISPR-Cas9-Mediated Genome Editing. Cancer Res 2021; 81:5147-5160. [PMID: 34301761 PMCID: PMC9397628 DOI: 10.1158/0008-5472.can-20-1518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/16/2020] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer to date. High-grade serous ovarian carcinoma (HGSOC) accounts for most ovarian cancer cases, and it is most frequently diagnosed at advanced stages. Here, we developed a novel strategy to generate somatic ovarian cancer mouse models using a combination of in vivo electroporation and CRISPR-Cas9-mediated genome editing. Mutation of tumor suppressor genes associated with HGSOC in two different combinations (Brca1, Tp53, Pten with and without Lkb1) resulted in successfully generation of HGSOC, albeit with different latencies and pathophysiology. Implementing Cre lineage tracing in this system enabled visualization of peritoneal micrometastases in an immune-competent environment. In addition, these models displayed copy number alterations and phenotypes similar to human HGSOC. Because this strategy is flexible in selecting mutation combinations and targeting areas, it could prove highly useful for generating mouse models to advance the understanding and treatment of ovarian cancer. SIGNIFICANCE: This study unveils a new strategy to generate genetic mouse models of ovarian cancer with high flexibility in selecting mutation combinations and targeting areas.
Collapse
Affiliation(s)
- Katie Teng
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Matthew J Ford
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - YuQi Li
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Alain S Pacis
- Canadian Centre for Computational Genomics, McGill University, Montreal, Canada
| | - David Farnell
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Yu-Chang Wang
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Tuyet Nhung Ton Nu
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
- Department of Bioengineering, McGill University, Montreal, Canada
| | - David G Huntsman
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Jocelyne Arseneau
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada.
- Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol 2019; 42:215-231. [PMID: 31067289 PMCID: PMC6687356 DOI: 10.1590/1678-4685-gmb-2018-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA) genes confer high risk of developing cancer, especially breast and ovarian tumors. Since the cloning of these tumor suppressor genes over two decades ago, a significant amount of research has been done. Most recently, monoallelic loss-of-function mutations in PALB2 have also been shown to increase the risk of breast cancer. The identification of BRCA1, BRCA2 and PALB2 as proteins involved in DNA double-strand break repair by homologous recombination and of the impact of complete loss of BRCA1 or BRCA2 within tumors have allowed the development of novel therapeutic approaches for patients with germline or somatic mutations in said genes. Despite the advances, especially in the clinical use of PARP inhibitors, key gaps remain. Now, new roles for BRCA1 and BRCA2 are emerging and old concepts, such as the classical two-hit hypothesis for tumor suppression, have been questioned, at least for some BRCA functions. Here aspects regarding cancer predisposition, cellular functions, histological and genomic findings in BRCA and PALB2-related tumors will be presented, in addition to an up-to-date review of the evolution and challenges in the development and clinical use of PARP inhibitors.
Collapse
Affiliation(s)
- Gabriel S Macedo
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Barbara Alemar
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Kan SF, Wang J, Sun GX. Sulforaphane regulates apoptosis- and proliferation‑related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. Int J Mol Med 2018; 42:2447-2458. [PMID: 30226534 PMCID: PMC6192763 DOI: 10.3892/ijmm.2018.3860] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is currently the most life‑threatening type of gynecological malignancy with limited treatment options. Therefore, improved targeted therapies are required to combat ovarian cancer across the world. Sulforaphane is found in raw cruciferous vegetables. The chemotherapeutic and anti‑carcinogenic properties of sulforaphane have been demonstrated, however, the underlying mechanisms remain to be fully elucidated, particularly in ovarian cancer. In the present study, the possibility of repurposing sulforaphane as an anti‑ovarian cancer agent was examined. Cell viability and colony formation assay were used to test the anticancer efficiency of sulforaphane. Then wound healing assay, migration assay, cell cycle and apoptosis assays were used to detect how the drug worked on the cells. The mechanism of sulforaphane was investigated by western blot analysis. It was found that sulforaphane effectively suppressed the progression of human ovarian cancer cell proliferation, migration and cell cycle, and promoted apoptosis. Sulforaphane inhibited multiple cancer‑associated signaling pathways, including B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein, cytochrome c, Caspase‑3, phosphorylated AKT, phosphorylated nuclear factor‑κB, P53, P27, Cyclin‑D1 and cMyc, and reduced the expression levels of human epidermal growth factor receptor 2 in human ovarian cancer cells. Sulforaphane synergized with cisplatin to suppress the cancer cell proliferation and enhance ovarian cancer cell apoptosis. Xenograft experiments in vivo confirmed that sulforaphane effectively suppressed tumor growth by inhibiting ovarian cancer cell proliferation through targeting tumor‑related signals. The results indicated that sulforaphane may be repurposed as an effective anti‑ovarian cancer agent, with further preclinical or clinical investigations required.
Collapse
Affiliation(s)
| | - Jian Wang
- Department of Gynecology, Zaozhuang City Hospital, Zaozhuang, Shandong 277102, P.R. China
| | | |
Collapse
|
10
|
Felicio PS, Bidinotto LT, Melendez ME, Grasel RS, Campacci N, Galvão HCR, Scapulatempo-Neto C, Dufloth RM, Evangelista AF, Palmero EI. Genetic alterations detected by comparative genomic hybridization in BRCAX breast and ovarian cancers of Brazilian population. Oncotarget 2018; 9:27525-27534. [PMID: 29938003 PMCID: PMC6007956 DOI: 10.18632/oncotarget.25537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background About 5–10% of breast/ovarian cancers are hereditary. However, for a large proportion of cases (around 50%), the genetic cause remains unknown. These cases are grouped in a separated BRCAX category. The aim of this study was to identify genomic alterations in BRCA1/BRCA2 wild-type tumor samples from women with family history strongly suggestive of hereditary breast/ovarian cancer. Results A cohort of 31 Brazilian women was included in the study. Using the GISTIC algorithm, we identified 20 regions with genomic gains and 31 with losses. The most frequent altered regions were 1q21.2, 6p22.1 and 8p23.3 in breast tumors and Xq26 and Xp22.32-22.31 among the ovarian cancer cases. An interesting association identified was the loss of 22q13.31-13.32 and the presence of ovarian cancer cases. Among the genes present in the frequently altered regions, we found FGFR1, NSMCE2, CTTN, CRLF2, ERBB2, STARD3, MIR3201 and several genes of RAET and ULBP family. Conclusions In conclusion, our results suggest that alterations on chromosomes 1, 6, 8 and X are common on BRCAX tumors and that the loss on 22q can be associated with the presence of ovarian cancer. Methods DNA copy number alterations were analyzed by 60K array comparative genomic hybridization in breast and ovarian FFPE tumors.
Collapse
Affiliation(s)
- Paula Silva Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Lucas Tadeu Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| | | | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | | | | | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| |
Collapse
|
11
|
Wang D, Qian X, Rajaram M, Durkin ME, Lowy DR. DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers. Oncotarget 2018; 7:45144-45157. [PMID: 27174913 PMCID: PMC5216712 DOI: 10.18632/oncotarget.9266] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/10/2016] [Indexed: 01/12/2023] Open
Abstract
The RHO family of RAS-related GTPases in tumors may be activated by reduced levels of RHO GTPase accelerating proteins (GAPs). One common mechanism is decreased expression of one or more members of the Deleted in Liver Cancer (DLC) family of Rho-GAPs, which comprises three closely related genes (DLC1, DLC2, and DLC3) that are down-regulated in a wide range of malignancies. Here we have studied their comparative biological activity in cultured cells and used publicly available datasets to examine their mRNA expression patterns in normal and cancer tissues, and to explore their relationship to cancer phenotypes and survival outcomes. In The Cancer Genome Atlas (TCGA) database, DLC1 expression predominated in normal lung, breast, and liver, but not in colorectum. Conversely, reduced DLC1 expression predominated in lung squamous cell carcinoma (LSC), lung adenocarcinoma (LAD), breast cancer, and hepatocellular carcinoma (HCC), but not in colorectal cancer. Reduced DLC1 expression was frequently associated with promoter methylation in LSC and LAD, while DLC1 copy number loss was frequent in HCC. DLC1 expression was higher in TCGA LAD patients who remained cancer-free, while low DLC1 had a poorer prognosis than low DLC2 or low DLC3 in a more completely annotated database. The poorest prognosis was associated with low expression of both DLC1 and DLC2 (P < 0.0001). In cultured cells, the three genes induced a similar reduction of Rho-GTP and cell migration. We conclude that DLC1 is the predominant family member expressed in several normal tissues, and its expression is preferentially reduced in common cancers at these sites.
Collapse
Affiliation(s)
- Dunrui Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Rajaram
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Current address: BioTek Instruments Inc., Winooski, VT 05404, USA
| | - Marian E Durkin
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Paclitaxel is necessary for improved survival in epithelial ovarian cancers with homologous recombination gene mutations. Oncotarget 2018; 7:48577-48585. [PMID: 27191893 PMCID: PMC5217039 DOI: 10.18632/oncotarget.9373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/29/2016] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To investigate the impact of somatic mutations in homologous recombination (HR) genes on the chemotherapeutic response and survival of patients with epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN We performed targeted massively parallel sequencing of tumor DNA from 158 patients with EOC. We associated adjuvant chemotherapy and clinical outcome with mutations in selected genes, focusing on those encoding HR proteins. RESULTS HR mutations were found in 47 (30%) tumors. We did not detect an overall survival (OS) difference in advanced stage patients whose tumors had HR mutations compared to those without (median OS of 49.6 months (95% CI 29.9-57.7) vs. 43.3 months (95% CI 31.9-75.47), p = 0.87). However, when stratified by chemotherapy regimen, patients whose tumors had TP53 and HR mutations demonstrated a marked survival advantage when treated with platinum and paclitaxel vs. platinum +/− cyclophosphamide (median OS of 90 months (95% CI 50-NA) vs. 29.5 months (95% CI 17.7-50.5), p = 0.0005). CONCLUSIONS Previous studies demonstrating a survival advantage for EOC patients with somatic HR mutations have been conducted with almost universal use of both platinum and paclitaxel. Our study is the first to our knowledge to compare cohorts with somatic HR gene mutations treated with and without paclitaxel containing platinum regimens. The survival benefit attributed to the platinum sensitivity of HR deficient ovarian cancers may depend upon the combined use of paclitaxel.
Collapse
|
13
|
BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun 2017; 8:319. [PMID: 28831036 PMCID: PMC5567274 DOI: 10.1038/s41467-017-00388-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Complete loss of BRCA1 or BRCA2 function is associated with sensitivity to DNA damaging agents. However, not all BRCA1 and BRCA2 germline mutation-associated tumors respond. Herein we report analyses of 160 BRCA1 and BRCA2 germline mutation-associated breast and ovarian tumors. Retention of the normal BRCA1 or BRCA2 allele (absence of locus-specific loss of heterozygosity (LOH)) is observed in 7% of BRCA1 ovarian, 16% of BRCA2 ovarian, 10% of BRCA1 breast, and 46% of BRCA2 breast tumors. These tumors have equivalent homologous recombination deficiency scores to sporadic tumors, significantly lower than scores in tumors with locus-specific LOH (ovarian, P = 0.0004; breast P < 0.0001, two-tailed Student’s t-test). Absence of locus-specific LOH is associated with decreased overall survival in ovarian cancer patients treated with platinum chemotherapy (P = 0.01, log-rank test). Locus-specific LOH may be a clinically useful biomarker to predict primary resistance to DNA damaging agents in patients with germline BRCA1 and BRCA2 mutations. Most tumours associated with germline BRCA1/BRCA2 loss of function mutations respond to DNA damaging agents, however, some do not. Herein, the authors identify that a subset of breast/ovarian tumors retain a normal allele, which is associated with decreased overall survival after DNA damage-inducing platinum chemotherapy.
Collapse
|
14
|
WWOX CNV-67048 Functions as a Risk Factor for Epithelial Ovarian Cancer in Chinese Women by Negatively Interacting with Oral Contraceptive Use. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6594039. [PMID: 27190995 PMCID: PMC4842385 DOI: 10.1155/2016/6594039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022]
Abstract
Copy number variations (CNVs) have attracted increasing evidences to represent their roles as cancer susceptibility regulators. However, little is known about the role of CNV in epithelia ovarian cancer (EOC). Recently, the CNV-67048 of WW domain-containing oxidoreductase (WWOX) was reported to alter cancer risks. Considering that WWOX also plays a role in EOC, we hypothesized that the CNV-67048 was associated with EOC risk. In a case-control study of 549 EOC patients and 571 age (±5 years) matched cancer-free controls, we found that the low copy number of CNV-67048 (1-copy and 0-copy) conferred a significantly increased risk of EOC (OR = 1.346, 95% CI = 1.037–1.747) and it determined the risk by means of copy number-dependent dosage effect (P = 0.009). Data from TCGA also confirmed the abovementioned association as the frequency of low copies in EOC group was 3.68 times more than that in healthy group (P = 0.023). The CNV also negatively interacted with oral contraceptive use on EOC risk (P = 0.042). Functional analyses further showed a lower mRNA level of WWOX in tissues with the 0-copy or 1-copy than that in those with the 2-copy (P = 0.045). Our data suggested the CNV-67048 to be a risk factor of EOC in Chinese women.
Collapse
|
15
|
Melatonin Suppresses the Growth of Ovarian Cancer Cell Lines (OVCAR-429 and PA-1) and Potentiates the Effect of G1 Arrest by Targeting CDKs. Int J Mol Sci 2016; 17:ijms17020176. [PMID: 26840297 PMCID: PMC4783910 DOI: 10.3390/ijms17020176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022] Open
Abstract
Melatonin is found in animals as well as plants. In animals, it is a hormone that anticipates the daily onset of darkness and regulates physiological functions, such as sleep timing, blood pressure, and reproduction. Melatonin has also been found to have anti-tumor properties. Malignant cancers are the most common cause of death, and the mortality rate of ovarian tumor is the highest among gynecological diseases. This study investigated the anti-tumor effects of melatonin on the ovarian cancer lines, OVCAR-429 and PA-1. We observed the accumulation of melatonin-treated cells in the G1 phase due to the down-regulation of CDK 2 and 4. Our results suggest that in addition to the known effects on prevention, melatonin may also provide anti-tumor activity in established ovarian cancer.
Collapse
|
16
|
Lambrechts S, Smeets D, Moisse M, Braicu EI, Vanderstichele A, Zhao H, Van Nieuwenhuysen E, Berns E, Sehouli J, Zeillinger R, Darb-Esfahani S, Cacsire Castillo-Tong D, Lambrechts D, Vergote I. Genetic heterogeneity after first-line chemotherapy in high-grade serous ovarian cancer. Eur J Cancer 2015; 53:51-64. [PMID: 26693899 DOI: 10.1016/j.ejca.2015.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Most high-grade serous ovarian carcinoma (HGSOC) patients benefit from first-line platinum-based chemotherapy, but progressively develop resistance during subsequent lines. Re-activating BRCA1 or MDR1 mutations can underlie platinum resistance in end-stage patients. However, little is known about resistance mechanisms occurring after a single line of platinum, when patients still qualify for other treatments. METHODS In 31 patients with primary platinum-sensitive HGSOC, we profiled tumours collected during debulking surgery before and after first-line chemotherapy using whole-exome sequencing and single nucleotide polymorphism profiling. RESULTS Besides germline BRCA1/2 mutations, we observed frequent loss-of-heterozygosity in homologous recombination (HR) genes and mutation spectra characteristic of HR-deficiency in all tumours. At relapse, tumours differed considerably from their primary counterparts. There was, however, no evidence of events reactivating the HR pathway, also not in tumours resistant to second-line platinum. Instead, a platinum score of 13 copy number regions, among other genes including MECOM, CCNE1 and ERBB2, correlated with platinum-free interval (PFI) after first-line therapy, whereas an increase of this score in recurrent tumours predicted the change in PFI during subsequent therapy. CONCLUSIONS Already after a single line of platinum, there is huge variability between primary and recurrent tumours, advocating that in HGSOC biopsies need to be collected at relapse to tailor treatment options to the underlying genetic profile. Nevertheless, all primary platinum-sensitive HGSOCs remained HR-deficient, irrespective of whether they became resistant to second-line platinum, further suggesting these tumours qualify for second-line Poly APD ribose polymerase (PARP) inhibitor treatment. Finally, chromosomal instability contributes to acquired resistance after a single line of platinum therapy.
Collapse
Affiliation(s)
- Sandrina Lambrechts
- Division of Gynecological Oncology, Leuven Cancer Institute, Department of Gynaecology and Obstetrics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Dominiek Smeets
- Laboratory for Translational Genetics, Vesalius Research Center, VIB, Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Matthieu Moisse
- Laboratory for Translational Genetics, Vesalius Research Center, VIB, Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Elena Ioana Braicu
- Department of Gynecology and Obstetrics, European Competence Center for Ovarian Cancer, Charité-University Medicine of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adriaan Vanderstichele
- Division of Gynecological Oncology, Leuven Cancer Institute, Department of Gynaecology and Obstetrics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Vesalius Research Center, VIB, Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hui Zhao
- Laboratory for Translational Genetics, Vesalius Research Center, VIB, Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Division of Gynecological Oncology, Leuven Cancer Institute, Department of Gynaecology and Obstetrics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Els Berns
- Erasmus MC, Cancer Institute, Department Medical Oncology, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Jalid Sehouli
- Department of Gynecology and Obstetrics, European Competence Center for Ovarian Cancer, Charité-University Medicine of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Silvia Darb-Esfahani
- Department of Gynecology and Obstetrics, European Competence Center for Ovarian Cancer, Charité-University Medicine of Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dan Cacsire Castillo-Tong
- Erasmus MC, Cancer Institute, Department Medical Oncology, s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Vesalius Research Center, VIB, Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ignace Vergote
- Division of Gynecological Oncology, Leuven Cancer Institute, Department of Gynaecology and Obstetrics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
17
|
Gayarre J, Kamieniak MM, Cazorla-Jiménez A, Muñoz-Repeto I, Borrego S, García-Donas J, Hernando S, Robles-Díaz L, García-Bueno JM, Ramón Y Cajal T, Hernández-Agudo E, Heredia Soto V, Márquez-Rodas I, Echarri MJ, Lacambra-Calvet C, Sáez R, Cusidó M, Redondo A, Paz-Ares L, Hardisson D, Mendiola M, Palacios J, Benítez J, García MJ. The NER-related gene GTF2H5 predicts survival in high-grade serous ovarian cancer patients. J Gynecol Oncol 2015; 27:e7. [PMID: 26463438 PMCID: PMC4695457 DOI: 10.3802/jgo.2016.27.e7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We aimed to evaluate the prognostic and predictive value of the nucleotide excision repair-related gene GTF2H5, which is localized at the 6q24.2-26 deletion previously reported by our group to predict longer survival of high-grade serous ovarian cancer patients. METHODS In order to test if protein levels of GTF2H5 are associated with patients' outcome, we performed GTF2H5 immunohistochemical staining in 139 high-grade serous ovarian carcinomas included in tissue microarrays. Upon stratification of cases into high- and low-GTF2H5 staining categories (> and ≤ median staining, respectively) Kaplan-Meier and log-rank test were used to estimate patients' survival and assess statistical differences. We also evaluated the association of GTF2H5 with survival at the transcriptional level by using the on-line Kaplan-Meier plotter tool, which includes gene expression and survival data of 855 high-grade serous ovarian cancer patients from 13 different datasets. Finally, we determined whether stable short hairpin RNA-mediated GTF2H5 downregulation modulates cisplatin sensitivity in the SKOV3 and COV504 cell lines by using cytotoxicity assays. RESULTS Low expression of GTF2H5 was associated with longer 5-year survival of patients at the protein (hazard ratio [HR], 0.52; 95% CI, 0.29 to 0.93; p=0.024) and transcriptional level (HR, 0.80; 95% CI, 0.65 to 0.97; p=0.023) in high-grade serous ovarian cancer patients. We confirmed the association with 5-year overall survival (HR, 0.55; 95% CI, 0.38 to 0.78; p=0.0007) and also found an association with progression-free survival (HR, 0.72; 95% CI, 0.54 to 0.96; p=0.026) in a homogenous group of 388 high-stage (stages III-IV using the International Federation of Gynecology and Obstetrics staging system), optimally debulked high-grade serous ovarian cancer patients. GTF2H5-silencing induced a decrease of the half maximal inhibitory concentration upon cisplatin treatment in GTF2H5-silenced ovarian cancer cells. CONCLUSION Low levels of GTF2H5 are associated with enhanced prognosis in high-grade serous ovarian cancer patients and may contribute to cisplatin sensitization.
Collapse
Affiliation(s)
- Javier Gayarre
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta M Kamieniak
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Ivan Muñoz-Repeto
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction, and Fetal Medicine, IBIS, University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid, Spain
| | | | - Susana Hernando
- Department of Oncology, Fundación Hospital Alcorcón, Alcorcon, Spain
| | - Luis Robles-Díaz
- Familial Cancer Unit and Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | | | | | - Elena Hernández-Agudo
- Breast Cancer Clinical Research Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Victoria Heredia Soto
- Pathology and Translational Oncology Research Laboratories, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ivan Márquez-Rodas
- Medical Oncology Service, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | | | - Raquel Sáez
- Laboratory of Genetics, Hospital Donostia, San Sebastian, Spain
| | - Maite Cusidó
- Department of Obstetrics and Gynecology, Hospital Universitario Quirón-Dexeus, Barcelona, Spain
| | - Andrés Redondo
- Department of Medical Oncology, Hospital La Paz IdiPAZ, Madrid, Spain
| | - Luis Paz-Ares
- Medical Oncology Service, Hospital 12 de Octubre, Madrid, Spain
| | - David Hardisson
- Pathology Research Laboratory, Department of Pathology, Hospital La Paz IdiPAZ, and Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Mendiola
- Pathology and Translational Oncology Research Laboratories, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - José Palacios
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid, Spain
| | - María José García
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
18
|
Kamieniak MM, Rico D, Milne RL, Muñoz-Repeto I, Ibáñez K, Grillo MA, Domingo S, Borrego S, Cazorla A, García-Bueno JM, Hernando S, García-Donas J, Hernández-Agudo E, Y Cajal TR, Robles-Díaz L, Márquez-Rodas I, Cusidó M, Sáez R, Lacambra-Calvet C, Osorio A, Urioste M, Cigudosa JC, Paz-Ares L, Palacios J, Benítez J, García MJ. Deletion at 6q24.2-26 predicts longer survival of high-grade serous epithelial ovarian cancer patients. Mol Oncol 2014; 9:422-36. [PMID: 25454820 PMCID: PMC5528660 DOI: 10.1016/j.molonc.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/12/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
Standard treatments for advanced high-grade serous ovarian carcinomas (HGSOCs) show significant side-effects and provide only short-term survival benefits due to disease recurrence. Thus, identification of novel prognostic and predictive biomarkers is urgently needed. We have used 42 paraffin-embedded HGSOCs, to evaluate the utility of DNA copy number alterations, as potential predictors of clinical outcome. Copy number-based unsupervised clustering stratified HGSOCs into two clusters of different immunohistopathological features and survival outcome (HR = 0.15, 95%CI = 0.03-0.81; Padj = 0.03). We found that loss at 6q24.2-26 was significantly associated with the cluster of longer survival independently from other confounding factors (HR = 0.06, 95%CI = 0.01-0.43, Padj = 0.005). The prognostic value of this deletion was validated in two independent series, one consisting of 36 HGSOCs analyzed by fluorescent in situ hybridization (P = 0.04) and another comprised of 411 HGSOCs from the Cancer Genome Atlas study (TCGA) (HR = 0.67, 95%CI = 0.48-0.93, Padj = 0.019). In addition, we confirmed the association of low expression of the genes from the region with longer survival in 799 HGSOCs (HR = 0.74, 95%CI = 0.61-0.90, log-rank P = 0.002) and 675 high-FIGO stage HGSOCs (HR = 0.76, 95%CI = 0.61-0.96, log-rank P = 0.02) available from the online tool KM-plotter. Finally, by integrating copy number, RNAseq and survival data of 296 HGSOCs from TCGA we propose a few candidate genes that can potentially explain the association. Altogether our findings indicate that the 6q24.2-26 deletion is an independent marker of favorable outcome in HGSOCs with potential clinical value as it can be analyzed by FISH on tumor sections and guide the selection of patients towards more conservative therapeutic strategies in order to reduce side-effects and improve quality of life.
Collapse
Affiliation(s)
- Marta M Kamieniak
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel Rico
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne 3004, Australia; Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3, 207 Bouverie Street Carlton, Melbourne 3010, Victoria, Australia
| | - Ivan Muñoz-Repeto
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Kristina Ibáñez
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3 28029, Madrid, Spain
| | - Miguel A Grillo
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Samuel Domingo
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Salud Borrego
- Departments of Genetics, Reproduction, and Fetal Medicine, IBIS, University Hospital Virgen del Rocio/CSIC/University of Seville, Avda. Manuel Siurot, s/n., 41013 Sevilla, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Alicia Cazorla
- Pathology Department, Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain
| | - José M García-Bueno
- Oncology Department, Hospital General de Albacete, Calle Hermanos Falco, 37, 02006 Albacete, Spain
| | - Susana Hernando
- Oncology Department, Fundación Hospital Alcorcón, Calle Valdelaguna, 1, 28922 Alcorcón, Spain
| | - Jesús García-Donas
- Medical Oncology Service, Oncologic Center Clara Campal, Calle Oña, 10, 28050 Madrid, Spain
| | - Elena Hernández-Agudo
- Breast Cancer Clinical Research Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Teresa Ramón Y Cajal
- Medical Oncology Service, Hospital Sant Pau, Carrer de Sant Quintí, 89, 08026 Barcelona, Spain
| | - Luis Robles-Díaz
- Familial Cancer Unit and Medical Oncology Department, Hospital 12 de Octubre, Avda de Córdoba, s/n, 28041 Madrid, Spain
| | - Ivan Márquez-Rodas
- Medical Oncology Service, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Maite Cusidó
- Obstetrics and Gynecology Department, Institut Universitari Dexeus, Carrer de Sabino Arana, 5, 08028 Barcelona, Spain
| | - Raquel Sáez
- Laboratory of Genetics, Hospital Donostia, Calle Doctor Begiristain, 117, 20080 San Sebastián, Spain
| | - Carmen Lacambra-Calvet
- Department of Internal Medicine, Hospital Severo Ochoa, Avd. de Orellana, s/n., 28911 Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Juan C Cigudosa
- Molecular Cytogenetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - Luis Paz-Ares
- Medical Oncology Department, University Hospital Virgen del Rocio, Avda. Manuel Siurot s/n., 41013 Sevilla, Spain
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, Ctra. de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain
| | - Javier Benítez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain
| | - María J García
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro 3, 28029, Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Spain.
| |
Collapse
|