1
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
2
|
Oncolytic viruses as emerging therapy against cancers including Oncovirus-induced cancers. Eur J Pharmacol 2023; 939:175393. [PMID: 36435236 DOI: 10.1016/j.ejphar.2022.175393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
There are several human viruses with known potential for causing cancers including, Hepatitis B virus, Hepatitis C virus, Epstein-Barr virus, Kaposi's sarcoma herpesvirus, Human T-cell lymphotropic virus, Human papillomavirus, and Merkel cell polyomavirus. Cancer is the second leading cause of death that affects humans worldwide, especially in developing countries. Surgery, chemotherapy, and radiotherapy can cure about 60% of humans with cancer but recurrent and metastatic diseases remain a major reason for death. In recent years, understanding the molecular characteristics of cancer cells has led to the improvement of therapeutic strategies using novel emerging therapies. Oncolytic viruses with the potential of lysing cancer cells defined the field of oncolytic virology, hence becoming a biotechnology tool rather than just a cause of disease. This study mainly focused on targeting cell proliferation and death pathways in human tumor-inducing viruses by developing innovative therapies for cancer patients based on the natural oncolytic properties of reovirus. To kill tumor cells efficiently and reduce the chance of recurrence both the direct ability of reovirus infection to lyse the tumor cells and the stimulation of a potent host immune response are applied. Hence, bioengineered stem cells can be used as smart carriers to improve the efficacy of oncolytic reovirus and safety profiles.
Collapse
|
3
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
4
|
Luo Y, Lin C, Ren W, Ju F, Xu Z, Liu H, Yu Z, Chen J, Zhang J, Liu P, Huang C, Xia N. Intravenous Injections of a Rationally Selected Oncolytic Herpes Virus as a Potent Virotherapy for Hepatocellular Carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:153-165. [PMID: 31720372 PMCID: PMC6838930 DOI: 10.1016/j.omto.2019.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
As a clinical setting in which novel treatment options are urgently needed, hepatocellular carcinoma (HCC) exhibits intriguing opportunities for oncolytic virotherapy. Here we report the rational generation of a novel herpes simplex virus type 1 (HSV-1)-based oncolytic vector for targeting HCC, named Ld0-GFP, which was derived from oncolytic ICP0-null virus (d0-GFP), had a fusogenic phenotype, and was a novel killer against HCC as well as other types of cancer cells. Compared with d0-GFP, Ld0-GFP exhibited superior cancer cell-killing ability in vitro and in vivo. Ld0-GFP targets a broad spectrum of HCC cells and can result in significantly enhanced immunogenic tumor cell death. Intratumoral and intravenous injections of Ld0-GFP showed effective antitumor capabilities in multiple tumor models, leading to increased survival. We speculated that more active cell-killing capability of oncolytic virus and enhanced immunogenic cell death may lead to better tumor regression. Additionally, Ld0-GFP had an improved safety profile, showing reduced neurovirulence and systemic toxicity. Ld0-GFP virotherapy could offer a potentially less toxic, more effective option for both local and systemic treatment of HCC. This approach also provides novel insights toward ongoing efforts to develop an optimal oncolytic vector for cancer therapy.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Huiling Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zeng Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, ZhongShan Hospital Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory and Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital Xiamen University, Xiamen, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Abstract
Gene therapy is emerging as a viable option for clinical therapy of monogenic disorders and other genetically defined diseases, with approved gene therapies available in Europe and newly approved gene therapies in the United States. In the past 10 years, gene therapy has moved from a distant possibility, even in the minds of much of the scientific community, to being widely realized as a valuable therapeutic tool with wide-ranging potential. The U.S. Food and Drug Administration has recently approved Luxturna (Spark Therapeutics Inc, Philadelphia, PA, USA), a recombinant adeno-associated virus (rAAV) 2 gene therapy for one type of Leber congenital amaurosis 2 ( 1 , 2 ). The European Medicines Agency (EMA) has approved 3 recombinant viral vector products: Glybera (UniQure, Amsterdam, The Netherlands), an rAAV vector for lipoprotein lipase deficiency; Strimvelis (Glaxo Smith-Kline, Brentford, United Kingdom), an ex vivo gammaretrovirus-based therapy for patients with adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID); and Kymriah (Novartis, Basel, Switzerland), an ex vivo lentivirus-based therapy to engineer autologous chimeric antigen-receptor T (CAR-T) cells targeting CD19-positive cells in acute lymphoblastic leukemia. These examples will be followed by the clinical approval of other gene therapy products as this field matures. In this review we provide an overview of the state of gene therapy by discussing where the field stands with respect to the different gene therapy vector platforms and the types of therapies that are available.-Gruntman, A. M., Flotte, T. R. The rapidly evolving state of gene therapy.
Collapse
Affiliation(s)
- Alisha M Gruntman
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Wang Y, Jin J, Wu Z, Hu S, Hu H, Ning Z, Li Y, Dong Y, Zou J, Mao Z, Shi X, Zheng H, Dong S, Liu F, Fang Z, Wu J, Liu B. Stability and anti-tumor effect of oncolytic herpes simplex virus type 2. Oncotarget 2018; 9:24672-24683. [PMID: 29872496 PMCID: PMC5973869 DOI: 10.18632/oncotarget.25122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
Oncolytic virotherapy is a new therapeutic strategy based on the inherent cytotoxicity of viruses and their ability to replicate and spread in tumors in a selective manner. We constructed a new type of oncolytic herpes simplex virus type 2 (oHSV-2, named OH2) to treat human cancers, but a systematic evaluation of the stability and oncolytic ability of this virus is lacking. In this study, we evaluated its physical stability, gene modification stability and biological characteristics stability, including its anti-tumor activity in an animal model. The physical characteristics as well as genetic deletions and insertions in OH2 were stable, and the anti-tumor activity remained stable even after passage of the virus for more than 20 generations. In conclusion, OH2 is a virus that has stable structural and biological traits. Furthermore, OH2 is a potent oncolytic agent against tumor cells.
Collapse
Affiliation(s)
- Yang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jing Jin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhen Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Han Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhifeng Ning
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Yanfei Li
- College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Yuting Dong
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Jianwen Zou
- College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Zeyong Mao
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Xiaotai Shi
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 201203, Shanghai, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Fuxing Liu
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Zhizheng Fang
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Jiliang Wu
- Hubei Provincial Key Laboratory of Cardiocerebrovascular and Metabolic Diseases, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China.,College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| |
Collapse
|
7
|
RETRACTED ARTICLE: Transcriptional retargeting of herpes simplex virus for cell-specific replication to control cancer. J Cancer Res Clin Oncol 2018; 144:2107. [PMID: 29305707 DOI: 10.1007/s00432-017-2566-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
8
|
Huang F, Wang BR, Wu YQ, Wang FC, Zhang J, Wang YG. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World J Gastroenterol 2016; 22:7999-8009. [PMID: 27672294 PMCID: PMC5028813 DOI: 10.3748/wjg.v22.i35.7999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer has been one of the five most commonly diagnosed and leading causes of cancer mortality over the past few decades. Great progress in traditional therapies has been made, which prolonged survival in patients with early cancer, yet tumor relapse and drug resistance still occurred, which is explained by the cancer stem cell (CSC) theory. Oncolytic virotherapy has attracted increasing interest in cancer because of its ability to infect and lyse CSCs. This paper reviews the basic knowledge, CSC markers and therapeutics of gastrointestinal cancer (liver, gastric, colon and pancreatic cancer), as well as research advances and possible molecular mechanisms of various oncolytic viruses against gastrointestinal CSCs. This paper also summarizes the existing obstacles to oncolytic virotherapy and proposes several alternative suggestions to overcome the therapeutic limitations.
Collapse
|
9
|
Oncolytic viruses-immunotherapeutics on the rise. J Mol Med (Berl) 2016; 94:979-91. [PMID: 27492706 DOI: 10.1007/s00109-016-1453-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022]
Abstract
The oncolytic virus (OV) field has entered an exciting period in its evolution in which our basic understanding of viral biology and anti-cancer potential are being actively translated into viable therapeutic options for aggressive malignancies. OVs are naturally occurring or engineered viruses that are able to exploit cancer-specific changes in cellular signaling to specifically target cancers and their microenvironment. The direct cytolytic effect of OVs on cancer cells is known to release antigens, which can begin a cascade of events that results in the induction of anti-cancer adaptive immunity. This response is now regarded as the most critical mechanism of OV action and harnessing it can lead to the elimination of distant micrometastases as well as provide long-term anti-cancer immune surveillance. In this review, we highlight the development of the OV field, why OVs are gaining an increasingly elevated standing as members of the cancer immunotherapy armamentarium, and finally, ongoing clinical studies that are aimed at translating unique OV therapies into approved therapies for aggressive cancers.
Collapse
|
10
|
Cardoso TC, Rosa ACG, Ferreira HL, Okamura LH, Oliveira BRSM, Vieira FV, Silva-Frade C, Gameiro R, Flores EF. Bovine herpesviruses induce different cell death forms in neuronal and glial-derived tumor cell cultures. J Neurovirol 2016; 22:725-735. [PMID: 27311457 DOI: 10.1007/s13365-016-0444-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have the ability to infect tumor cells and leave healthy cells intact. In this study, bovine herpesvirus 1 (BHV1; Los Angeles, Cooper, and SV56/90 strains) and bovine herpesvirus 5 (BHV5; SV507/99 and GU9457818 strains) were used to infect two neuronal tumor cell lineages: neuro2a (mouse neuroblastoma cells) and C6 (rat glial cells). BHV1 and BHV5 strains infected both cell lines and positively correlated with viral antigen detection (p < 0.005). When neuro2a cells were infected by Los Angeles, SV507/99, and GU9457818 strains, 40 % of infected cells were under early apoptosis and necroptosis pathways. Infected C6 cells were >40 % in necroptosis phase when infected by BHV5 (GU9457818 strain). Blocking caspase activation did not interfere with cell death. However, when necroptosis was blocked, 60-80 % of both infected cells with either virus switched to early apoptosis pathway with no interference with virus replication. Moreover, reactive oxygen species production and mitochondrial membrane dysfunction were detected at high levels in both infected cell lines. In spite of apoptosis and necroptosis blockage, tumor necrosis factor alpha (TNFA) and virus transcription were positively correlated for all viral strains studied. Thus, these results contribute to the characterization of BHV1 and BHV5 as potential oncolytic viruses for non-human cells. Nonetheless, the mechanisms underlying their oncolytic activity in human cells are still to be determined.
Collapse
Affiliation(s)
- Tereza C Cardoso
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil.
| | - Ana Carolina G Rosa
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Helena L Ferreira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
- FZEA-USP, Departamento de Medicina Veterinária, Av. Duque de Caxias Norte, 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Lucas H Okamura
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Bruna R S M Oliveira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Flavia V Vieira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Camila Silva-Frade
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Roberto Gameiro
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Eduardo F Flores
- Virology Section, Federal University of Santa Maria, Santa Maria, 97115-900, RS, Brazil
| |
Collapse
|
11
|
Zhang W, Ge K, Zhao Q, Zhuang X, Deng Z, Liu L, Li J, Zhang Y, Dong Y, Zhang Y, Zhang S, Liu B. A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget 2015; 6:20345-55. [PMID: 25972362 PMCID: PMC4653009 DOI: 10.18632/oncotarget.3884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/24/2015] [Indexed: 12/19/2022] Open
Abstract
Virotherapy is a promising strategy for cancer treatment. Using the human telomerase reverse transcriptase promoter, we developed a novel tumor-selective replication oncolytic HSV-1. Here we showed that oHSV1-hTERT virus was cytopathic in telomerase-positive cancer cell lines but not in telomerase-negative cell lines. In intra-venous injection in mice, oHSV1-hTERT was safer than its parental oHSV1-17+. In human blood cell transduction assays, both viruses transduced few blood cells and the transduction rate for oHSV1-hTERT was even less than that for its parental virus. In vivo, oHSV1-hTERT inhibited growth of tumors and prolong survival in telomerase-positive xenograft tumor models. Therefore, we concluded that this virus may be a safe and effective therapeutic agent for cancer treatment, warranting clinical trials in humans.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Keli Ge
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Qian Zhao
- Department of Pathology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Xiufen Zhuang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Zhenling Deng
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Lingling Liu
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Li
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yu Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Ying Dong
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Youhui Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Shuren Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Binlei Liu
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.,Hubei University of Technology, Nanhu, Wuchang District, Wuhan 430068, China
| |
Collapse
|