1
|
Léost F, Barbet J, Beyler M, Chérel M, Delpon G, Garcion E, Lacerda S, Lepareur N, Rbah-Vidal L, Vaugier L, Visvikis D. ["New Modalities in Cancer Imaging and Therapy" XVth edition of the workshop organized by the network "Tumor Targeting, Imaging, Radiotherapies" of the Cancéropôle Grand-Ouest, 5-8 October 2022, France]. Bull Cancer 2023; 110:1322-1331. [PMID: 37880044 DOI: 10.1016/j.bulcan.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/16/2023] [Accepted: 08/13/2023] [Indexed: 10/27/2023]
Abstract
The fifteenth edition of the international workshop organized by the "Tumour Targeting and Radiotherapies network" of the Cancéropôle Grand-Ouest focused on the latest advances in internal and external radiotherapy from different disciplinary angles: chemistry, biology, physics, and medicine. The workshop covered several deliberately diverse topics: the role of artificial intelligence, new tools for imaging and external radiotherapy, theranostic aspects, molecules and contrast agents, vectors for innovative combined therapies, and the use of alpha particles in therapy.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | | | - Maryline Beyler
- Université de Brest, UMR CNRS-UBO 6521 CEMCA, 6, avenue V.-Le-Gorgeu, 29200 Brest, France
| | - Michel Chérel
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI(2)NA, Nantes, France
| | - Grégory Delpon
- Institut de cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, 4, rue Alfred-Kastler, 44307 Nantes cedex 3, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI(2)NA, Angers, France
| | - Sara Lacerda
- Université d'Orléans, centre de biophysique moléculaire, CNRS UPR 4301, rue Charles-Sadron, 45071 Orléans cedex 2, France
| | - Nicolas Lepareur
- Université de Rennes, Inrae, Inserm, CLCC Eugène-Marquis, institut nutrition, métabolismes et cancer (NUMECAN), UMR 1317, Rennes, France
| | - Latifa Rbah-Vidal
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI(2)NA, Nantes, France
| | - Loïg Vaugier
- Institut de cancérologie de l'Ouest, département de physique médicale, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, 4, rue Alfred-Kastler, 44307 Nantes cedex 3, France
| | - Dimitris Visvikis
- Inserm, LaTIM, UMR 1101, IBSAM, UBO, UBL, 22, rue Camille-Desmoulins, 29238 Brest, France
| |
Collapse
|
2
|
Ye T, Li F, Ma G, Wei W. Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Adv Drug Deliv Rev 2021; 177:113927. [PMID: 34403752 DOI: 10.1016/j.addr.2021.113927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
In recent years, personalized cancer vaccines have gained increasing attention as emerging immunotherapies with the capability to overcome interindividual differences and show great benefits for individual patients in the clinic due to the highly tailored vaccine formulations. A large number of materials have been studied as delivery vectors to enhance the therapeutic performance of personalized cancer vaccines, including artificial materials, engineered microorganisms, cells and cell derivatives. These delivery vectors with distinct features are employed to change antigen biodistributions and to facilitate antigen uptake, processing and presentation, improving the strength, velocity, and duration of the immune response when delivered by different strategies. Here, we provide an overview of personalized cancer vaccine delivery vectors, describing their materials, physicochemical properties, delivery strategies and challenges for clinical transformation.
Collapse
|
3
|
Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett 2020; 470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
|
4
|
Sarivalasis A, Boudousquié C, Balint K, Stevenson BJ, Gannon PO, Iancu EM, Rossier L, Martin Lluesma S, Mathevet P, Sempoux C, Coukos G, Dafni U, Harari A, Bassani-Sternberg M, Kandalaft LE. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J Transl Med 2019; 17:391. [PMID: 31771601 PMCID: PMC6880492 DOI: 10.1186/s12967-019-02133-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Most ovarian cancer patients are diagnosed at a late stage with 85% of them relapsing after surgery and standard chemotherapy; for this reason, new treatments are urgently needed. Ovarian cancer has become a candidate for immunotherapy by reason of their expression of shared tumor-associated antigens (TAAs) and private mutated neoantigens (NeoAgs) and the recognition of the tumor by the immune system. Additionally, the presence of intraepithelial tumor infiltrating lymphocytes (TILs) is associated with improved progression-free and overall survival of patients with ovarian cancer. The aim of active immunotherapy, including vaccination, is to generate a new anti-tumor response and amplify an existing immune response. Recently developed NeoAgs-based cancer vaccines have the advantage of being more tumor specific, reducing the potential for immunological tolerance, and inducing robust immunogenicity. Methods We propose a randomized phase I/II study in patients with advanced ovarian cancer to compare the immunogenicity and to assess safety and feasibility of two personalized DC vaccines. After standard of care surgery and chemotherapy, patients will receive either a novel vaccine consisting of autologous DCs pulsed with up to ten peptides (PEP-DC), selected using an agnostic, yet personalized, epitope discovery algorithm, or a sequential combination of a DC vaccine loaded with autologous oxidized tumor lysate (OC-DC) prior to an equivalent PEP-DC vaccine. All vaccines will be administered in combination with low-dose cyclophosphamide. This study is the first attempt to compare the two approaches and to use NeoAgs-based vaccines in ovarian cancer in the adjuvant setting. Discussion The proposed treatment takes advantage of the beneficial effects of pre-treatment with OC-DC prior to PEP-DC vaccination, prompting immune response induction against a wide range of patient-specific antigens, and amplification of pre-existing NeoAgs-specific T cell clones. Trial registration This trial is already approved by Swissmedic (Ref.: 2019TpP1004) and will be registered at http://www.clinicaltrials.gov before enrollment opens.
Collapse
Affiliation(s)
- Apostolos Sarivalasis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquié
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Philippe O Gannon
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Emanuela Marina Iancu
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Laetitia Rossier
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Silvia Martin Lluesma
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Patrice Mathevet
- Women-Mother-Child Department, Service of Gynecology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Urania Dafni
- Laboratory of Biostatistics, School of Health Sciences, National and Kapodistrian, University of Athens, Athens, Greece
| | - Alexandre Harari
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Savelyeva N, Allen A, Chotprakaikiat W, Harden E, Jobsri J, Godeseth R, Wang Y, Stevenson F, Ottensmeier C. Linked CD4 T Cell Help: Broadening Immune Attack Against Cancer by Vaccination. Curr Top Microbiol Immunol 2019; 405:123-143. [PMID: 27704269 DOI: 10.1007/82_2016_500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last decade, immunotherapy with monoclonal antibodies targeting immunological check points has become a breakthrough therapeutic modality for solid cancers. However, only up to 50 % of patients benefit from this powerful approach. For others vaccination might provide a plausible addition or alternative. For induction of effective anticancer immunity CD4+ T cell help is required, which is often difficult to induce to self cancer targets because of tolerogenic mechanisms. Our approach for cancer vaccines has been to incorporate into the vaccine design sequences able to activate foreign T cell help, through genetically linking cancer targets to microbial sequences (King et al. in Nat Med 4(11):1281-1286, 1998; Savelyeva et al. in Nat Biotechnol 19(8):760-764, 2001). This harnesses the non-tolerized CD4 T cell repertoire available in patients to help induction of effective immunity against fused cancer antigens. Multiple immune effector mechanisms including antibody, CD8+ T cells as well as CD4 effector T cells can be activated using this strategy. Delivery via DNA vaccines has already indicated clinical efficacy. The same principle of linked T cell help has now been transferred to other novel vaccine modalities to further potentiate immunity against cancer targets.
Collapse
Affiliation(s)
- Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
| | - Alex Allen
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Warayut Chotprakaikiat
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
- Oral Biology Department, Naresuan University, Phitsanulok, Thailand
| | - Elena Harden
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Jantipa Jobsri
- Oral Biology Department, Naresuan University, Phitsanulok, Thailand
| | - Rosemary Godeseth
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Yidao Wang
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Freda Stevenson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Christian Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
6
|
Koster J, Plasterk RHA. A library of Neo Open Reading Frame peptides (NOPs) as a sustainable resource of common neoantigens in up to 50% of cancer patients. Sci Rep 2019; 9:6577. [PMID: 31036835 PMCID: PMC6488612 DOI: 10.1038/s41598-019-42729-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 02/08/2023] Open
Abstract
Somatic mutations in cancer can result in neoantigens against which patients can be vaccinated. The quest for tumor specific neoantigens has yielded no targets that are common to all tumors, yet foreign to healthy cells. Single base pair substitutions (SNVs) at best can alter 1 amino acid which can result in a neoantigen; with the exception of rare site-specific oncogenic driver mutations (such as RAS) such mutations are private. Here, we describe a source of common neoantigens induced by frame shift mutations, based on analysis of 10,186 TCGA tumor samples. We find that these frame shift mutations can produce long neoantigens. These are completely new to the body, and indeed recent evidence suggests that frame shifts can be highly immunogenic. We report that many different frame shift mutations converge to the same small set of 3' neo open reading frame peptides (NOPs), all encoded by the Neo-ORFeome. We find that a fixed set of only 1,244 neo-peptides in as much as 30% of all TCGA cancer patients. For some tumor classes this is higher; e.g. for colon and cervical cancer, peptides derived from only ten genes (saturated at 90 peptides) can be applied to 39% of all patients. 50% of all TCGA patients can be achieved at saturation (using all those peptides in the library found more than once). A pre-fabricated library of vaccines (peptide, RNA or DNA) based on this set can provide off the shelf, quality certified, 'personalized' vaccines within hours, saving months of vaccine preparation. This is crucial for critically ill cancer patients with short average survival expectancy after diagnosis.
Collapse
Affiliation(s)
- Jan Koster
- Amsterdam UMC, University of Amsterdam, Department of Oncogenomics, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Ronald H A Plasterk
- myTomorrows, Antoni Fokkerweg 61, Amsterdam, The Netherlands.
- Founder/CEO, Frame Cancer Therapeutics, Science Park 106, Amsterdam, 1098 XG, The Netherlands.
- Amsterdam UMC, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Busato D, Mossenta M, Baboci L, Di Cintio F, Toffoli G, Dal Bo M. Novel immunotherapeutic approaches for hepatocellular carcinoma treatment. Expert Rev Clin Pharmacol 2019; 12:453-470. [PMID: 30907177 DOI: 10.1080/17512433.2019.1598859] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The introduction of immune checkpoint inhibitors has been lately proposed for the treatment of hepatocellular carcinoma (HCC) with respect to other cancer types. Several immunotherapeutic approaches are now under evaluation for HCC treatment including: i) antibodies acting as immune checkpoint inhibitors; ii) antibodies targeting specific tumor-associated antigens; iii) chimeric antigen receptor redirected T (CAR-T) cells targeting specific tumor-associated antigens; iv) vaccination strategies with tumor-specific epitopes. Areas covered: The review provides a wide description of the clinical trials investigating the efficacy of the main immunotherapeutic approaches proposed for the treatment of patients affected by HCC. Expert opinion: The balancing between immunostimulative and immunosuppressive factors in the context of HCC tumor microenvironment results in heterogeneous response rates to immunotherapeutic approaches such as checkpoint inhibitors, among HCC patients. In this context, it becomes crucial the identification of predictive factors determining the treatment response. A multiple approach using different biomarkers could be useful to identify the subgroup of HCC patients responsive to the treatment with a checkpoint inhibitor (as an example, nivolumab) as single agent, and to identify those patients in which other treatment regimens, such as the combination with sorafenib, or with locoregional therapies, could be more effective.
Collapse
Affiliation(s)
- Davide Busato
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Monica Mossenta
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Lorena Baboci
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Federica Di Cintio
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy.,b Department of Life Sciences , University of Trieste , Trieste , Italy
| | - Giuseppe Toffoli
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| | - Michele Dal Bo
- a Experimental and Clinical Pharmacology Unit , Centro di Riferimento Oncologico di Aviano (CRO), IRCCS , Aviano (PN) , Italy
| |
Collapse
|
8
|
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Front Immunol 2019; 10:766. [PMID: 31031762 PMCID: PMC6470191 DOI: 10.3389/fimmu.2019.00766] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate and adaptive immune system, and have critical roles in the induction of antitumor immunity. However, despite proven immunogenicity and favorable safety profiles, DC-based immunotherapies have not succeeded at inducing significant objective clinical responses. Emerging data suggest that the combination of DC-based vaccination with other cancer therapies may fully unleash the potential of DC-based cancer vaccines and improve patient survival. In this review, we discuss the recent efforts to develop innovative personalized DC-based vaccines and their use in combined therapies, with a particular focus on ovarian cancer and the promising results of mutanome-based personalized immunotherapies.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Philippe O Gannon
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Akazawa Y, Suzuki T, Yoshikawa T, Mizuno S, Nakamoto Y, Nakatsura T. Prospects for immunotherapy as a novel therapeutic strategy against hepatocellular carcinoma. World J Meta-Anal 2019; 7:80-95. [DOI: 10.13105/wjma.v7.i3.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant disease, with a poor clinical prognosis. Many standard therapies are often considered for HCC treatment today; however, these conventional therapies often fail to achieve sufficiently effective clinical results. Today, HCC therapy is set to undergo a major revolution, owing to rapid developments in cancer immunotherapy, particularly immune checkpoint inhibitor therapy. Cancer immunotherapy is a novel and promising treatment strategy that differs significantly from conventional therapies in its approach to achieve antitumor effects. In fact, many cancer immunotherapies have been tested worldwide and shown to be effective against various types of cancer; HCC is no exception to this trend. For example, we identified a specific cancer antigen called glypican-3 (GPC3) and performed clinical trials of GPC3-targeted peptide vaccine immunotherapy in patients with HCC. Here, we present an overview of the immune mechanisms for development and progression of HCC, our GPC3-based immunotherapy, and immune checkpoint inhibitor therapy against HCC. Finally, we discuss the future prospects of cancer immunotherapy against HCC. We believe that this review and discussion of cancer immunotherapy against HCC could stimulate more interest in this promising strategy for cancer therapy and help in its further development.
Collapse
Affiliation(s)
- Yu Akazawa
- Toshiaki Yoshioka, Shoichi Mizuno, Tetsuya Nakatsura, Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Suzuki
- Toshiaki Yoshioka, Shoichi Mizuno, Tetsuya Nakatsura, Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | | | | | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | | |
Collapse
|
10
|
Shimizu Y, Suzuki T, Yoshikawa T, Tsuchiya N, Sawada Y, Endo I, Nakatsura T. Cancer immunotherapy-targeted glypican-3 or neoantigens. Cancer Sci 2018; 109:531-541. [PMID: 29285841 PMCID: PMC5834776 DOI: 10.1111/cas.13485] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors have ushered in a new era in cancer therapy, although other therapies or combinations thereof are still needed for many patients for whom these drugs are ineffective. In this light, we have identified glypican‐3 an HLA‐24, HLA‐A2 restriction peptide with extreme cancer specificity. In this paper, we summarize results from a number of related clinical trials showing that glypican‐3 peptide vaccines induce specific CTLs in most patients (UMIN Clinical Trials Registry: UMIN000001395, UMIN000005093, UMIN000002614, UMN000003696, and UMIN000006357). We also describe the current state of personalized cancer immunotherapy based on neoantigens, and assess, based on our own research and experience, the potential of such therapy to elicit cancer regression. Finally, we discuss the future direction of cancer immunotherapy.
Collapse
Affiliation(s)
- Yasuhiro Shimizu
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Nobuhiro Tsuchiya
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yu Sawada
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
11
|
Spontaneous Activation of Antigen-presenting Cells by Genes Encoding Truncated Homo-Oligomerizing Derivatives of CD40. J Immunother 2018; 40:39-50. [PMID: 28005579 DOI: 10.1097/cji.0000000000000150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction between the CD40 receptor on antigen-presenting cells (APCs) and its trimeric ligand on CD4 T cells is essential for the initiation and progression of the adaptive immune response. Here we undertook to endow CD40 with the capacity to trigger spontaneous APC activation through ligand-independent oligomerization. To this end we exploited the GCN4 yeast transcriptional activator, which contains a leucine zipper DNA-binding motif that induces homophilic interactions. We incorporated GCN4 variants forming homodimers, trimers, or tetramers at the intracellular domain of human and mouse CD40 and replaced the extracellular portion with peptide-β2m or other peptide tags. In parallel we examined similarly truncated CD40 monomers lacking a GCN4 motif. The oligomeric products appeared to arrange in high-molecular-weight aggregates and were considerably superior to the monomer in their ability to trigger nuclear factor kB signaling, substantiating the anticipated constitutively active (ca) phenotype. Cumulative results in human and mouse APC lines transfected with caCD40 mRNA revealed spontaneous upregulation of CD80, IL-1β, TNFα, IL-6, and IL-12, which could be further enhanced by caTLR4 mRNA. In mouse bone-marrow-derived dendritic cells caCD40 upregulated CD80, CD86, MHC-II, and IL-12 and in human monocyte-derived dendritic cells it elevated surface CD80, CD83 CD86, CCR7, and HLA-DR. Oligomeric products carrying the peptide-β2m extracellular portion could support MHC-I presentation of the linked peptide up to 4 days post-mRNA transfection. These findings demonstrate that the expression of a single caCD40 derivative in APCs can exert multiple immunostimulatory effects, offering a new powerful tool in the design of gene-based cancer vaccines.
Collapse
|
12
|
Aldous AR, Dong JZ. Personalized neoantigen vaccines: A new approach to cancer immunotherapy. Bioorg Med Chem 2017; 26:2842-2849. [PMID: 29111369 DOI: 10.1016/j.bmc.2017.10.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Neoantigens arise from somatic mutations that differ from wild-type antigens and are specific to each individual patient, which provide tumor specific targets for developing personalized cancer vaccines. Decades of work has increasingly shown the potential of targeting neoantigens to generate effective clinical responses. Current clinical trials using neoantigen targeting cancer vaccines, including in combination with checkpoint blockade monoclonal antibodies, have demonstrated potent T-cell responses against those neoantigens accompanied by antitumor effects in patients. Personalized neoantigen vaccines represent a potential new class of cancer immunotherapy.
Collapse
|
13
|
Schubert B, de la Garza L, Mohr C, Walzer M, Kohlbacher O. ImmunoNodes - graphical development of complex immunoinformatics workflows. BMC Bioinformatics 2017; 18:242. [PMID: 28482806 PMCID: PMC5422934 DOI: 10.1186/s12859-017-1667-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background Immunoinformatics has become a crucial part in biomedical research. Yet many immunoinformatics tools have command line interfaces only and can be difficult to install. Web-based immunoinformatics tools, on the other hand, are difficult to integrate with other tools, which is typically required for the complex analysis and prediction pipelines required for advanced applications. Result We present ImmunoNodes, an immunoinformatics toolbox that is fully integrated into the visual workflow environment KNIME. By dragging and dropping tools and connecting them to indicate the data flow through the pipeline, it is possible to construct very complex workflows without the need for coding. Conclusion ImmunoNodes allows users to build complex workflows with an easy to use and intuitive interface with a few clicks on any desktop computer.
Collapse
Affiliation(s)
- Benjamin Schubert
- Center for Bioinformatics, University of Tübingen, Tübingen, 72076, Germany. .,Applied Bioinformatics, Dept. of Computer Science, Tübingen, 72076, Germany. .,Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, 02115, USA.
| | - Luis de la Garza
- Center for Bioinformatics, University of Tübingen, Tübingen, 72076, Germany.,Applied Bioinformatics, Dept. of Computer Science, Tübingen, 72076, Germany
| | - Christopher Mohr
- Center for Bioinformatics, University of Tübingen, Tübingen, 72076, Germany.,Applied Bioinformatics, Dept. of Computer Science, Tübingen, 72076, Germany
| | - Mathias Walzer
- Center for Bioinformatics, University of Tübingen, Tübingen, 72076, Germany.,Applied Bioinformatics, Dept. of Computer Science, Tübingen, 72076, Germany
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen, 72076, Germany.,Applied Bioinformatics, Dept. of Computer Science, Tübingen, 72076, Germany.,Quantitative Biology Center (QBiC), Tübingen, 72076, Germany.,Faculty of Medicine, University of Tübingen, Tübingen, 72076, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| |
Collapse
|
14
|
Fisher SA, Aston WJ, Chee J, Khong A, Cleaver AL, Solin JN, Ma S, Lesterhuis WJ, Dick I, Holt RA, Creaney J, Boon L, Robinson B, Lake RA. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis 2017; 5:16-28. [PMID: 28250921 PMCID: PMC5322183 DOI: 10.1002/iid3.136] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Regulatory T cells (Treg) play an important role in suppressing anti- immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti-cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. METHODS Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. RESULTS DTX specifically depleted Treg in a transient, dose-dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor-peptide vaccination. CONCLUSIONS BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti-tumor immunity. DTX-mediated Treg depletion is transient, dose-dependent, and leads to strong anti-tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor-specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies.
Collapse
Affiliation(s)
- Scott A. Fisher
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Wayne J. Aston
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Jonathan Chee
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Andrea Khong
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Amanda L. Cleaver
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Jessica N. Solin
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Shaokang Ma
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - W. Joost Lesterhuis
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Ian Dick
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Robert A. Holt
- British Columbia Cancer AgencyVancouverBritish ColumbiaCanada
| | - Jenette Creaney
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | | | - Bruce Robinson
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Richard A. Lake
- School of Medicine and PharmacologyUniversity of Western Australia, QEII Medical CentreNedlandsWestern AustraliaAustralia
- National Research Centre for Asbestos Related DiseasesQEII Medical CentreNedlandsWestern AustraliaAustralia
| |
Collapse
|
15
|
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines 2017; 5:biomedicines5010003. [PMID: 28536346 PMCID: PMC5423491 DOI: 10.3390/biomedicines5010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.
Collapse
|
16
|
Abstract
RNA vaccines are attractive, because they exhibit characteristics of subunit vaccines and live-attenuated vectors, including flexible production and induction of both humoral and cellular immunity. While human proof-of-concept for RNA vaccines is still pending, the nascent field of RNA therapeutics has already attracted substantial industry and government funding as well as record investments of private venture capital. Most recently, the WHO acknowledged messenger RNA (mRNA) as a new therapeutic class. In this chapter, we briefly review key developments in RNA vaccines and outline the contents of this volume of Methods in Molecular Biology.
Collapse
Affiliation(s)
- Thomas Kramps
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany.
| | - Knut Elbers
- Boehringer Ingelheim GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
17
|
Hinz T, Kallen K, Britten CM, Flamion B, Granzer U, Hoos A, Huber C, Khleif S, Kreiter S, Rammensee HG, Sahin U, Singh-Jasuja H, Türeci Ö, Kalinke U. The European Regulatory Environment of RNA-Based Vaccines. Methods Mol Biol 2017; 1499:203-222. [PMID: 27987152 DOI: 10.1007/978-1-4939-6481-9_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.
Collapse
Affiliation(s)
- Thomas Hinz
- Section for Therapeutic Vaccines, Division for Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| | | | | | - Bruno Flamion
- URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Ulrich Granzer
- Granzer, Regulatory Consulting & Services, Munich, Germany
| | - Axel Hoos
- Glaxo Smith Kline, Collegeville, PA, USA
| | | | | | | | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, DKFZ Partner Site, Tübingen, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- Research Center for Immunotherapy (FZI), Mainz, Germany
| | | | - Özlem Türeci
- CI3, Cluster for individualized Immune Intervention, Mainz, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7-9, 30625, Hannover, Germany.
| |
Collapse
|
18
|
Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J, Hinz U, Hank T, Ehrenberg R, Volkmar M, Loewer M, Glimm H, Hackert T, Sprick MR, Höfer T, Trumpp A, Halama N, Hassel JC, Strobel O, Büchler M, Sahin U, Offringa R. Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 2016; 5:e1240859. [PMID: 28123878 DOI: 10.1080/2162402x.2016.1240859] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The devastating prognosis of patients with resectable pancreatic ductal adenocarcinoma (PDA) presents an urgent need for the development of therapeutic strategies targeting disseminated tumor cells. Until now, T-cell therapy has been scarcely pursued in PDA, due to the prevailing view that it represents a poorly immunogenic tumor. EXPERIMENTAL DESIGN We systematically analyzed T-cell infiltrates in tumor biopsies from 127 patients with resectable PDA by means of immunohistochemistry, flow cytometry, T-cell receptor (TCR) deep-sequencing and functional analysis of in vitro expanded T-cell cultures. Parallel studies were performed on tumor-infiltrating lymphocytes (TIL) from 44 patients with metastatic melanoma. RESULTS Prominent T-cell infiltrates, as well as tertiary lymphoid structures harboring proliferating T-cells, were detected in the vast majority of biopsies from PDA patients. The notion that the tumor is a site of local T-cell expansion was strengthened by TCR deep-sequencing, revealing that the T-cell repertoire in the tumor is dominated by highly frequent CDR3 sequences that can be up to 10,000-fold enriched in tumor as compared to peripheral blood. In fact, TCR repertoire composition in PDA resembled that in melanoma. Moreover, in vitro expansion of TILs was equally efficient for PDA and melanoma, resulting in T-cell cultures displaying HLA class I-restricted reactivity against autologous tumor cells. CONCLUSIONS The tumor-infiltrating T-cell response in PDA shows striking similarity to that in melanoma, where adoptive T-cell therapy has significant therapeutic impact. Our findings indicate that T-cell-based therapies may be used to counter disease recurrence in patients with resectable PDA.
Collapse
Affiliation(s)
- Isabel Poschke
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | | | - Frank Bergmann
- Department of Pathology, Heidelberg University Hospital , Heidelberg, Germany
| | - Michael Flossdorf
- Division of Theoretical Systems Biology, German Cancer Research Center and BioQuant Center, University of Heidelberg , Heidelberg, Germany
| | - Claudia Lauenstein
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | - Jennifer Hermes
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Ehrenberg
- Division of Applied Stem Cell Biology, National Center for Tumor Diseases, Heidelberg, Germany; National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Volkmar
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center , Heidelberg, Germany
| | - Martin Loewer
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | - Hanno Glimm
- Division of Applied Stem Cell Biology, National Center for Tumor Diseases , Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Martin R Sprick
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg , Germany and HI-STEM gGmbH , Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center and BioQuant Center, University of Heidelberg , Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg , Germany and HI-STEM gGmbH , Heidelberg, Germany
| | - Niels Halama
- National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital , Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases, Heidelberg University Hospital , Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery , Heidelberg University Hospital, Heidelberg, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Mainz, Germany; BioNTech AG, Mainz, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany; Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
19
|
Ulmer JB, Geall AJ. Recent innovations in mRNA vaccines. Curr Opin Immunol 2016; 41:18-22. [DOI: 10.1016/j.coi.2016.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/05/2016] [Accepted: 05/12/2016] [Indexed: 01/16/2023]
|
20
|
Moehler M, Delic M, Goepfert K, Aust D, Grabsch HI, Halama N, Heinrich B, Julie C, Lordick F, Lutz MP, Mauer M, Alsina Maqueda M, Schild H, Schimanski CC, Wagner AD, Roth A, Ducreux M. Immunotherapy in gastrointestinal cancer: Recent results, current studies and future perspectives. Eur J Cancer 2016; 59:160-170. [DOI: 10.1016/j.ejca.2016.02.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/13/2016] [Accepted: 02/23/2016] [Indexed: 12/25/2022]
|
21
|
Schubert B, Walzer M, Brachvogel HP, Szolek A, Mohr C, Kohlbacher O. FRED 2: an immunoinformatics framework for Python. Bioinformatics 2016; 32:2044-6. [PMID: 27153717 PMCID: PMC4920123 DOI: 10.1093/bioinformatics/btw113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Summary: Immunoinformatics approaches are widely used in a variety of applications from basic immunological to applied biomedical research. Complex data integration is inevitable in immunological research and usually requires comprehensive pipelines including multiple tools and data sources. Non-standard input and output formats of immunoinformatics tools make the development of such applications difficult. Here we present FRED 2, an open-source immunoinformatics framework offering easy and unified access to methods for epitope prediction and other immunoinformatics applications. FRED 2 is implemented in Python and designed to be extendable and flexible to allow rapid prototyping of complex applications. Availability and implementation: FRED 2 is available at http://fred-2.github.io Contact:schubert@informatik.uni-tuebingen.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Benjamin Schubert
- Center for Bioinformatics, University of Tübingen, Tübingen 72076, Germany Department of Computer Science, Applied Bioinformatics, Tübingen 72076, Germany
| | - Mathias Walzer
- Center for Bioinformatics, University of Tübingen, Tübingen 72076, Germany Department of Computer Science, Applied Bioinformatics, Tübingen 72076, Germany
| | | | - András Szolek
- Center for Bioinformatics, University of Tübingen, Tübingen 72076, Germany Department of Computer Science, Applied Bioinformatics, Tübingen 72076, Germany
| | - Christopher Mohr
- Center for Bioinformatics, University of Tübingen, Tübingen 72076, Germany Department of Computer Science, Applied Bioinformatics, Tübingen 72076, Germany
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen 72076, Germany Department of Computer Science, Applied Bioinformatics, Tübingen 72076, Germany Quantitative Biology Center, Tübingen 72076, Germany Faculty of Medicine, University of Tübingen, Tübingen 72076, Germany Max Planck Institute for Developmental Biology, Biomolecular Interactions, Tübingen 72076, Germany
| |
Collapse
|
22
|
Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 2016; 48:177-87. [PMID: 27020390 DOI: 10.1016/j.pathol.2015.12.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022]
Abstract
The field of systemic cancer therapy for metastatic disease has entered an exciting era with the advent of novel immunomodulatory strategies targeting immune checkpoints. At the heart of these promising efforts are the tumour-infiltrating lymphocytes (TILs). As the reports demonstrating efficacy of modulating TIL effector function in patients with advanced stage cancer continue to accrue, it has become essential to better understand TIL immunobiology in order to further improve clinical outcome. In addition to providing an overview of the current immunotherapies available for metastatic melanoma, this review will briefly introduce the history and classification of TILs. Moreover, we will dissect the multifaceted roles of TILs in tumour-specific immunity and melanoma immune escape. The significance of TILs in melanoma prognosis and cancer immunotherapy will also be discussed, with a particular focus on their potential utility as biomarkers of patient response. The goal of personalised medicine appears to be in realistic sight, as new immunomodulatory techniques and technological innovations continue to advance the field of cancer immunotherapy. In light of recent studies highlighting the possible utility of TILs in determining therapeutic outcome, further characterisation of TIL phenotype and function has the potential to help translate individualised care into current medical practice.
Collapse
|
23
|
Vicini P, Fields O, Lai E, Litwack ED, Martin AM, Morgan TM, Pacanowski MA, Papaluca M, Perez OD, Ringel MS, Robson M, Sakul H, Vockley J, Zaks T, Dolsten M, Søgaard M. Precision medicine in the age of big data: The present and future role of large-scale unbiased sequencing in drug discovery and development. Clin Pharmacol Ther 2015; 99:198-207. [PMID: 26536838 DOI: 10.1002/cpt.293] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
High throughput molecular and functional profiling of patients is a key driver of precision medicine. DNA and RNA characterization has been enabled at unprecedented cost and scale through rapid, disruptive progress in sequencing technology, but challenges persist in data management and interpretation. We analyze the state-of-the-art of large-scale unbiased sequencing in drug discovery and development, including technology, application, ethical, regulatory, policy and commercial considerations, and discuss issues of LUS implementation in clinical and regulatory practice.
Collapse
Affiliation(s)
- P Vicini
- Pfizer Worldwide Research & Development, La Jolla, California, Collegeville, Pennsylvania, and New York, New York, USA
| | - O Fields
- Pfizer Worldwide Research & Development, La Jolla, California, Collegeville, Pennsylvania, and New York, New York, USA
| | - E Lai
- Takeda Pharmaceuticals International, Deerfield, Illinois, USA
| | - E D Litwack
- Food and Drug Administration, Silver Spring, Maryland, USA
| | - A-M Martin
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - T M Morgan
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, and East Hanover, New Jersey, USA
| | - M A Pacanowski
- Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - O D Perez
- Pfizer Worldwide Research & Development, La Jolla, California, Collegeville, Pennsylvania, and New York, New York, USA
| | - M S Ringel
- Boston Consulting Group, Boston, Massachusetts, USA
| | - M Robson
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, and East Hanover, New Jersey, USA
| | - H Sakul
- Pfizer Worldwide Research & Development, La Jolla, California, Collegeville, Pennsylvania, and New York, New York, USA
| | - J Vockley
- Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - T Zaks
- Sanofi, Cambridge, Massachusetts, USA
| | - M Dolsten
- Pfizer Worldwide Research & Development, La Jolla, California, Collegeville, Pennsylvania, and New York, New York, USA
| | - M Søgaard
- Pfizer Worldwide Research & Development, La Jolla, California, Collegeville, Pennsylvania, and New York, New York, USA
| |
Collapse
|
24
|
Van Lint S, Renmans D, Broos K, Goethals L, Maenhout S, Benteyn D, Goyvaerts C, Du Four S, Van der Jeught K, Bialkowski L, Flamand V, Heirman C, Thielemans K, Breckpot K. Intratumoral Delivery of TriMix mRNA Results in T-cell Activation by Cross-Presenting Dendritic Cells. Cancer Immunol Res 2015; 4:146-56. [DOI: 10.1158/2326-6066.cir-15-0163] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/23/2015] [Indexed: 01/02/2023]
|
25
|
Nielsen JS, Sedgwick CG, Shahid A, Zong Z, Brumme ZL, Yu S, Liu L, Kroeger DR, Treon SP, Connors JM, Gascoyne RD, Berry BR, Marra MA, Morin RD, Macpherson N, Nelson BH. Toward Personalized Lymphoma Immunotherapy: Identification of Common Driver Mutations Recognized by Patient CD8+ T Cells. Clin Cancer Res 2015; 22:2226-36. [PMID: 26631611 DOI: 10.1158/1078-0432.ccr-15-2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE A fundamental challenge in the era of next-generation sequencing (NGS) is to design effective treatments tailored to the mutational profiles of tumors. Many newly discovered cancer mutations are difficult to target pharmacologically; however, T-cell-based therapies may provide a valuable alternative owing to the exquisite sensitivity and specificity of antigen recognition. To explore this concept, we assessed the immunogenicity of a panel of genes that are common sites of driver mutations in follicular lymphoma, an immunologically sensitive yet currently incurable disease. EXPERIMENTAL DESIGN Exon capture and NGS were used to interrogate tumor samples from 53 patients with follicular lymphoma for mutations in 10 frequently mutated genes. For 13 patients, predicted mutant peptides and proteins were evaluated for recognition by autologous peripheral blood T cells after in vitro priming. RESULTS Mutations were identified in 1-5 genes in 81% (43/53) of tumor samples. Autologous, mutation-specific CD8(+) T cells were identified in 23% (3/13) of evaluated cases. T-cell responses were directed toward putative driver mutations in CREBBP and MEF2B. Responding T cells showed exquisite specificity for mutant versus wild-type proteins and recognized lymphoma cells expressing the appropriate mutations. Responding T cells appeared to be from the naïve repertoire, as they were found at low frequencies and only at single time points in each patient. CONCLUSIONS Patients with follicular lymphoma harbor rare yet functionally competent CD8(+) T cells specific for recurrent mutations. Our results support the concept of using NGS to design individualized immunotherapies targeting common driver mutations in follicular lymphoma and other malignancies. Clin Cancer Res; 22(9); 2226-36. ©2015 AACR.
Collapse
Affiliation(s)
- Julie S Nielsen
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada.
| | - Colin G Sedgwick
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Zusheng Zong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephen Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lewis Liu
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - David R Kroeger
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Steven P Treon
- Bing Center for Waldenstrom's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joseph M Connors
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. University of British Columbia, Vancouver, British Columbia, Canada
| | - Randy D Gascoyne
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian R Berry
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nicol Macpherson
- Department of Medical Oncology, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Brad H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada. Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada. Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
26
|
Abstract
Advanced hepatocellular carcinoma (HCC) is a serious therapeutic challenge and targeted therapies only provide a modest benefit in terms of overall survival. Novel approaches are urgently needed for the treatment of this prevalent malignancy. Evidence demonstrating the antigenicity of tumour cells, the discovery that immune checkpoint molecules have an essential role in immune evasion of tumour cells, and the impressive clinical results achieved by blocking these inhibitory receptors, are revolutionizing cancer immunotherapy. Here, we review the data on HCC immunogenicity, the mechanisms for HCC immune subversion and the different immunotherapies that have been tested to treat HCC. Taking into account the multiplicity of hyperadditive immunosuppressive forces acting within the HCC microenvironment, a combinatorial approach is advised. Strategies include combinations of systemic immunomodulation and gene therapy, cell therapy or virotherapy.
Collapse
|
27
|
Scholtalbers J, Boegel S, Bukur T, Byl M, Goerges S, Sorn P, Loewer M, Sahin U, Castle JC. TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression. Genome Med 2015; 7:118. [PMID: 26589293 PMCID: PMC4653878 DOI: 10.1186/s13073-015-0240-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022] Open
Abstract
Human cancer cell lines are an important resource for research and drug development. However, the available annotations of cell lines are sparse, incomplete, and distributed in multiple repositories. Re-analyzing publicly available raw RNA-Seq data, we determined the human leukocyte antigen (HLA) type and abundance, identified expressed viruses and calculated gene expression of 1,082 cancer cell lines. Using the determined HLA types, public databases of cell line mutations, and existing HLA binding prediction algorithms, we predicted antigenic mutations in each cell line. We integrated the results into a comprehensive knowledgebase. Using the Django web framework, we provide an interactive user interface with advanced search capabilities to find and explore cell lines and an application programming interface to extract cell line information. The portal is available at http://celllines.tron-mainz.de.
Collapse
Affiliation(s)
- Jelle Scholtalbers
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany.,Present address: European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Sebastian Boegel
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany. .,University Medical Center of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany.
| | - Thomas Bukur
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany.,University Medical Center of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Marius Byl
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Sebastian Goerges
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Patrick Sorn
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Martin Loewer
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany.,University Medical Center of the Johannes Gutenberg-University Mainz, 55131, Mainz, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, 55131, Mainz, Germany
| | - John C Castle
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131, Mainz, Germany.,Present address: Agenus and 4-Antibody AG, Hochbergerstrasse 60C, CH-4057, Basel, Switzerland
| |
Collapse
|
28
|
|
29
|
Obeid J, Hu Y, Slingluff CL. Vaccines, Adjuvants, and Dendritic Cell Activators--Current Status and Future Challenges. Semin Oncol 2015; 42:549-61. [PMID: 26320060 DOI: 10.1053/j.seminoncol.2015.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer vaccines offer a low-toxicity approach to induce anticancer immune responses. They have shown promise for clinical benefit with one cancer vaccine approved in the United States for advanced prostate cancer. As other immune therapies are now clearly effective for treatment of advanced cancers of many histologies, there is renewed enthusiasm for optimizing cancer vaccines for use to prevent recurrence in early-stage cancers and/or to combine with other immune therapies for therapy of advanced cancers. Future advancements in vaccine therapy will involve the identification and selection of effective antigen formulations, optimization of adjuvants, dendritic cell (DC) activation, and combination therapies. In this summary we present the current practice, the broad collection of challenges, and the promising future directions of vaccine therapy for cancer.
Collapse
Affiliation(s)
- Joseph Obeid
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Yinin Hu
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
30
|
Abstract
The clinical relevance of T cells in the control of a diverse set of human cancers is now beyond doubt. However, the nature of the antigens that allow the immune system to distinguish cancer cells from noncancer cells has long remained obscure. Recent technological innovations have made it possible to dissect the immune response to patient-specific neoantigens that arise as a consequence of tumor-specific mutations, and emerging data suggest that recognition of such neoantigens is a major factor in the activity of clinical immunotherapies. These observations indicate that neoantigen load may form a biomarker in cancer immunotherapy and provide an incentive for the development of novel therapeutic approaches that selectively enhance T cell reactivity against this class of antigens.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands.
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|