1
|
Fukuda N, Soga K, Taguchi C, Narushima J, Sakata K, Kato R, Yoshiba S, Shibata N, Kondo K. Cell cycle arrest combined with CDK1 inhibition suppresses genome-wide mutations by activating alternative DNA repair genes during genome editing. J Biol Chem 2024; 300:107695. [PMID: 39159810 PMCID: PMC11416245 DOI: 10.1016/j.jbc.2024.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Cells regularly repair numerous mutations. However, the effect of CRISPR/Cas9-induced dsDNA breaks on the repair processes of naturally occurring genome-wide mutations is unclear. In this study, we used TSCE5 cells with the heterozygous thymidine kinase genotype (TK+/-) to examine these effects. We strategically inserted the target sites for guide RNA (gRNA)/Cas9 and I-SceI into the functional allele and designed the experiment such that deletions of > 81 bp or base substitutions within exon five disrupted the TK gene, resulting in a TK-/- genotype. TSCE5 cells in the resting state exhibited 16 genome-wide mutations that affected cellular functions. After gRNA/Cas9 editing, these cells produced 859 mutations, including 67 high-impact variants that severely affected cellular functions under standard culture conditions. Mutation profile analysis indicated a significant accumulation of C to A substitutions, underscoring the widespread induction of characteristic mutations by gRNA/Cas9. In contrast, gRNA/Cas9-edited cells under conditions of S∼G2/M arrest and cyclin-dependent kinase 1 inhibition showed only five mutations. Transcriptomic analysis revealed the downregulation of DNA replication genes and upregulation of alternative DNA repair genes, such as zinc finger protein 384 (ZNF384) and dual specificity phosphatase, under S∼G2/M conditions. Additionally, activation of nucleotide and base excision repair gene, including O-6-methylguanine-DNA methyltransferase and xeroderma pigmentosum complementation group C, was observed. This study highlights the profound impact of CRISPR/Cas9 editing on genome-wide mutation processes and underscores the emergence of novel DNA repair pathways. Finally, our findings provide significant insights into the maintenance of genome integrity during genome editing.
Collapse
Affiliation(s)
- Nozomi Fukuda
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Keisuke Soga
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Chie Taguchi
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Jumpei Narushima
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kozue Sakata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Reiko Kato
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoko Yoshiba
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kazunari Kondo
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan; Faculty of Food and Health Sciences, Showa Women's University, Tokyo, Japan.
| |
Collapse
|
2
|
Marciniak B, Kciuk M, Mujwar S, Sundaraj R, Bukowski K, Gruszka R. In Vitro and In Silico Investigation of BCI Anticancer Properties and Its Potential for Chemotherapy-Combined Treatments. Cancers (Basel) 2023; 15:4442. [PMID: 37760412 PMCID: PMC10526149 DOI: 10.3390/cancers15184442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND DUSP6 phosphatase serves as a negative regulator of MAPK kinases involved in numerous cellular processes. BCI has been identified as a potential allosteric inhibitor with anticancer activity. Our study was designed to test the anticancer properties of BCI in colon cancer cells, to characterize the effect of this compound on chemotherapeutics such as irinotecan and oxaliplatin activity, and to identify potential molecular targets for this inhibitor. METHODS BCI cytotoxicity, proapoptotic activity, and cell cycle distribution were investigated in vitro on three colon cancer cell lines (DLD1, HT-29, and Caco-2). In silico investigation was prepared to assess BCI drug-likeness and identify potential molecular targets. RESULTS The exposure of colorectal cancer cells with BCI resulted in antitumor effects associated with cell cycle arrest and induction of apoptosis. BCI exhibited strong cytotoxicity on DLD1, HT-29, and Caco-2 cells. BCI showed no significant interaction with irinotecan, but strongly attenuated the anticancer activity of oxaliplatin when administered together. Analysis of synergy potential further confirmed the antagonistic interaction between these two compounds. In silico investigation indicated CDK5 as a potential new target of BCI. CONCLUSIONS Our studies point to the anticancer potential of BCI but note the need for a precise mechanism of action.
Collapse
Affiliation(s)
- Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Renata Gruszka
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| |
Collapse
|
3
|
Yang J, Xu P, Chen Z, Zhang X, Xia Y, Fang L, Xie L, Li B, Xu Z. N6-methyadenosine modified SUV39H2 regulates homologous recombination through epigenetic repression of DUSP6 in gastric cancer. Cancer Lett 2023; 558:216092. [PMID: 36806557 DOI: 10.1016/j.canlet.2023.216092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Despite many advances in treatment over the past few years, the poor 5-year survival rate and high recurrence rate of gastric cancer (GC) remain unsatisfactory. As the most abundant epigenetic modification in the eukaryotic mRNA, N6-methyladenosine (m6A) methylation participates in tumor progression and tissue development. During tumor progression, DNA damage repair mechanisms can be reprogrammed to give new growth advantages on tumor clones whose genomic integrity is disturbed. Here we detected the elevated SUV39H2 expression in GC tissues and cell lines. Functionally, SUV39H2 promoted GC proliferation and inhibited apoptosis in vitro and in vivo. Mechanistically, METTL3-mediated m6A modification promotes mRNA stability of SUV39H2 in an IGF2BP2 dependent manner, resulting in upregulated mRNA expression of SUV39H2. As a histone methyltransferase, SUV39H2 was verified to increase the phosphorylation level of ATM through transcriptional repression of DUSP6, thereby promoting HRR and ultimately inhibiting GC chemosensitivity to cisplatin. Collectively, these results indicate the specific mechanism of m6A-modified SUV39H2 as a histone methyltransferase promoting HRR to inhibit the chemosensitivity of GC. SUV39H2 is expected to become a key target in the precision targeted therapy of GC.
Collapse
Affiliation(s)
- Jing Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.
| |
Collapse
|
4
|
Li L, Lv L, Xu JC, He Q, Chang N, Cui YY, Tao ZC, Zhu T, Qian LT. RIG-I Promotes Tumorigenesis and Confers Radioresistance of Esophageal Squamous Cell Carcinoma by Regulating DUSP6. Int J Mol Sci 2023; 24:ijms24065586. [PMID: 36982663 PMCID: PMC10052926 DOI: 10.3390/ijms24065586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
We investigated the expression and biological function of retinoic acid inducible gene I (RIG-I) in esophageal squamous cell carcinoma (ESCC). Materials and methods: An immunohistochemical analysis was performed on 86 pairs of tumor tissue and adjacent normal tissue samples of patients with ESCC. We generated RIG-I-overexpressing ESCC cell lines KYSE70 and KYSE450, and RIG-I- knockdown cell lines KYSE150 and KYSE510. Cell viability, migration and invasion, radioresistance, DNA damage, and cell cycle were evaluated using CCK-8, wound-healing and transwell assay, colony formation, immunofluorescence, and flow cytometry and Western blotting, respectively. RNA sequencing was performed to determine the differential gene expression between controls and RIG-I knockdown. Tumor growth and radioresistance were assessed in nude mice using xenograft models. RIG-I expression was higher in ESCC tissues compared with that in matched non-tumor tissues. RIG-I overexpressing cells had a higher proliferation rate than RIG-I knockdown cells. Moreover, the knockdown of RIG-I slowed migration and invasion rates, whereas the overexpression of RIG-I accelerated migration and invasion rates. RIG-I overexpression induced radioresistance and G2/M phase arrest and reduced DNA damage after exposure to ionizing radiations compared with controls; however, it silenced the RIG-I enhanced radiosensitivity and DNA damage, and reduced the G2/M phase arrest. RNA sequencing revealed that the downstream genes DUSP6 and RIG-I had the same biological function; silencing DUSP6 can reduce the radioresistance caused by the overexpression of RIG-I. RIG-I knockdown depleted tumor growth in vivo, and radiation exposure effectively delayed the growth of xenograft tumors compared with the control group. RIG-I enhances the progression and radioresistance of ESCC; therefore, it may be a new potential target for ESCC-targeted therapy.
Collapse
Affiliation(s)
- Lu Li
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Lv
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Jun-Chao Xu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qing He
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Na Chang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Ya-Yun Cui
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Zhen-Chao Tao
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Tao Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (T.Z.); (L.-T.Q.)
| | - Li-Ting Qian
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
- Correspondence: (T.Z.); (L.-T.Q.)
| |
Collapse
|
5
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
6
|
Zandi Z, Kashani B, Alishahi Z, Pourbagheri-Sigaroodi A, Esmaeili F, Ghaffari SH, Bashash D, Momeny M. Dual-specificity phosphatases: therapeutic targets in cancer therapy resistance. J Cancer Res Clin Oncol 2022; 148:57-70. [PMID: 34981193 DOI: 10.1007/s00432-021-03874-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Therapy resistance is the principal obstacle to achieving cures in cancer patients and its successful tackling requires a deep understanding of the resistance mediators. Increasing evidence indicates that tumor phosphatases are novel and druggable targets in translational oncology and their modulation may hinder tumor growth and motility and potentiate therapeutic sensitivity in various neoplasms via regulation of various signal transduction pathways. Dual-specificity phosphatases (DUSPs) are key players of cell growth, survival and death and have essential roles in tumor initiation, malignant progression and therapy resistance through regulation of the MAPK signaling pathway. In this review, different aspects of DUSPs are discussed. METHODS A comprehensive literature review was performed using various websites including PubMed. RESULTS We provide mechanistic insights into the roles of well-known DUSPs in resistance to a wide range of cancer therapeutic approaches including chemotherapy, radiation and molecular targeted therapy in human malignancies. Moreover, we discuss the development of DUSP modulators, with a focus on DUSP1 and 6 inhibitors. Ultimately, the preclinical investigations of small molecule inhibitors of DUSP1 and 6 are outlined. CONCLUSION Emerging evidence indicates that the DUSP family is aberrantly expressed in human malignancies and plays critical roles in determining sensitivity to a wide range of cancer therapeutic strategies through regulation of the MAPK signaling pathways. Consequently, targeting DUSPs and their downstream molecules can pave the way for more effective cancer therapies.
Collapse
Affiliation(s)
- Zahra Zandi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zarczynska I, Gorska-Arcisz M, Cortez AJ, Kujawa KA, Wilk AM, Skladanowski AC, Stanczak A, Skupinska M, Wieczorek M, Lisowska KM, Sadej R, Kitowska K. p38 Mediates Resistance to FGFR Inhibition in Non-Small Cell Lung Cancer. Cells 2021; 10:cells10123363. [PMID: 34943871 PMCID: PMC8699485 DOI: 10.3390/cells10123363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
FGFR signalling is one of the most prominent pathways involved in cell growth and development as well as cancer progression. FGFR1 amplification occurs in approximately 20% of all squamous cell lung carcinomas (SCC), a predominant subtype of non-small cell lung carcinoma (NSCLC), indicating FGFR as a potential target for the new anti-cancer treatment. However, acquired resistance to this type of therapies remains a serious clinical challenge. Here, we investigated the NSCLC cell lines response and potential mechanism of acquired resistance to novel selective FGFR inhibitor CPL304110. We found that despite significant genomic differences between CPL304110-sensitive cell lines, their resistant variants were characterised by upregulated p38 expression/phosphorylation, as well as enhanced expression of genes involved in MAPK signalling. We revealed that p38 inhibition restored sensitivity to CPL304110 in these cells. Moreover, the overexpression of this kinase in parental cells led to impaired response to FGFR inhibition, thus confirming that p38 MAPK is a driver of resistance to a novel FGFR inhibitor. Taken together, our results provide an insight into the potential direction for NSCLC targeted therapy.
Collapse
Affiliation(s)
- Izabela Zarczynska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Monika Gorska-Arcisz
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrzej Cezary Skladanowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Monika Skupinska
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland;
| | - Maciej Wieczorek
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| |
Collapse
|
8
|
Nair J, Syed SB, Mahaddalkar T, Ketkar M, Thorat R, Sastri Goda J, Dutt S. DUSP6 regulates radio-sensitivity in glioblastoma by modulating the recruitment of p-DNAPKcs at DNA double-strand breaks. J Cell Sci 2021; 134:273732. [PMID: 34792128 DOI: 10.1242/jcs.259520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) has poor median survival due to its resistance to chemo-radiotherapy regimen, resulting in tumor recurrence. Recurrent GBMs currently lack effective treatments. DUSP6 is known to be pro-tumorigenic and is up-regulated in GBM. We show that DUSP6 expression is significantly higher in recurrent GBM patient biopsies (n=11) compared to primary biopsies (n=11). Importantly, although reported as cytoplasmic protein, we found nuclear localization of DUSP6 in primary and recurrent patient samples and in parent and relapse population of GBM cell lines generated from in vitro radiation survival model. DUSP6 inhibition using BCI resulted in decreased proliferation and clonogenic survival of parent and relapse cells. Pharmacological or genetic inhibition of DUSP6 catalytic activity radio-sensitized primary and importantly, relapse GBM cells by inhibiting the recruitment of p-DNAPKcs, subsequently down-regulating the recruitment of γH2AX and 53BP1. This resulted in decreased cell survival and prolonged growth arrest upon irradiation in vitro and significantly increased the progression-free survival in orthotopic mouse models of GBM. Our study highlights a non-canonical function of DUSP6, emphasizing the potential application of DUSP6 inhibitors in the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Jyothi Nair
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Safiulla Basha Syed
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India
| | - Tejashree Mahaddalkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India
| | - Jayant Sastri Goda
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai - 410210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| |
Collapse
|
9
|
Kambaru A, Chaudhary N. Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti- Cancer Drug Target. Curr Pharm Biotechnol 2021; 23:920-931. [PMID: 34375185 DOI: 10.2174/1389201022666210810094739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug-targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.
Collapse
Affiliation(s)
| | - Nidhee Chaudhary
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
10
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Wan Q, Liu C, Liu C, Liu W, Wang X, Wang Z. Discovery and Validation of a Metastasis-Related Prognostic and Diagnostic Biomarker for Melanoma Based on Single Cell and Gene Expression Datasets. Front Oncol 2020; 10:585980. [PMID: 33324561 PMCID: PMC7722782 DOI: 10.3389/fonc.2020.585980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background Single cell sequencing can provide comprehensive information about gene expression in individual tumor cells, which can allow exploration of heterogeneity of malignant melanoma cells and identification of new anticancer therapeutic targets. Methods Single cell sequencing of 31 melanoma patients in GSE115978 was downloaded from the Gene Expression Omniniub (GEO) database. First, the limma package in R software was used to identify the differentially expressed metastasis related genes (MRGs). Next, we developed a prognostic MRGs biomarker in the cancer genome atlas (TCGA) by combining univariate cox analysis and the least absolute shrinkage and selection operator (LASSO) method and was further validated in another two independent datasets. The efficiency of MRGs biomarker in diagnosis of melanoma was also evaluated in multiple datasets. The pattern of somatic tumor mutation, immune infiltration, and underlying pathways were further explored. Furthermore, nomograms were constructed and decision curve analyses were also performed to evaluate the clinical usefulness of the nomograms. Results In total, 41 MRGs were screened out from 1958 malignant melanoma cell samples in GSE115978. Next, a 5-MRGs prognostic marker was constructed and validated, which show more effective performance for the diagnosis and prognosis of melanoma patients. The nomogram showed good accuracies in predicting 3 and 5 years survival, and the decision curve of nomogram model manifested a higher net benefit than tumor stage and clark level. In addition, melanoma patients can be divided into high and low risk subgroups, which owned differential mutation, immune infiltration, and clinical features. The low risk subgroup suffered from a higher tumor mutation burden (TMB), and higher levels of T cells infiltrating have a significantly longer survival time than the high risk subgroup. Gene Set Enrichment Analysis (GSEA) revealed that the extracellular matrix (ECM) receptor interaction and epithelial mesenchymal transition (EMT) were the most significant upregulated pathways in the high risk group. Conclusions We identified a robust MRGs marker based on single cell sequencing and validated in multiple independent cohort studies. Our finding provides a new clinical application for prognostic and diagnostic prediction and finds some potential targets against metastasis of melanoma.
Collapse
Affiliation(s)
- Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Chengxiu Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Negative MAPK-ERK regulation sustains CIC-DUX4 oncoprotein expression in undifferentiated sarcoma. Proc Natl Acad Sci U S A 2020; 117:20776-20784. [PMID: 32788348 DOI: 10.1073/pnas.2009137117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcription factor fusions (TFFs) are present in ∼30% of soft-tissue sarcomas. TFFs are not readily "druggable" in a direct pharmacologic manner and thus have proven difficult to target in the clinic. A prime example is the CIC-DUX4 oncoprotein, which fuses Capicua (CIC) to the double homeobox 4 gene, DUX4. CIC-DUX4 sarcoma is a highly aggressive and lethal subtype of small round cell sarcoma found predominantly in adolescents and young adults. To identify new therapeutic targets in CIC-DUX4 sarcoma, we performed chromatin immunoprecipitation sequencing analysis using patient-derived CIC-DUX4 cells. We uncovered multiple CIC-DUX4 targets that negatively regulate MAPK-ERK signaling. Mechanistically, CIC-DUX4 transcriptionally up-regulates these negative regulators of MAPK to dampen ERK activity, leading to sustained CIC-DUX4 expression. Genetic and pharmacologic MAPK-ERK activation through DUSP6 inhibition leads to CIC-DUX4 degradation and apoptotic induction. Collectively, we reveal a mechanism-based approach to therapeutically degrade the CIC-DUX4 oncoprotein and provide a precision-based strategy to combat this lethal cancer.
Collapse
|
13
|
Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol Res 2020; 160:105091. [PMID: 32712320 DOI: 10.1016/j.phrs.2020.105091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Cancer cell mutations can be identified by genomic and transcriptomic techniques. However, they are not sufficient to understand the full complexity of cancer heterogeneity. Analyses of proteins expressed in cancers and their modification profiles show how these mutations could be translated at the functional level. Protein phosphorylation is a major post-translational modification critical for regulating several cellular functions. The covalent addition of phosphate groups to serine, threonine, and tyrosine is catalyzed by protein kinases. Over the past years, kinases were strongly associated with cancer, thus inhibition of protein kinases emanated as novel cancer treatment. However, cancers frequently develop drug resistance. Therefore, a better understanding of drug effects on tumors is urgently needed. In this perspective, phosphoproteomics arose as advanced tool to monitor cancer therapies and to discover novel drugs. This review highlights the role of phosphoproteomics in predicting sensitivity or resistance of cancers towards tyrosine kinase inhibitors and cytotoxic drugs. It also shows the importance of phosphoproteomics in identifying biomarkers that could be applied in clinical diagnostics to predict responses to drugs.
Collapse
|
14
|
Sato S, Itamochi H. Dual specificity phosphatase 6 as a new therapeutic target candidate for epithelial ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:S373. [PMID: 32016091 DOI: 10.21037/atm.2019.12.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Hiroaki Itamochi
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba, Japan
| |
Collapse
|
15
|
Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, Flodr P, Hubackova S, Bartek J, Hodny Z, Divoky V. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene 2019; 38:5627-5642. [PMID: 30967632 PMCID: PMC6756199 DOI: 10.1038/s41388-019-0813-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory and oncogenic signaling converge in disease evolution of BCR–ABL-negative myeloproliferative neoplasms, clonal hematopoietic stem cell disorders characterized by gain-of-function mutation in JAK2 kinase (JAK2V617F), with highest prevalence in patients with polycythemia vera (PV). Despite the high risk, DNA-damaging inflammatory microenvironment, PV progenitors tend to preserve their genomic stability over decades until their progression to post-PV myelofibrosis/acute myeloid leukemia. Using induced pluripotent stem cells-derived CD34+ progenitor-enriched cultures from JAK2V617F+ PV patient and from JAK2 wild-type healthy control, CRISPR-modified HEL cells and patients’ bone marrow sections from different disease stages, we demonstrate that JAK2V617F induces an intrinsic IFNγ- and NF-κB-associated inflammatory program, while suppressing inflammation-evoked DNA damage both in vitro and in vivo. We show that cells with JAK2V617F tightly regulate levels of inflammatory cytokines-induced reactive oxygen species, do not fully activate the ATM/p53/p21waf1 checkpoint and p38/JNK MAPK stress pathway signaling when exposed to inflammatory cytokines, suppress DNA single-strand break repair genes’ expression yet overexpress the dual-specificity phosphatase (DUSP) 1. RNAi-mediated knock-down and pharmacological inhibition of DUSP1, involved in p38/JNK deactivation, in HEL cells reveals growth addiction to DUSP1, consistent with enhanced DNA damage response and apoptosis in DUSP1-inhibited parental JAK2V617F+ cells, but not in CRISPR-modified JAK2 wild-type cells. Our results indicate that the JAK2V617F+ PV progenitors utilize DUSP1 activity as a protection mechanism against DNA damage accumulation, promoting their proliferation and survival in the inflammatory microenvironment, identifying DUSP1 as a potential therapeutic target in PV.
Collapse
Affiliation(s)
- J Stetka
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Vyhlidalova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - L Lanikova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - P Koralkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - J Gursky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - A Hlusi
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Flodr
- Department of Clinical and Molecular Pathology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - S Hubackova
- Laboratory of Molecular Therapy, Institute of Biotechnology, BIOCEV, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - J Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark. .,Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic. .,Division of Genome Biology, Department of Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Z Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - V Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
16
|
Schumacher D, Andrieux G, Boehnke K, Keil M, Silvestri A, Silvestrov M, Keilholz U, Haybaeck J, Erdmann G, Sachse C, Templin M, Hoffmann J, Boerries M, Schäfer R, Regenbrecht CRA. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. PLoS Genet 2019; 15:e1008076. [PMID: 30925167 PMCID: PMC6457557 DOI: 10.1371/journal.pgen.1008076] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/10/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Organoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors. MAPK signaling, analyzed by targeted proteomics, shows unexpected heterogeneity irrespective of RAS mutations and is associated with variable responses to EGFR inhibition. In addition, we obtained evidence for intratumoral heterogeneity in drug response among parallel “sibling” 3D cultures established from a single KRAS-mutant CRC. Our results imply that separate testing of drug effects in multiple subpopulations may help to elucidate molecular correlates of tumor heterogeneity and to improve therapy response prediction in patients. Commonly occurring genetic alterations and patient-specific genetic features are increasingly used to predict the possible action of targeted cancer therapies. Although several lines of evidence have suggested that preclinical and clinical responses concur, the heterogeneity of tumors remains a severe obstacle in routinely translating preclinical data to patient treatments. Here we present a rapid work flow that integrates drug testing of three-dimensional patient tumor-derived (organoid) cultures and assessment of their genetic make-up as well as that of their donor tumors by amplicon sequencing and targeted proteomics. While the organoid cultures largely recapitulated the genomic profiles of donor tumors, the overall treatment responses and inhibitor effects on the intracellular signaling system were quite variable. Notably, organoid cultures obtained by synchronous multi-regional sampling of the same colorectal tumor showed an up to 30-fold difference in drug response. A combinatorial drug treatment improved the response. These data were confirmed in matched mouse xenograft models from the same tumor. Our findings may help to refine preclinical testing of individual tumors by modelling heterogeneity in cultures, to better understand therapeutic failure in clinical settings and to find ways to overcome treatment resistance.
Collapse
Affiliation(s)
- Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Karsten Boehnke
- Eli Lilly and Company, Lilly Research Laboratories, Oncology Translational Research, New York, NY, United States of America
| | - Marlen Keil
- EPO Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | | | | | | | - Johannes Haybaeck
- Department of Pathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Austria.,Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Gerrit Erdmann
- NMI TT Pharmaservices, Berlin, Germany.,ASC Oncology GmbH, Berlin, Germany
| | - Christoph Sachse
- NMI TT Pharmaservices, Berlin, Germany.,ASC Oncology GmbH, Berlin, Germany
| | - Markus Templin
- ASC Oncology GmbH, Berlin, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jens Hoffmann
- EPO Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Reinhold Schäfer
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Charité Comprehensive Cancer Center, Berlin, Germany
| | - Christian R A Regenbrecht
- cpo-Cellular Phenomics & Oncology Berlin-Buch GmbH, Berlin, Germany.,Department of Pathology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
17
|
Ohm AM, Affandi T, Reyland ME. EGF receptor and PKCδ kinase activate DNA damage-induced pro-survival and pro-apoptotic signaling via biphasic activation of ERK and MSK1 kinases. J Biol Chem 2019; 294:4488-4497. [PMID: 30679314 DOI: 10.1074/jbc.ra118.006944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
DNA damage-mediated activation of extracellular signal-regulated kinase (ERK) can regulate both cell survival and cell death. We show here that ERK activation in this context is biphasic and that early and late activation events are mediated by distinct upstream signals that drive cell survival and apoptosis, respectively. We identified the nuclear kinase mitogen-sensitive kinase 1 (MSK1) as a downstream target of both early and late ERK activation. We also observed that activation of ERK→MSK1 up to 4 h after DNA damage depends on epidermal growth factor receptor (EGFR), as EGFR or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)/ERK inhibitors or short hairpin RNA-mediated MSK1 depletion enhanced cell death. This prosurvival response was partially mediated through enhanced DNA repair, as EGFR or MEK/ERK inhibitors delayed DNA damage resolution. In contrast, the second phase of ERK→MSK1 activation drove apoptosis and required protein kinase Cδ (PKCδ) but not EGFR. Genetic disruption of PKCδ reduced ERK activation in an in vivo irradiation model, as did short hairpin RNA-mediated depletion of PKCδ in vitro In both models, PKCδ inhibition preferentially suppressed late activation of ERK. We have shown previously that nuclear localization of PKCδ is necessary and sufficient for apoptosis. Here we identified a nuclear PKCδ→ERK→MSK1 signaling module that regulates apoptosis. We also show that expression of nuclear PKCδ activates ERK and MSK1, that ERK activation is required for MSK1 activation, and that both ERK and MSK1 activation are required for apoptosis. Our findings suggest that location-specific activation by distinct upstream regulators may enable distinct functional outputs from common signaling pathways.
Collapse
Affiliation(s)
- Angela M Ohm
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Trisiani Affandi
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mary E Reyland
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
18
|
Wu CE, Koay TS, Esfandiari A, Ho YH, Lovat P, Lunec J. ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers (Basel) 2018; 11:cancers11010003. [PMID: 30577494 PMCID: PMC6356368 DOI: 10.3390/cancers11010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
MAPK and p14ARF–MDM2–p53 pathways are critical in cutaneous melanomas. Here, synergistic combination of the MEK inhibitor, trametinib, with MDM2 inhibitors, nutlin-3/RG7388/HDM201, and the mechanistic basis of responses, for BRAFV600E and p53WT melanoma cells, are reported. The combination treatments induced higher levels of p53 target gene transcripts and protein products, resulting in increased cell cycle arrest and apoptosis compared with MDM2 inhibitors alone, suggesting trametinib synergized with MDM2 inhibitors via upregulation of p53-dependent pathways. In addition, DUSP6 phosphatase involvement was indicated by downregulation of its mRNA and protein following pERK reduction by trametinib. Furthermore, suppression of DUSP6 by siRNA, or inhibition with the small molecule inhibitor, BCI, at a dose without cytotoxicity, potentiated the effect of MDM2 inhibitors through increased ATM-dependent p53 phosphorylation, as demonstrated by complete reversal with the ATM inhibitor, KU55933. Trametinib synergizes with MDM2 inhibitors through a novel DUSP6 mechanism in BRAFV600E and p53WT melanoma cells, in which DUSP6 regulation of p53 phosphorylation is mediated by ATM. This provides a new therapeutic rationale for combination treatments involving activation of the ATM/p53 pathway and MAPK pathway inhibition.
Collapse
Affiliation(s)
- Chiao-En Wu
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Tsin Shue Koay
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Arman Esfandiari
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| | - Yi-Hsuan Ho
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Penny Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - John Lunec
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
19
|
Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget 2018; 8:4399-4409. [PMID: 27779106 PMCID: PMC5354841 DOI: 10.18632/oncotarget.12642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/19/2016] [Indexed: 12/27/2022] Open
Abstract
The lack of effective treatment modalities is a major problem in pancreatic cancer (PCa), a devastating malignancy that is nearly universally driven by the “undruggable” KRAS and TP53 cancer genes. Poor tumor tissue penetration is the major source of resistance in pancreatic cancer where chemotherapy is the mainstay of treatment. In this study we exploited the selective tumor-targeting properties of the heat shock 90 protein inhibitors as the vehicle for drug delivery to pancreatic tumor tissues. STA-12-8666 is a novel esterase-cleavable conjugate of an HSP90i and a topoisomerase I inhibitor, SN-38. STA-12-8666 selectively binds activated HSP90 and releases its cytotoxic payload resulting in drug accumulation in pancreatic cancer cells in vivo. We investigated the preclinical activity of STA-12-8666 in patient derived xenograft and genetic models of pancreatic cancer. Treatment with STA-12-8666 of the KPC mice (knock-in alleles of LSL-KrasG12D, Tp53fl/fl and Pdx1-Cre transgene) at the advanced stages of pancreatic tumors doubled their survival (49 days vs. 74 days, p=0.008). STA-12-8666 also demonstrated dramatically superior activity in comparison to equimolar doses of irinotecan against 5 patient-derived pancreatic adenocarcinoma xenografts with prolonged remissions in some tumors. Analysis of activity of STA-12-8666 against tumor tissues and matched cell lines demonstrated prolonged accumulation and release of cytotoxic payload in the tumor leading to DNA damage response and cell cycle arrest. Our results provide a proof-of-principle validation that HSP90i-based drug conjugates can overcome the notorious treatment resistance by utilizing the inherently high affinity of pancreatic cancer cells to HSP90 antagonists.
Collapse
|
20
|
Wu QN, Liao YF, Lu YX, Wang Y, Lu JH, Zeng ZL, Huang QT, Sheng H, Yun JP, Xie D, Ju HQ, Xu RH. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Lett 2017; 412:243-255. [PMID: 29050982 DOI: 10.1016/j.canlet.2017.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023]
Abstract
Gastric cancer (GC) is the second cause of cancer-related death. Cisplatin (CDDP) is widely used as the standard GC treatment, but relapse and metastasis are common because of intrinsic or acquired drug resistance. The mitogen-activated protein kinase phosphatases (MAPK)-extracellular signal regulated kinases (ERK) pathway contributes to GC progression and drug resistance, but targeting the MAPK-ERK pathway is challenging in GC therapy. Here, we demonstrated that dual-specificity phosphatases 6 (DUSP6) was overexpressed in GC and predicted poor overall survival and progression-free survival. Knockdown DUSP6 inhibited GC proliferation, migration, invasion and induced apoptosis. (E/Z)-BCI hydrochloride (BCI), a DUSP6 small molecule inhibitor, increased the activity of ERK but interestingly decreased the expression of ERK response genes in BGC823, SGC7901 and CDDP-resistant SGC7901/DDP cells. BCI also caused cell death through the DNA damage response (DDR) pathway. Moreover, BCI inhibited cell proliferation, migration and invasion in a receptor-independent manner and enhanced CDDP cytotoxicity at pharmacological concentrations in the GC cells. In vivo experiments further showed that BCI enhances the antitumor effects of CDDP in cell-based xenografts and PDX models. In summary, our findings indicated that disruption of DUSP6 by BCI enhanced CDDP-induced cell death and apoptosis in GC may partly through ERK and DDR pathways. Thus, this study suggests that DUSP6 is a potential prognostic biomarker and a promising target for GC therapy.
Collapse
Affiliation(s)
- Qi-Nian Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yi-Fu Liao
- Guangdong General Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Department of Neurology, Guangzhou, 510080, China
| | - Yun-Xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yun Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jia-Huan Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhao-Lei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Qi-Tao Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hui Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, Department of Pathology, Guangzhou, 510060, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
21
|
Krämer KF, Moreno N, Frühwald MC, Kerl K. BRD9 Inhibition, Alone or in Combination with Cytostatic Compounds as a Therapeutic Approach in Rhabdoid Tumors. Int J Mol Sci 2017; 18:ijms18071537. [PMID: 28714904 PMCID: PMC5536025 DOI: 10.3390/ijms18071537] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Rhabdoid tumors (RT) are malignant neoplasms of early childhood. Despite intensive therapy, survival is poor and new treatment approaches are required. The only recurrent mutations in these tumors affect SMARCB1 and less commonly SMARCA4, both subunits of the chromatin remodeling complex SWItch/Sucrose Non-Fermentable (SWI/SNF). Loss of these two core subunits alters the function of the SWI/SNF complex, resulting in tumor development. We hypothesized that inhibition of aberrant SWI/SNF function by selective blockade of the BRD9 subunit of the SWI/SNF complex would reduce tumor cell proliferation. The cytotoxic and anti-proliferative effects of two specific chemical probes (I-BRD9 and BI-9564) which target the bromodomain of SWI/SNF protein BRD9 were evaluated in 5 RT cell lines. Combinatorial effects of I-BRD9 and cytotoxic drugs on cell proliferation were evaluated by cytotoxicity assays. Single compound treatment of RT cells with I-BRD9 and BI-9564 resulted in decreased cell proliferation, G1-arrest and apoptosis. Combined treatment of doxorubicin or carboplatin with I-BRD9 resulted in additive to synergistic inhibitory effects on cell proliferation. In contrast, the combination of I-BRD9 with vincristine demonstrated the antagonistic effects of these two compounds. We conclude that the BRD9 bromodomain is an attractive target for novel therapies in this cancer.
Collapse
Affiliation(s)
- Katja F Krämer
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, 48149 Münster, Germany.
| | - Natalia Moreno
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, 48149 Münster, Germany.
| | - Michael C Frühwald
- Children's Hospital and Swabian Children's Cancer Center, 86156 Augsburg, Germany.
| | - Kornelius Kerl
- University Children's Hospital Muenster, Department of Pediatric Hematology and Oncology, 48149 Münster, Germany.
| |
Collapse
|
22
|
Torres TE, Russo LC, Santos A, Marques GR, Magalhaes YT, Tabassum S, Forti FL. Loss of DUSP3 activity radiosensitizes human tumor cell lines via attenuation of DNA repair pathways. Biochim Biophys Acta Gen Subj 2017; 1861:1879-1894. [PMID: 28389334 DOI: 10.1016/j.bbagen.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
|
23
|
Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 2017; 33:49-58. [PMID: 28189587 DOI: 10.1016/j.cellsig.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
24
|
Hagen J, Schwartz D, Kalyuzhny AE. Hapten-Anti-Hapten Technique for Two-Color IHC Detection of Phosphorylated EGFR and H2AX Using Primary Antibodies Raised in the Same Host Species. Methods Mol Biol 2017; 1554:155-160. [PMID: 28185188 DOI: 10.1007/978-1-4939-6759-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiplex staining of cell and tissue sections with antibodies raised in the same host species is a serious challenge because of unwanted but inevitable cross-reactivity of secondary antibodies with irrelevant primary antibodies. Several techniques can be used to overcome this obstacle including direct labeling of primary antibodies with fluorescent tags and using tyramide signal amplification. Unfortunately these techniques either lack sensitivity, or require a long multistep protocol which can cause physical damage of specimens. As an alternative, we have developed a protocol based on conjugation of primary antibodies to small-size hapten molecules which can be detected with hapten-specific fluorescent secondary antibodies. This technique has been used for two-color labeling of Y845 phosphorylated Epidermal Growth Factor Receptor (EGFR) and S139 phosphorylated histone H2AX protein in A431 human epidermoid carcinoma cells. Our novel hapten-anti-hapten detection chemistry allows for generating a stronger fluorescent signal and completely avoid cross-interactions of secondary antibodies with irrelevant primary antibodies.
Collapse
Affiliation(s)
- Jodi Hagen
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | | | | |
Collapse
|
25
|
Noro R, Ishigame T, Walsh N, Shiraishi K, Robles AI, Ryan BM, Schetter AJ, Bowman ED, Welsh JA, Seike M, Gemma A, Skaug V, Mollerup S, Haugen A, Yokota J, Kohno T, Harris CC. A Two-Gene Prognostic Classifier for Early-Stage Lung Squamous Cell Carcinoma in Multiple Large-Scale and Geographically Diverse Cohorts. J Thorac Oncol 2016; 12:65-76. [PMID: 27613525 DOI: 10.1016/j.jtho.2016.08.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/17/2016] [Accepted: 08/20/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION There are no validated molecular methods that prospectively identify patients with surgically resected lung squamous cell carcinoma (SCC) at high risk for recurrence. By focusing on the expression of genes with known functions in development of lung SCC and prognosis, we sought to develop a robust prognostic classifier of early-stage lung SCC. METHODS The expression of 253 genes selected by literature search was evaluated in microarrays from 107 stage I/II tumors. Associations with survival were evaluated by Cox regression and Kaplan-Meier survival analyses in two independent cohorts of 121 and 91 patients with SCC, respectively. A classifier score based on multivariable Cox regression was derived and examined in six additional publicly available data sets of stage I/II lung SCC expression profiles (n = 358). The prognostic value of this classifier was evaluated in meta-analysis of patients with stage I/II (n = 479) and stage I (n = 326) lung SCC. RESULTS Dual specificity phosphatase 6 gene (DUSP6) and actinin alpha 4 gene (ACTN4) were associated with prognostic outcome in two independent patient cohorts. Their expression values were utilized to develop a classifier that identified patients with stage I/II lung SCC at high risk for recurrence (hazard ratio [HR] = 4.7, p = 0.018) or cancer-specific mortality (HR = 3.5, p = 0.016). This classifier also identified patients at high risk for recurrence (HR = 2.7, p = 0.008) or death (HR = 2.2, p = 0.001) in publicly available data sets of stage I/II and in meta-analysis of stage I patients. CONCLUSIONS We have established and validated a prognostic classifier to inform clinical management of patients with lung SCC after surgical resection.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Cohort Studies
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Middle Aged
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Staging
- Prognosis
- Survival Rate
Collapse
Affiliation(s)
- Rintaro Noro
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Teruhide Ishigame
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Naomi Walsh
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland; Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Aaron J Schetter
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Judith A Welsh
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Vidar Skaug
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Steen Mollerup
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Jun Yokota
- Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer, Barcelona, Spain
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
26
|
Ochsner SA, Tsimelzon A, Dong J, Coarfa C, McKenna NJ. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling. Mol Endocrinol 2016; 30:937-48. [PMID: 27409825 DOI: 10.1210/me.2016-1095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities.
Collapse
Affiliation(s)
- Scott A Ochsner
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Anna Tsimelzon
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Jianrong Dong
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Cristian Coarfa
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Neil J McKenna
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
27
|
Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discov 2016; 2:16013. [PMID: 27462460 PMCID: PMC4906801 DOI: 10.1038/celldisc.2016.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian cells. Alternative cleavage and polyadenylation regulation in the 3ʹ untranslated region is substantial, leading to both shortening and lengthening of 3ʹ untranslated regions of genes. Interestingly, a strong activation of intronic alternative cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic alternative cleavage and polyadenylation events are biased to the 5ʹ end of genes and affect gene groups with important functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation during DNA damage response correlates with a decrease in U1 snRNA levels, and is reversible by U1 snRNA overexpression. Importantly, U1 snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data reveal a significant gene regulatory scheme in DNA damage response where U1 snRNA impacts gene expression via the U1-alternative cleavage and polyadenylation axis.
Collapse
|
28
|
Chen YC, Chang YC, Ke WC, Chiu HW. Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: An example for non-small cell lung cancer. J Biomed Inform 2015; 56:1-7. [DOI: 10.1016/j.jbi.2015.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
29
|
Theodoulou NH, Bamborough P, Bannister AJ, Becher I, Bit RA, Che KH, Chung CW, Dittmann A, Drewes G, Drewry DH, Gordon L, Grandi P, Leveridge M, Lindon M, Michon AM, Molnar J, Robson SC, Tomkinson NCO, Kouzarides T, Prinjha RK, Humphreys PG. Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. J Med Chem 2015; 59:1425-39. [PMID: 25856009 DOI: 10.1021/acs.jmedchem.5b00256] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.
Collapse
Affiliation(s)
- Natalie H Theodoulou
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Paul Bamborough
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew J Bannister
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Isabelle Becher
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rino A Bit
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ka Hing Che
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Chun-wa Chung
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Antje Dittmann
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline , Research Triangle Park, North Carolina 27709, United States
| | - Laurie Gordon
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paola Grandi
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Melanie Leveridge
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew Lindon
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anne-Marie Michon
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Judit Molnar
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Samuel C Robson
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Tony Kouzarides
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Rab K Prinjha
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Philip G Humphreys
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
30
|
Guo J, Zhang J, Zhang X, Zhang Z, Wei X, Zhou X. Constitutive activation of MEK1 promotes Treg cell instability in vivo. J Biol Chem 2014; 289:35139-48. [PMID: 25361764 DOI: 10.1074/jbc.m114.589192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The instability of regulatory T (Treg) cells is involved in the pathogenesis of autoimmune diseases and also highlights safety concerns with regard to clinical Treg cell therapy. Cell-intrinsic molecular events linked to this Treg cell instability in vivo cells, which leads to safety concerns regardingare still obscure. Here we developed a novel luciferase-based reporter system and performed an unbiased screening for kinases that potentially modulate Foxp3 function. We found that the active form of COT/Tpl2 specifically inhibits the DNA binding activity of Foxp3 through a MEK-ERK-dependent pathway. Moreover, Treg cell-specific expression of activated MEK1 led to dysregulation of Treg function and instability of Foxp3 expression in vivo. Our results support the hypothesis that outside inflammatory signals act through the COT/Tpl2-MEK-ERK signaling pathway to destabilize the Treg lineage.
Collapse
Affiliation(s)
- Jitao Guo
- From the Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CASPMI), Beijing 100101, China
| | - Jianhua Zhang
- From the Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CASPMI), Beijing 100101, China
| | - Xuejie Zhang
- From the Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CASPMI), Beijing 100101, China
| | - Zhongmei Zhang
- From the Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CASPMI), Beijing 100101, China
| | - Xundong Wei
- From the Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CASPMI), Beijing 100101, China
| | - Xuyu Zhou
- From the Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CASPMI), Beijing 100101, China
| |
Collapse
|