1
|
Wu Q, Li Q, Qin Y. A cost-effectiveness analysis of amivantamab plus lazertinib versus osimertinib in the treatment of US and Chinese patients with EGFR-mutated advanced non-small cell lung cancer. Lung Cancer 2025; 203:108533. [PMID: 40220717 DOI: 10.1016/j.lungcan.2025.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The combination of amivantamab and lazertinib (AL) has demonstrated clinically significant efficacy in patients with previously untreated EGFR-mutated advanced non-small cell lung cancer (NSCLC). However, its economic value relative to the standard therapy, osimertinib, remains unclear. This study evaluates the cost-effectiveness of AL regimen compared with osimertinib in US and Chinese healthcare settings. METHODS A partitioned survival model, comprising progression-free survival (PFS), post-progression, and death states, was developed using a Markov model. Clinical data were obtained from the recent Phase III MARIPOSA trial. Direct medical costs (including drug acquisition, administration, and adverse event management) were obtained from US and Chinese healthcare system data, public databases, and the literature. Health-state utilities were sourced from the literature. Incremental cost-effectiveness ratios (ICERs) were calculated based on quality-adjusted life years (QALYs). Threshold analysis was performed to identify pricing strategies at specified willingness-to-pay (WTP) thresholds. Model robustness was assessed through sensitivity and scenario analyses, and additional subgroup analyses performed. RESULTS In the base case analysis, the average costs of AL and osimertinib regimen were $1,030,524.3 (China: $234,270.87) and $466,922.0 (China: $20,075.35), respectively, and the QALYs achieved were 4.08 (China: 3.66) and 2.60 (China: 2.66), respectively. The ICERs for AL compared with osimertinib in the US and China were $563,602.3 and $214,195.51, respectively. Based on the respective WTP thresholds in the US and China, the AL regimen did not represent a cost-effective option. Sensitivity, scenario, and subgroup analyses confirmed the robustness of these findings. CONCLUSIONS Although AL regimen prolongs QALYs compared with osimertinib, it may not meet cost-effectiveness thresholds given current US pricing and simulated Chinese prices. These findings emphasize the need to consider policy implications and future pricing strategies.
Collapse
Affiliation(s)
- Qiuji Wu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, China
| | - Yi Qin
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Feng X, Zeng R, Lyu M, Chen X, Xu Z, Hu Y, Bao Z, Sun X, Zhao J, Zhou L, Zhou J, Gao B, Dong L, Xiang Y. Clinical and molecular characteristics, therapeutic strategies, and prognosis of non-small cell lung cancer patients harboring primary and acquired BRAF mutations. Front Oncol 2025; 15:1514653. [PMID: 40242250 PMCID: PMC11999832 DOI: 10.3389/fonc.2025.1514653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Background The differences in clinical characteristics and treatment prognosis in NSCLC patients harboring primary and acquired BRAF mutations are still poorly understood. Methods From Oct 2017 to Dec 2023, 10, 211 lung cancer patients at Shanghai Ruijin Hospital were reviewed. 88 primary and 15 acquired BRAF-mutated NSCLC patients resistant to EGFR TKIs were included in the study. Results Primary BRAF-mutated patients preferentially occurred in the elderly (median age: 67 vs 61, p=0.015), males (53.4% vs 26.7%, p=0.056), former/current smokers (36.5% vs 6.7%, p=0.033), non-adenocarcinoma (11.4% vs 0%, P=0.351) compared to acquired BRAF-mutated patients. Significant differences in gender (33.3% vs 62.3%, p=0.012), smoking history (22.2% vs 43.1%, p=0.063), and adenocarcinomas (100% vs 83.6%, p=0.028) were observed between primary BRAF/EGFR co-mutated and non-co-mutated groups. While primary and acquired BRAF/EGFR co-mutated patients had similar clinical characteristics, with EGFR mutations being the most common coexisting oncogene (30.7% and 93.3%). The genotype of EGFR mutations differed, with acquired BRAF-mutated cases showing more complexity and a higher rate of dual EGFR mutations (35.7%) compared to primary cases. For primary BRAF/EGFR co-mutated patients, no matter what kinds of therapies, the EGFR 19del patients had a better prognosis than non-19del patients, and the first line mPFS was NR and 9.0 months (95% CI: 7.7-10.3 months) (p=0.0062), respectively. Dabrafenib and trametinib plus 3rd EGFR TKIs improved the prognosis of primary BRAF/EGFR non-19del co-mutated patients, achieving ORR and mPFS of 100% (3/3) and 12 months. For acquired co-mutated patients, the mPFS for 5 patients was 8.6 months (95% CI: 5.4-11.8 months). No new safety concerns and > grade 3 AEs were noted. Conclusion Together, our study demonstrates that primary and acquired BRAF-mutant patients show distinct differences in some clinical and molecular characteristics, but acquired BRAF/EGFR co-mutated and primary BRAF/EGFR non-19del co-mutated patients may both respond to triple-targeted therapy.
Collapse
Affiliation(s)
- Xiangran Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zeng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengchen Lyu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwei Xu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyao Bao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xianwen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jingya Zhao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Beili Gao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xiang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis, and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
3
|
He KJ, Wang H, Xu J, Gong G. Global, regional, and national burden of tracheal, bronchus, and lung cancer attributable to ambient particulate matter pollution among adults aged 70 and above in 1990-2021 and projected to 2044. Front Public Health 2025; 13:1524534. [PMID: 39916713 PMCID: PMC11799284 DOI: 10.3389/fpubh.2025.1524534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Background Tracheal, bronchus, and lung (TBL) cancer attributable to ambient particulate matter pollution (APMP) is a growing global health concern, particularly in individuals aged 70 and above. This study aims to evaluate past trends, identify key drivers, and project future disease burden. Methods Data from the Global Burden of Disease Study 2021 was analyzed for TBL cancer-related disability-adjusted life years (DALYs) and mortality from 1990 to 2021, stratified by SDI regions. Statistical methods, including Joinpoint regression, age-period-cohort modeling, and decomposition analysis, were used to identify temporal trends and drivers of DALYs. Future projections were made using the Nordpred model. Results From 1990 to 2021, global DALYs of TBL cancer due to APMP increased steadily (AAPC 0.75%). Population growth was the main driver, accounting for 79.37% of the increase, with epidemiological factors playing a varying role across regions. The highest DALY growth was observed in middle SDI regions (AAPC 2.99%), while high SDI regions saw a decline (AAPC -1.76%). Projections up to 2044 suggest a substantial increase in DALYs across all SDI regions, with the fastest growth expected among individuals aged 70-74, but DALY rates are projected to decline steadily. Conclusion Population growth is the primary factor driving the increase in DALYs associated with TBL cancer, with significant regional disparities. Projections suggest a continued rise in disease burden, particularly in lower SDI regions, underlining the urgency for targeted public health interventions and strategies to mitigate exposure and improve healthcare outcomes for at-risk populations.
Collapse
Affiliation(s)
- Ke-Jie He
- Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguang Xu
- Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Guoyu Gong
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Feng J, Zhang P, Wang D, Li Y, Tan J. New strategies for lung cancer diagnosis and treatment: applications and advances in nanotechnology. Biomark Res 2024; 12:136. [PMID: 39533445 PMCID: PMC11558848 DOI: 10.1186/s40364-024-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer leads in causing cancer-related mortality worldwide, continually posing a significant threat to human health. Current imaging diagnostic techniques, while offering non-invasive detection, suffer from issues such as insufficient sensitivity and the risks associated with radiation exposure. Pathological diagnosis, the gold standard for confirmation, also faces challenges like invasiveness and high costs. In treatment, surgery, radiotherapy, and chemotherapy are the main modalities, each encountering challenges related to precision, environmental adaptability, and side effects. Nanotechnology's advancement provides new solutions for the diagnosis and treatment of lung cancer, promising to enhance diagnostic accuracy and reduce side effects during treatment. This article introduces the main types of nanomaterials used in the field of lung cancer, offering a comprehensive overview of current research on the application of nanotechnology in early screening, diagnosis, treatment, and monitoring of lung cancer, and summarizing ongoing clinical research findings.
Collapse
Affiliation(s)
- Jiaqi Feng
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuting Li
- WeiFang People's Hospital, Shandong Second Medical University, Weifang, China.
| | - Jiaxiong Tan
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
5
|
Zhang Z, Zhang P, Xie J, Cui Y, Shuo Wang, Yue D. Five-gene prognostic model based on autophagy-dependent cell death for predicting prognosis in lung adenocarcinoma. Sci Rep 2024; 14:26449. [PMID: 39488588 PMCID: PMC11531468 DOI: 10.1038/s41598-024-76186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Non-small cell lung adenocarcinoma (LUAD) is the predominant form of lung cancer originating from lung epithelial cells, making it the most prevalent pathological type. Currently, reliable indicators for predicting treatment efficacy and disease prognosis are lacking. Despite extensive validation of autophagy-dependent cell death (ADCD) in solid tumor studies and its correlation with immunotherapy effectiveness and cancer prognosis, systematic research on ADCD-related genes in LUAD is limited. We utilized AddModuleScore, ssGSEA, and WGCNA to identify genes associated with ADCD across single-cell and bulk transcriptome datasets. The TCGA dataset, comprising 598 cases, was randomly divided into training and validation sets to develop an ADCD-related LUAD prediction model. Internal validation was performed using the TCGA validation set. For external validation, datasets GSE13213 (119 LUAD samples), GSE26939 (115 LUAD samples), GSE29016 (39 LUAD samples), and GSE30219 (86 LUAD samples) were employed. We evaluated the model's accuracy and effectiveness in predicting prognostic risk. Additionally, CIBERSORT, ESTIMATE, and ssGSEA techniques were used to explore immunological characteristics, drug response, and gene expression in LUAD. Real-time RT-PCR was conducted to assess variations in mRNA expression levels of the gene XCR1 between cancerous and normal tissues in 10 lung cancer patients. We identified 249 genes associated with autophagy-dependent cell death (ADCD) at both single-cell and bulk transcriptome levels. Univariate COX regression analysis revealed that 18 genes were significantly associated with overall survival (OS). Using LASSO-Cox analysis, we developed an ADCD signature based on five genes (BIRC3, TAP1, SLAMF1, XCR1, and HLA-DMB) and created the ADCD-related risk scoring system (ADCDRS). Validation of this model demonstrated its ability to predict disease prognosis and its correlation with clinical characteristics, immune cell infiltration, and the tumor microenvironment. To enhance clinical applicability, we integrated an ADCDRS nomogram. Furthermore, we identified potential drugs targeting specific risk subgroups. We successfully identified a model based on five ADCD genes to predict disease prognosis and treatment efficacy in LUAD, as well as to assess the tumor immune microenvironment. An efficient and practical ADCDRS nomogram was designed.
Collapse
Affiliation(s)
- Zhanshuo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiping Xie
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuechen Cui
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shuo Wang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Dongsheng Yue
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
6
|
Li H, Huang Z, Guo C, Wang Y, Li B, Wang S, Bai N, Chen H, Xue J, Wang D, Zheng Z, Bing Z, Song Y, Xu Y, Huang G, Yu X, Li R, Fung KL, Li J, Song L, Zhu Z, Liu S, Liang N, Li S. Super multiple primary lung cancers harbor high-frequency BRAF and low-frequency EGFR mutations in the MAPK pathway. NPJ Precis Oncol 2024; 8:229. [PMID: 39384982 PMCID: PMC11464572 DOI: 10.1038/s41698-024-00726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The incidence of multiple primary lung cancer (MPLC) is increasing, with some of our surgical patients exhibiting numerous lesions. We defined lung cancer with five or more primary lesions as super MPLCs. Elucidating the genomic characteristics of this special MPLC subtype can help reduce disease burden and understand tumor evolution. In our cohort of synchronous super early-stage MPLCs (PUMCH-ssesMPLC), whole-exome sequencing on 130 resected malignant specimens from 18 patients provided comprehensive super-MPLC genomic landscapes. Mutations are enriched in PI3k-Akt and MAPK pathways. Their BRAF mutation frequency (31.5%) is significantly higher than MPLC with fewer lesions and early-stage single-lesion cancer, while EGFR mutations are significantly fewer (13.8%). As lesion counts increase, BRAF mutations gradually become dominant. Also, invasive lesions more tend to have classic super-MPLC mutation patterns. High-frequency BRAF mutations, especially Class II, and low-frequency EGFR mutations could be a reason for the limited effectiveness of targeted therapy in super-MPLC patients.
Collapse
Affiliation(s)
- Haochen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Sha Wang
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Na Bai
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Hanlin Chen
- Geneseeq Research Institute, Geneseeq Technology Inc., Nanjing, 210032, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Daoyun Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhibo Zheng
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guanghua Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoqing Yu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruirui Li
- Department of Thoracic Surgery, Aviation General Hospital, Beijing, 100025, China
| | | | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwei Zhu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Songtao Liu
- Zhenyuan (Tianjin) Medical Technology Co. Ltd., Tianjin, 300385, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Liang Y, Xie Y, Yu H, Zhu W, Yin C, Dong Z, Zhang X. Whole-Exome Sequencing and Experimental Validation Unveil the Roles of TMEM229A Q200del Mutation in Lung Adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70006. [PMID: 39188060 PMCID: PMC11347615 DOI: 10.1111/crj.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is one of the major histopathological types of non-small cell lung cancer (NSCLC), including solid, acinar, lepidic, papillary and micropapillary subtypes. Increasing evidence has shown that micropapillary LUAD is positively associated with a higher percentage of driver gene mutations, a higher incidence of metastasis and a poorer prognosis, while lepidic LUAD has a relatively better prognosis. However, the novel genetic change and its underlying mechanism in the progression of micropapillary LUAD have not been exactly determined. METHODS A total of 181 patients with LUAD who underwent surgery at the First Affiliated Hospital of Huzhou University from January 2020 to December 2022 were enrolled. Three predominant lepidic and three predominant micropapillary LUAD tissue samples were carried out using whole-exome sequencing. Comprehensive analysis of genomic variations and the difference between lepidic and micropapillary LUAD was performed. In addition, the TMEM229A Q200del mutation was verified using our cohort and TCGA-LUAD datasets. The correlations between the TMEM229A Q200del mutation and the clinicopathological characteristics of patients with LUAD were further analyzed. The functions and mechanisms of TMEM229A Q200del on NSCLC cell proliferation and migration were also determined. RESULTS The frequency of genomic changes in patients with micropapillary LUAD was higher than that in patients with lepidic LUAD. Mutations in EGFR, ATXN2, C14orf180, MUC12, NOTCH1, and PKD1L2 were concomitantly detected in three predominant micropapillary and three predominant lepidic LUAD cases. The TMEM229A Q200del mutation was only mutated in lepidic LUAD. Additionally, the TMEM229A Q200del mutation had occurred in 16 (8.8%) patients, and not found TMEM229A R76H and M346T mutations in our cohort, while TMEM229A mutations (R76H, M346T, and Q200del) occurred only in 1.0% of the TCGA-LUAD cohort. Further correlation analysis between the TMEM229A Q200del mutation and clinicopathological characteristics suggested that a lower frequency of the Q200del mutation was significantly associated with positive lymph node metastasis, advanced TNM stage, positive cancer thrombus, and pathological features. Finally, overexpression of TMEM229A Q200del suppressed NSCLC cell proliferation and migration in vitro. Mechanistically, overexpression of TMEM229A and TMEM229A Q200del both reduced the expression level of phosphorylated (p)-ERK and p-AKT (Ser473), and the reduced protein level of p-ERK in the TMEM229A Q200del group was more pronounced compared to the TMEM229A group. CONCLUSION Our results demonstrated that the TMEM229A Q200del mutant may play a protective role in the progression of LUAD via inactivating ERK pathway, providing a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Yi‐Xian Liang
- Department of Cardiothoracic SurgeryFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Yan‐Ping Xie
- Department of Respiratory MedicineFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Huan‐Ming Yu
- Department of Cardiothoracic SurgeryFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Wen‐Juan Zhu
- Department of PathologyThe First People's Hospital of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Cheng‐Yi Yin
- Department of Cardiothoracic SurgeryFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Zhao‐Hui Dong
- Department of Respiratory MedicineFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Xi‐Lin Zhang
- Central Laboratory, Huzhou Key Laboratory of Translational MedicineFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| |
Collapse
|
8
|
Liu Y, Li H, Li X, Zhang T, Zhang Y, Zhu J, Cui H, Li R, Cheng Y. Highly consistency of PIK3CA mutation spectrum between circulating tumor DNA and paired tissue in lung cancer patients. Heliyon 2024; 10:e34013. [PMID: 39071569 PMCID: PMC11277437 DOI: 10.1016/j.heliyon.2024.e34013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA) mutations are associated with drug resistance and prognosis in lung cancer; however, the consistency and clinical value of PIK3CA mutations between tissue and liquid samples are unknown. Methods Circulating tumor DNA (ctDNA) and matched tumor tissue samples from 405 advanced lung cancer patients were collected at Jilin Cancer Hospital between 2018 and 2022, and the PIK3CA mutation status was sequenced using next-generation sequencing based on a 520 gene panel. The viability of different mutant lung cancer cells was detected using MTT assay. Results PIK3CA mutations were detected in 46 (5.68 %) of 810 lung cancer samples, with 21 (5.19 %) of 405 plasma samples and 25 (6.17 %) of 405 matched tissues. p.Glu542Lys, p.Glu545Lys, and p.His1047Arg were the most common mutation types of PIK3CA in both the ctDNA and tissue samples. The concordance of PIK3CA mutations was 97.53 % between ctDNA and matched tissues (kappa: 0.770, P = 0.000), with sensitivity/true positive rate of 72.0 %, specificity/true negative rate of 99.2 %, and negative predictive value and positive predictive value of 0.982 and 0.857, respectively (AUC = 0.856, P = 0.000). Furthermore, the concordance of PIK3CA mutations was 98.26 % in lung adenocarcinoma and 96.43 % in lung squamous cell carcinoma. TP53 and EGFR were the most common concomitant mutations in ctDNA and tissues. Patients with PIK3CA mutations showed a high tumor mutational burden (TMB) (P < 0.001) and a significant correlation between bTMB and tTMB (r = 0.5986, P = 0.0041). For the tPIK3CAmut/ctDNA PIK3CAmut cohort, PI3K pathways alteration was associated with male sex (P = 0.022), old age (P = 0.007), and smoking (P = 0.001); tPIK3CAmut/ctDNA PIK3CAwt patients harbored clinicopathological factors of adenocarcinoma stage IV, with low PS score (≤1) and TMB. Conclusion This study showed that ctDNA is highly concordant and sensitive for identifying PIK3CA mutations, suggesting that PIK3CA mutation detection in liquid samples may be an alternative clinical practice for tissues.
Collapse
Affiliation(s)
- Yan Liu
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Hui Li
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Xiang Li
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Tingting Zhang
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yang Zhang
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Jing Zhu
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Heran Cui
- Biobank, Jilin Cancer Hospital, Changchun, 130012, China
| | - Rixin Li
- Biobank, Jilin Cancer Hospital, Changchun, 130012, China
| | - Ying Cheng
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| |
Collapse
|
9
|
Boukovala M, Westphalen CB, Probst V. Liquid biopsy into the clinics: Current evidence and future perspectives. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100146. [PMID: 40027149 PMCID: PMC11863819 DOI: 10.1016/j.jlb.2024.100146] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2025]
Abstract
As precision oncology has become a major part of the treatment landscape in oncology, liquid biopsies have developed as a particularly powerful tool as it surmounts several limitations of traditional tissue biopsies. These biopsies involve most commonly the isolation of circulating extracellular nucleic acids, including cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA), as well as circulating tumor cells (CTCs), typically from blood. The clinical applications of liquid biopsies are diverse, encompassing the initial diagnosis and cancer detection, the application as a tool for prognostication in early and advanced tumor settings, the identification of potentially actionable alterations, the monitoring of response and resistance under systemic therapy and the detection of resistance mechanisms, the differentiation of distinct immune checkpoint blockade response patterns through serial samples, the prediction of immune checkpoint blockade responses based on initial liquid biopsy characteristics and the assessment of tumor heterogeneity. Moreover, molecular relapse monitoring in early-stage cancers and the personalization of adjuvant or additive therapy via MRD have become a major field of research in recent years. Compared to tissue biopsies, liquid biopsies are less invasive and can be collected serially, offering real-time molecular insights. Furthermore, liquid biopsies may allow for a more holistic evaluation of a patient's disease, as they assess material from all tumor sites and can theoretically reflect tumor heterogeneity. Furthermore, quicker turnaround-time also constitutes an advantage of liquid biopsies. Disadvantages or hurdles include the challenge of detecting low amounts of tumor deposits in peripheral blood or other fluids and the potential of different amounts tumor-shedding from different metastatic sites, as well as potentially false-positive from clonal hematopoietic mutations of indeterminate potential (CHIP) mutations. The clinical utility of liquid biopsies still must be validated in most settings and further research has to be done. Clinal trials including alternate bodily fluids and leveraging AI-technology are expected to revolutionize the field of liquid biopsies.
Collapse
|
10
|
Taverna JA, Hung CN, Williams M, Williams R, Chen M, Kamali S, Sambandam V, Hsiang-Ling Chiu C, Osmulski PA, Gaczynska ME, DeArmond DT, Gaspard C, Mancini M, Kusi M, Pandya AN, Song L, Jin L, Schiavini P, Chen CL. Ex vivo drug testing of patient-derived lung organoids to predict treatment responses for personalized medicine. Lung Cancer 2024; 190:107533. [PMID: 38520909 PMCID: PMC12045304 DOI: 10.1016/j.lungcan.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Lung cancer is the leading cause of global cancer-related mortality resulting in ∼ 1.8 million deaths annually. Systemic, molecular targeted, and immune therapies have provided significant improvements of survival outcomes for patients. However, drug resistance usually arises and there is an urgent need for novel therapy screening and personalized medicine. 3D patient-derived organoid (PDO) models have emerged as a more effective and efficient alternative for ex vivo drug screening than 2D cell culture and patient-derived xenograft (PDX) models. In this review, we performed an extensive search of lung cancer PDO-based ex vivo drug screening studies. Lung cancer PDOs were successfully established from fresh or bio-banked sections and/or biopsies, pleural effusions and PDX mouse models. PDOs were subject to ex vivo drug screening with chemotherapy, targeted therapy and/or immunotherapy. PDOs consistently recapitulated the genomic alterations and drug sensitivity of primary tumors. Although sample sizes of the previous studies were limited and some technical challenges remain, PDOs showed great promise in the screening of novel therapy drugs. With the technical advances of high throughput, tumor-on-chip, and combined microenvironment, the drug screening process using PDOs will enhance precision care of lung cancer patients.
Collapse
Affiliation(s)
- Josephine A Taverna
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA; Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Madison Williams
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX, USA; Department of General Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Williams
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX, USA; Department of General Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | - Cheryl Hsiang-Ling Chiu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daniel T DeArmond
- Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX, USA; Department of General Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, Texas and Department of Laboratory Medicine, Baptist Health System, San Antonio, TX, USA
| | - Christine Gaspard
- Dolph Briscoe, Jr. Library, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Meena Kusi
- Deciphera Pharmaceuticals, LLC., Waltham, MA, USA
| | - Abhishek N Pandya
- Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lina Song
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA; Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA; School of Nursing, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
11
|
Ma J, Song YD, Bai XM. Global, regional, and national burden and trends of early-onset tracheal, bronchus, and lung cancer from 1990 to 2019. Thorac Cancer 2024; 15:601-613. [PMID: 38303633 DOI: 10.1111/1759-7714.15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Tracheal, bronchus, and lung cancer (TBL) is one of the main cancer health problems worldwide, but data on the burden and trends of early-onset tracheal, bronchus, and lung cancer (EO-TBL) are sparse. The aim of the present study was to provide the latest and the most comprehensive burden estimates of the EO-TBL cancer from 1990 to 2019. METHODS Overall, we used data from the Global Burden of Disease (GBD) study in EO-TBL cancer from 1990 to 2019. Evaluation metrics included incidence, mortality, and disability-adjusted life years (DALYs). The joinpoint regression model was used to analyze the temporal trends. Decomposition analysis was employed to analyze the driving factors for EO-TBL cancer burden alterations. Bayesian age-period-cohort (BAPC) analysis was used to estimate trends in the next 20 years. RESULTS The global age-standardized incidence rate (ASIR), age-standardized mortality rate (ASMR), and age-standardized DALYs rate (ASDR) for EO-TBL cancer decreased significantly from 3.95 (95% uncertainty interval [UI]: 3.70-4.24), 3.41 (95% UI: 3.19-3.67), 158.68 (95% UI: 148.04-170.92) in 1990 to 2.82 (95% UI: 2.54-3.09), 2.28 (95% UI: 2.07-2.49), 106.47 (95% UI: 96.83-116.51) in 2019 with average annual percent change (AAPC) of -1.14% (95% confidence interval [CI]: -1.32 to -0.95), -1.37% (95% CI: -1.55 to -1.18), and - 1.35% (95% CI: -1.54 to -1.15) separately. The high and high-middle sociodemographic index (SDI) region had a higher burden of EO-TBL cancer but demonstrated a downward trend. The most prominent and significant upward trends were Southeast and South Asia, Africa, and women in the low SDI and low-middle SDI quintiles. At the regional and national level, there were significant positive correlations between ASDR, ASIR, ASMR, and SDI. Decomposition analysis showed that population growth and aging have driven the increase in the number of incidence, mortality, and DALYs in the global population, especially among the middle SDI quintile and the East Asia region. The BAPC results showed that ASDR, ASIR, and ASMR in women would increase but the male population remained relatively flat over the next 20 years. CONCLUSIONS Although global efforts have been the most successful and effective in reducing the burden of EO-TBL cancer over the past three decades, there was strong regional and gender heterogeneity. EO-TBL cancer need more medical attention in the lower SDI quintiles and in the female population.
Collapse
Affiliation(s)
- Jun Ma
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
- Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ying-da Song
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
- Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiao-Ming Bai
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
- Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
12
|
Kim S, Lee Y, Song BR, Sim H, Kang EH, Hwang M, Yu N, Hong S, Park C, Ahn BC, Lim EJ, Hwang KH, Park SY, Choi JH, Lee GK, Han JY. Drug Response of Patient-Derived Lung Cancer Cells Predicts Clinical Outcomes of Targeted Therapy. Cancers (Basel) 2024; 16:778. [PMID: 38398169 PMCID: PMC10887363 DOI: 10.3390/cancers16040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Intratumor heterogeneity leads to different responses to targeted therapies, even within patients whose tumors harbor identical driver oncogenes. This study examined clinical outcomes according to a patient-derived cell (PDC)-based drug sensitivity test in lung cancer patients treated with targeted therapies. From 487 lung cancers, 397 PDCs were established with a success rate of 82%. In 139 PDCs from advanced non-small-cell lung cancer (NSCLC) patients receiving targeted therapies, the standardized area under the curve (AUC) values for the drugs was significantly correlated with their tumor response (p = 0.002). Among 59 chemo-naive EGFR/ALK-positive NSCLC patients, the PDC non-responders showed a significantly inferior response rate (RR) and progression-free survival (PFS) for the targeted drugs than the PDC responders (RR, 25% vs. 78%, p = 0.011; median PFS, 3.4 months [95% confidence interval (CI), 2.8-4.1] vs. 11.8 months [95% CI, 6.5-17.0], p < 0.001). Of 25 EGFR-positive NSCLC patients re-challenged with EGFR inhibitors, the PDC responder showed a higher RR than the PDC non-responder (42% vs. 15%). Four patients with wild-type EGFR or uncommon EGFR-mutant NSCLC were treated with EGFR inhibitors based on their favorable PDC response to EGFR inhibitors, and two patients showed dramatic responses. Therefore, the PDC-based drug sensitivity test results were significantly associated with clinical outcomes in patients with EGFR- or ALK-positive NSCLC. It may be helpful for predicting individual heterogenous clinical outcomes beyond genomic alterations.
Collapse
Affiliation(s)
- Sunshin Kim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Youngjoo Lee
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang 10408, Republic of Korea
| | - Bo Ram Song
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Hanna Sim
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Eun Hye Kang
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Mihwa Hwang
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Namhee Yu
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Sehwa Hong
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Charny Park
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
| | - Beung-Chul Ahn
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang 10408, Republic of Korea
| | - Eun Jin Lim
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
| | - Kum Hui Hwang
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
| | - Seog-Yun Park
- Department of Pathology, National Cancer Center, Goyang 10408, Republic of Korea; (S.-Y.P.); (G.K.L.)
| | - Jin-Ho Choi
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
| | - Geon Kook Lee
- Department of Pathology, National Cancer Center, Goyang 10408, Republic of Korea; (S.-Y.P.); (G.K.L.)
| | - Ji-Youn Han
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.K.); (Y.L.); (B.R.S.); (H.S.); (E.H.K.); (M.H.); (N.Y.); (S.H.); (C.P.)
- Center for Lung Cancer, National Cancer Center, Goyang 10408, Republic of Korea; (B.-C.A.); (E.J.L.); (K.H.H.); (J.-H.C.)
- Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
13
|
Friedlaender A, Perol M, Banna GL, Parikh K, Addeo A. Oncogenic alterations in advanced NSCLC: a molecular super-highway. Biomark Res 2024; 12:24. [PMID: 38347643 PMCID: PMC10863183 DOI: 10.1186/s40364-024-00566-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer ranks among the most common cancers world-wide and is the first cancer-related cause of death. The classification of lung cancer has evolved tremendously over the past two decades. Today, non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma, comprises a multitude of molecular oncogenic subsets that change both the prognosis and management of disease.Since the first targeted oncogenic alteration identified in 2004, with the epidermal growth factor receptor (EGFR), there has been unprecedented progress in identifying and targeting new molecular alterations. Almost two decades of experience have allowed scientists to elucidate the biological function of oncogenic drivers and understand and often overcome the molecular basis of acquired resistance mechanisms. Today, targetable molecular alterations are identified in approximately 60% of lung adenocarcinoma patients in Western populations and 80% among Asian populations. Oncogenic drivers are largely enriched among non-smokers, east Asians, and younger patients, though each alteration has its own patient phenotype.The current landscape of druggable molecular targets includes EGFR, anaplastic lymphoma kinase (ALK), v-raf murine sarcoma viral oncogene homolog B (BRAF), ROS proto-oncogene 1 (ROS1), Kirstin rat sarcoma virus (KRAS), human epidermal receptor 2 (HER2), c-MET proto-oncogene (MET), neurotrophic receptor tyrosine kinase (NTRK), rearranged during transfection (RET), neuregulin 1 (NRG1). In addition to these known targets, others including Phosphoinositide 3-kinases (PI3K) and fibroblast growth factor receptor (FGFR) have garnered significant attention and are the subject of numerous ongoing trials.In this era of personalized, precision medicine, it is of paramount importance to identify known or potential oncogenic drivers in each patient. The development of targeted therapy is mirrored by diagnostic progress. Next generation sequencing offers high-throughput, speed and breadth to identify molecular alterations in entire genomes or targeted regions of DNA or RNA. It is the basis for the identification of the majority of current druggable alterations and offers a unique window into novel alterations, and de novo and acquired resistance mechanisms.In this review, we discuss the diagnostic approach in advanced NSCLC, focusing on current oncogenic driver alterations, through their pathophysiology, management, and future perspectives. We also explore the shortcomings and hurdles encountered in this rapidly evolving field.
Collapse
Affiliation(s)
- Alex Friedlaender
- Clinique Générale Beaulieu, Geneva, Switzerland
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland
| | - Maurice Perol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Giuseppe Luigi Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland.
| |
Collapse
|
14
|
Yan N, Zhang H, Guo S, Zhang Z, Xu Y, Xu L, Li X. Efficacy of chemo-immunotherapy in metastatic BRAF-mutated lung cancer: a single-center retrospective data. Front Oncol 2024; 14:1353491. [PMID: 38357200 PMCID: PMC10865094 DOI: 10.3389/fonc.2024.1353491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background The effectiveness of combining immune checkpoint inhibitors (ICIs) with chemotherapy in treating non-small cell lung cancers (NSCLCs) with BRAF mutations has not been sufficiently explored. Methods We compiled data from 306 NSCLC patients with identified BRAF mutations. We looked at efficacy by assessing the objective response rate (ORR) and disease control rate (DCR), as well as survival through measuring progression-free survival (PFS) and overall survival (OS). Results Out of the patient pool, 44 were treated with a regimen of immune-chemotherapy. Patients undergoing ICI in combination with chemotherapy had a median PFS of 4 months, and the median OS was recorded at 29 months. There was a notable increase in OS in patients receiving first-line treatment versus subsequent lines (29 vs 9.75 months, p=0.01); however, this was not the case with PFS (9 vs 4 months, p=0.46). The ORR for patients on ICIs was 36.3%. PFS and OS rates did not significantly differ between patients with the BRAF-V600E mutation and those with non-V600E mutations (p=0.75 and p=0.97, respectively). Additionally, we found a significant variation in PD-L1 expression between those who responded to treatment and those who didn't (p=0.04). Conclusion Our findings indicate that chemo-immunotherapy as an initial treatment may lead to improved OS in patients with BRAF-mutated NSCLC when compared to its use in subsequent lines of therapy. Further studies are needed to validate these results and to delve deeper into how specific types of BRAF mutations and PD-L1 expression levels might predict a patient's response to treatments in NSCLC.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sanxing Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziheng Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingchun Xu
- Department of Medical Oncology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Xu
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Torrez MM, Sheibani K, Vasef MA. Mutually exclusive driver mutations identifies 2 separate primaries in a collision tumor initially interpreted as a solitary lung adenocarcinoma with tumor heterogeneity. Respir Med Case Rep 2024; 47:101986. [PMID: 38304116 PMCID: PMC10832448 DOI: 10.1016/j.rmcr.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Distinction of histologically heterogenous, single primary tumor from two or more collision tumors with different primaries could represent a challenge to practicing pathologists. Histologic variations including differences in degree of differentiating within a tumor, are typically interpreted as tumor heterogeneity in a contiguous small size tumor biopsy. The authors report a case of adult former smoker female who presented with lung mass and a metastatic lytic lesion of acetabulum. A needle biopsy of a lung mass revealed an adenocarcinoma with well and moderately differentiated components. Next generation sequencing studies proved 2 different primaries in this small needle biopsy.
Collapse
Affiliation(s)
- Mary M. Torrez
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Khalil Sheibani
- Department of Pathology, Orange County Global Medical Center, Santa Ana, CA, USA
| | - Mohammad A. Vasef
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
16
|
Mody J, Kamgar M. Pancreatic Adenocarcinoma with Co-Occurrence of KRAS and EGFR Mutations: Case Report and Literature Review. Case Rep Oncol 2024; 17:399-406. [PMID: 38435447 PMCID: PMC10907001 DOI: 10.1159/000536552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Mutation in Kristin ras sarcoma virus (KRAS) oncogene is the main driver in pancreatic ductal adenocarcinoma (PDAC) and is present in nearly 90% of patients with PDAC. Epidermal growth factor receptor (EGFR) mutation is rare in PDAC and is mostly present in the absence of KRAS mutation. Co-occurrence of KRAS and EGFR mutations is extremely rare, and the value of EGFR inhibition in these cases is unknown. Case Presentation Here, we present a case of metastatic PDAC with co-occurrence of KRAS G12V and EGFR L730R. Despite primary resistance to folinic acid, fluorouracil, irinotecan, oxaliplatin, and gemcitabine/nab-paclitaxel, this patient had a biochemical response (decrease in carbohydrate antigen 19-9) and disease control of 7 months on gemcitabine/erlotinib (an EGFR inhibitor). This outcome is remarkable in the late-line PDAC treatment setting and is unusual after the progression of the tumor on gemcitabine/nab-paclitaxel chemotherapy. Conclusion This case suggests that gemcitabine/erlotinib could be an effective treatment in patients with PDAC and co-occurrence of EGFR and KRAS mutations.
Collapse
Affiliation(s)
- Juhi Mody
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mandana Kamgar
- Medical College of Wisconsin and The LaBahn Pancreatic Cancer Program, Milwaukee, WI, USA
| |
Collapse
|
17
|
Sakai T, Matsumoto S, Ueda Y, Shibata Y, Ikeda T, Nakamura A, Kodani M, Ohashi K, Furuya N, Izumi H, Nosaki K, Umemura S, Zenke Y, Udagawa H, Sugiyama E, Yoh K, Goto K. Clinicogenomic Features and Targetable Mutations in NSCLCs Harboring BRAF Non-V600E Mutations: A Multi-Institutional Genomic Screening Study (LC-SCRUM-Asia). J Thorac Oncol 2023; 18:1538-1549. [PMID: 37543207 DOI: 10.1016/j.jtho.2023.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/08/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION BRAF non-V600E mutations occur in 1% to 2% of NSCLCs. Because of their rarity, the clinical backgrounds and outcomes of cytotoxic chemotherapy or immunotherapy remain unclear, and no targeted therapies are approved for BRAF non-V600E-mutant NSCLC. METHODS In this multi-institutional prospective lung cancer genomic screening project (LC-SCRUM-Asia), we evaluated the clinicogenomic characteristics and therapeutic outcomes of BRAF non-V600E-mutant NSCLC. RESULTS From March 2015 to November 2021, a total of 11,929 patients with NSCLC were enrolled. BRAF mutations were detected in 380 (3.5%), including the V600E (class I) in 119 (31%) and non-V600E in 261; the non-V600E were functionally classified into class II (122, 32%), class III (86, 23%), and non-classes I to III. Smokers and having concurrent RAS gene family or TP53 mutations were more frequently associated with class II or III than with class I. In patients with class III as compared with class I, the progression-free survival in response to platinum-containing chemotherapies (median, 5.3 versus 11.5 mo, p < 0.01) and the overall survival (median, 14.5 versus 34.8 mo, p < 0.02) were significantly shorter. Furthermore, class IIa mutations were significantly more frequent in our Asian cohort than in previously reported cohorts. The clinicogenomic features associated with class IIa were similar to those associated with class I, and one patient with NSCLC with K601E had a good response to dabrafenib plus trametinib. CONCLUSIONS Patients with NSCLCs with BRAF non-V600E, especially class III, were associated with poorer therapeutic outcomes than those with V600E. Furthermore, patients with NSCLC with class IIa had distinct clinicogenomic features, and further preclinical and clinical studies are needed to evaluate class IIa mutations as a therapeutic target.
Collapse
Affiliation(s)
- Tetsuya Sakai
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Yasuto Ueda
- Department of Respiratory Medicine, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Yuji Shibata
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takaya Ikeda
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Masahiro Kodani
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Zenke
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Eri Sugiyama
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
18
|
Nath R, Baishya S, Nath D, Nahar L, Sarker SD, Choudhury MD, Talukdar AD. Identifying druggable targets from active constituents of Azadirachta indica A. Juss. for non-small cell lung cancer using network pharmacology and validation through molecular docking. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:855-868. [PMID: 37337376 DOI: 10.1002/pca.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Azadirachta indica A. Juss. is a well-known medicinal plant that has been used traditionally to cure various ailments in every corner of the globe. There are many in vitro and in vivo experimental evidences in connection with the bioactivity of the extracts of this plant. Lung cancer is the deadliest form of cancer and contributes to the most cancer related deaths. The mode of action of anticancer components of this plant is still to be established explicitly. OBJECTIVE The objective of this study is to identify druggable targets of active constituents of A. indica A. Juss. for non-small cell lung cancer (NSCLC) using network pharmacology and validation of activity through molecular docking analysis. METHODOLOGY Targets of all the active phytochemicals from A. indica were predicted and genes related to NSCLC were retrieved. A protein-protein interaction (PPI) network of the overlapping genes were prepared. Various databases and servers were employed to analyse the disease pathway enrichment analysis of the clustered genes. Validation of the gene/protein activity was achieved by performing molecular docking, and ADMET profiling of selected phytocompounds was performed. RESULT Gene networking revealed three key target genes as EGFR, BRAF and PIK3CA against NSCLC by the active components of A. indica. Molecular docking and ADMET analysis further validated that desacetylnimbin, nimbandiol, nimbin, nimbinene, nimbolide, salannin and vepinin are the best suited anti- NSCLC among all the phytocompounds present in this plant. CONCLUSION The present study has provided a better understanding of the pharmacological effects of active components from A. indica and its potential therapeutic effect on NSCLC.
Collapse
Affiliation(s)
- Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Somorita Baishya
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepa Nath
- Department of Botany, Guru Charan College, Silchar, Assam, India
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Satyajit D Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
19
|
Lim TKH, Skoulidis F, Kerr KM, Ahn MJ, Kapp JR, Soares FA, Yatabe Y. KRAS G12C in advanced NSCLC: Prevalence, co-mutations, and testing. Lung Cancer 2023; 184:107293. [PMID: 37683526 DOI: 10.1016/j.lungcan.2023.107293] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 09/10/2023]
Abstract
KRAS is the most commonly mutated oncogene in advanced, non-squamous, non-small cell lung cancer (NSCLC) in Western countries. Of the various KRAS mutants, KRAS G12C is the most common variant (~40%), representing 10-13% of advanced non-squamous NSCLC. Recent regulatory approvals of the KRASG12C-selective inhibitors sotorasib and adagrasib for patients with advanced or metastatic NSCLC harboring KRASG12C have transformed KRAS into a druggable target. In this review, we explore the evolving role of KRAS from a prognostic to a predictive biomarker in advanced NSCLC, discussing KRAS G12C biology, real-world prevalence, clinical relevance of co-mutations, and approaches to molecular testing. Real-world evidence demonstrates significant geographic differences in KRAS G12C prevalence (8.9-19.5% in the US, 9.3-18.4% in Europe, 6.9-9.0% in Latin America, and 1.4-4.3% in Asia) in advanced NSCLC. Additionally, the body of clinical data pertaining to KRAS G12C co-mutations such as STK11, KEAP1, and TP53 is increasing. In real-world evidence, KRAS G12C-mutant NSCLC was associated with STK11, KEAP1, and TP53 co-mutations in 10.3-28.0%, 6.3-23.0%, and 17.8-50.0% of patients, respectively. Whilst sotorasib and adagrasib are currently approved for use in the second-line setting and beyond for patients with advanced/metastatic NSCLC, testing and reporting of the KRAS G12C variant should be included in routine biomarker testing prior to first-line therapy. KRAS G12C test results should be clearly documented in patients' health records for actionability at progression. Where available, next-generation sequencing is recommended to facilitate simultaneous testing of potentially actionable biomarkers in a single run to conserve tissue. Results from molecular testing should inform clinical decisions in treating patients with KRAS G12C-mutated advanced NSCLC.
Collapse
Affiliation(s)
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith M Kerr
- Department of Pathology, Aberdeen University Medical School and Aberdeen Royal Infirmary, Aberdeen, UK
| | - Myung-Ju Ahn
- Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Fernando A Soares
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; Faculty of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
20
|
Hashimoto T, Owada Y, Katagiri H, Yakuwa K, Tyo K, Sugai M, Fuzimura I, Utsumi Y, Akiyama M, Nagashima H, Terasaki H, Yanagawa N, Saito H, Sugai T, Maemondo M. Characteristics and prognostic analysis of patients with detected KRAS mutations in resected lung adenocarcinomas by peptide nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR) clamp method. Transl Lung Cancer Res 2023; 12:1862-1875. [PMID: 37854155 PMCID: PMC10579836 DOI: 10.21037/tlcr-23-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/03/2023] [Indexed: 10/20/2023]
Abstract
Background Kirsten rat sarcoma virus (KRAS) gene mutations are a type of driver mutation discovered in the 1980s, but for a long time no molecular targeted drugs were available for them. Recently, sotorasib was developed as a molecular targeted drug for KRAS mutations. It is therefore necessary to identify the characteristics of patients with KRAS mutations. Methods This was the single-institution retrospective study. Surgically resected tumors from lung adenocarcinoma patients were collected at a single institution from June 2016 to September 2019. Peptide nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR) clamp analysis of KRAS G12X mutations was compared with analysis by therascreen KRAS RGQ kit. The association between KRAS mutation status and patient characteristics and prognosis was assessed. Results Among 499 lung adenocarcinomas, KRAS mutations were evaluated in 197 cases, excluding stage IV lung cancer and tumors with epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. KRAS G12X mutations were detected in 59 cases (29.9%). The highest frequency by gene mutation subtype was G12V in 23 cases (39.0%), followed by G12C in 16 cases (27.1%), G12D in 12 cases (20.3%), G12S in 4 cases (6.8%) and G12A in 2 cases. For the G12C mutation, the PNA-LNA PCR clamp and therascreen methods were consistent, but for the G12D and G12S mutations, the PNA-LNA PCR clamp method showed higher detection rates. In operable tumors, G12C mutations were more frequent in males, smokers, and patients with high expression of programmed death-ligand 1 (PD-L1), and had no correlation with prognosis. Conclusions By the PNA-LNA PCR clamp method, G12C mutation of surgical specimens was detected successfully. The PNA-LNA PCR clamp method is expected to be applied to the detection of druggable G12C mutations.
Collapse
Affiliation(s)
- Tatsuya Hashimoto
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Yoshihisa Owada
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hiroshi Katagiri
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Kazuhiro Yakuwa
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Katuya Tyo
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Mayu Sugai
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Itaru Fuzimura
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Yu Utsumi
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Masachika Akiyama
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hiromi Nagashima
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hiroshi Terasaki
- Medical Solution Segment, Advanced Technology Center, Genome Analysis Department, LSI Medience Corporation, Tokyo, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Hajime Saito
- Division of Thoracic Surgery, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Makoto Maemondo
- Division of Pulmonary Medicine, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| |
Collapse
|
21
|
Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol 2023; 20:624-639. [PMID: 37479810 DOI: 10.1038/s41571-023-00798-3] [Citation(s) in RCA: 452] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. However, lung cancer incidence and mortality rates differ substantially across the world, reflecting varying patterns of tobacco smoking, exposure to environmental risk factors and genetics. Tobacco smoking is the leading risk factor for lung cancer. Lung cancer incidence largely reflects trends in smoking patterns, which generally vary by sex and economic development. For this reason, tobacco control campaigns are a central part of global strategies designed to reduce lung cancer mortality. Environmental and occupational lung cancer risk factors, such as unprocessed biomass fuels, asbestos, arsenic and radon, can also contribute to lung cancer incidence in certain parts of the world. Over the past decade, large-cohort clinical studies have established that low-dose CT screening reduces lung cancer mortality, largely owing to increased diagnosis and treatment at earlier disease stages. These data have led to recommendations that individuals with a high risk of lung cancer undergo screening in several economically developed countries and increased implementation of screening worldwide. In this Review, we provide an overview of the global epidemiology of lung cancer. Lung cancer risk factors and global risk reduction efforts are also discussed. Finally, we summarize lung cancer screening policies and their implementation worldwide.
Collapse
Affiliation(s)
- Amanda Leiter
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Rajwanth R Veluswamy
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan P Wisnivesky
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Choi JS, Lee SH, Park HB, Chun C, Kim Y, Kim KH, Weon BM, Kim DH, Kim HJ, Lee JH. The deformation of cancer cells through narrow micropores holds the potential to regulate genes that impact cancer malignancy. LAB ON A CHIP 2023; 23:3628-3638. [PMID: 37448298 DOI: 10.1039/d3lc00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Surgery, radiation, hormonal therapy, chemotherapy, and immunotherapy are standard treatment strategies for metastatic breast cancer. However, the heterogeneous nature of the disease poses challenges and continues to make it life-threatening. It is crucial to elucidate further the underlying signaling pathways to improve treatment efficacy. Our study established two triple-negative breast cancer cell lines (TW-1 and TW-2) that were physically deformed using 3 μm pores to investigate the relationship between cancer cell deformation and metastasis within a heterogeneous population. The physical transformation of TW-1 and TW-2 cells significantly affected their growth and migration speed, as evidenced by wound healing assays for collective cell migration and microchannel assays for single-cell migration. We conducted bulk RNA sequencing to gain insights into the genes influenced by physical deformation. Additionally, we evaluated the effects of trametinib resistance on breast cancer cell metastasis by assessing cell viability and migration rates. Interestingly, TW-1 and TW-2 cells exhibited resistance to trametinib treatment. We observed a significant upregulation of GABRA-3, a protein commonly expressed in malignant breast cancer, and the critical transcription factor Myc in TW-1 and TW-2 cells compared to the control group (Ori). However, we did not observe a significant difference in Myc expression between TW-1 and TW-2 cells. In contrast, in the trametinib-resistant cell lines (TW-1-Tra and TW-2-Tra), we found increased expression of OCT4 and SOX2 rather than GABRA-3 or Myc. These findings highlight the differential expression patterns of these genes in our study, suggesting their potential role in cancer cell deformation and drug resistance. Our study presents a potential in vitro model for metastatic and drug-resistant breast cancer cells. By investigating the correlation between cancer cell deformation and metastasis, we contribute to understanding breast cancer heterogeneity and lay the groundwork for developing improved treatment strategies.
Collapse
Affiliation(s)
- Jong Seob Choi
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea
| | - Su Han Lee
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Hye Bin Park
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Changho Chun
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Yeseul Kim
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Kyung Hoon Kim
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Hyung Jin Kim
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk 39253, South Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
23
|
Grodzka A, Knopik-Skrocka A, Kowalska K, Kurzawa P, Krzyzaniak M, Stencel K, Bryl M. Molecular alterations of driver genes in non-small cell lung cancer: from diagnostics to targeted therapy. EXCLI JOURNAL 2023; 22:415-432. [PMID: 37346803 PMCID: PMC10279966 DOI: 10.17179/excli2023-6122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Lung cancer is the leading cause of cancer death all over the world. The majority (80-85 %) of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Within NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC) are the most often recognized. The histological and immunohistochemical examination of NSCLC is a basic diagnostic tool, but insufficient for comprehensive therapeutic decisions. In some NSCLC patients, mainly adenocarcinoma, molecular alterations in driver genes, like EGFR, KRAS, HER2, ALK, MET, BRAF, RET, ROS1, and NTRK are recognized. The frequency of some of those changes is different depending on race, and between smokers and non-smokers. The molecular diagnostics of NSCLC using modern methods, like next-generation sequencing, is essential in estimating targeted, personalized therapy. In recent years, a breakthrough in understanding the importance of molecular studies for the precise treatment of NSCLC has been observed. Many new drugs were approved, including tyrosine kinase and immune checkpoint inhibitors. Clinical trials testing novel molecules like miRNAs and trials with CAR-T cells (chimeric antigen receptor - T cells) dedicated to NSCLC patients are ongoing.
Collapse
Affiliation(s)
- Anna Grodzka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznan, Poland
| | | | - Katarzyna Kowalska
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
| | - Pawel Kurzawa
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
- Department of Clinical Pathology and Immunology, Poznan University of Medical Sciences, Poland
| | - Monika Krzyzaniak
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
| | - Katarzyna Stencel
- Department of Clinical Oncology with the Subdepartment of Diurnal Chemotherapy, E. J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland
| | - Maciej Bryl
- Department of Clinical Oncology with the Subdepartment of Diurnal Chemotherapy, E. J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland
| |
Collapse
|
24
|
Joshi J, Pandit A, Tarapara B, Patel H, Bhavnagari H, Panchal H, Shah FD. An association of epidermal growth factor receptor mutation subtypes with prognostic prediction and site-specific recurrence in advanced stage lung cancer patients. Mol Biol Rep 2023; 50:5105-5115. [PMID: 37099232 DOI: 10.1007/s11033-023-08432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Concerning the different clinical behavior of epidermal growth factor receptor (EGFR) subtypes in advanced-stage lung cancer patients, the current study aimed to evaluate the clinical, pathological, and prognostic significance of EGFR mutation subtypes, and treatment response in patients with advanced-stage lung cancer. METHODS AND RESULTS A retrospective study enrolled a total of 346 patients with advanced-stage lung cancer tested for EGFR mutation. EGFR mutation was analyzed by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Statistical analysis was performed using SPSS version 20.0. EGFR mutation was evident in 38% of patients with the highest prevalence of exon 19 deletions. A higher incidence of 19-deletions and 20-insertions were observed in young patients, while a higher incidence of L858R was noted in old age patients. Patients with de-novo T790M failed to improve their OS by any of the treatment modalities. Patients with de-novo T790M mutation have a higher risk of developing lung, liver, and multiple site metastases while patients with L858R mutation have a higher risk of developing brain metastasis. Additionally, patients with 19 deletion mutation did not improve their OS after receiving conventional chemotherapy hence, they demonstrate better survival only after EGFR-TKIs. Multivariate survival analysis predicted chemotherapy as an independent predictor of OS. CONCLUSION Besides clinicopathological and prognostic consequences of EGFR mutation and mutation subtypes, patients harboring TKI sensitive, or insensitive mutations reveal different secondary disease development and hence should be treated accordingly for better survival. Current findings may provide the basis for a better treatment strategy.
Collapse
Affiliation(s)
- Jigna Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Apexa Pandit
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Bhoomi Tarapara
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Hitarth Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Harsha Panchal
- Department of Medical Oncology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
25
|
Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023; 15:1252. [PMID: 37111737 PMCID: PMC10142433 DOI: 10.3390/pharmaceutics15041252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| |
Collapse
|
26
|
Fu F, Tao X, Jiang Z, Gao Z, Zhao Y, Li Y, Hu H, Shen L, Sun Y, Zhang Y. Identification of Germline Mutations in East-Asian Young Never-Smokers with Lung Adenocarcinoma by Whole-Exome Sequencing. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:182-189. [PMID: 37197646 PMCID: PMC10110802 DOI: 10.1007/s43657-022-00062-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Recently, an increasing number of young never-smokers are diagnosed with lung cancer. The aim of this study is to investigate the genetic predisposition of lung cancer in these patients and discover candidate pathogenic variants for lung adenocarcinoma in young never-smokers. Peripheral blood was collected from 123 never-smoking east-Asian patients diagnosed with lung adenocarcinoma before the age of 40. Whole-exome sequencing (WES) was conducted on genomic DNA extracted from peripheral blood cells. As a result, 3,481 single nucleotide variants were identified. By bioinformatical tools and the published gene list associated with genetic predisposition of cancer, pathogenic variants were detected in ten germline genes: ATR, FANCD2, FANCE, GATA2, HFE, MSH2, PDGFRA, PMS2, SDHB, and WAS. Patients with pathogenic variants were more likely to occur in females (9/10, 90.0%) and have stage IV lung adenocarcinoma (4/10, 40%). Furthermore, germline mutations in 17 genes (ASB18, B3GALT5, CLEC4F, COL6A6, CYP4B1, C6orf132, EXO1, GATA4, HCK, KCP, NPHP4, PIGX, PPIL2, PPP1R3G, RRBP1, SALL4, and TTC28), which occurred in at least two patients, displayed potentially pathogenic effects. Gene ontology analysis further showed that these genes with germline mutations were mainly located in nucleoplasm and associated with DNA repair-related biological processes. The study provides spectrum of pathogenic variants and functional explanation for genetic predisposition of lung adenocarcinoma in young never-smokers, which sheds a light on prevention and early diagnosis of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00062-1.
Collapse
Affiliation(s)
- Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xiaoting Tao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhonglin Jiang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhendong Gao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yue Zhao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yuan Li
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Hong Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Libing Shen
- International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| | - Yihua Sun
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
27
|
Wang H, Cheng L, Zhao C, Zhou F, Jiang T, Guo H, Shi J, Chen P, Tang Z, Mao S, Jia K, Ye L, Cai C, Li X, Chen X, Zhou C. Efficacy of immune checkpoint inhibitors in advanced non-small cell lung cancer harboring BRAF mutations. Transl Lung Cancer Res 2023; 12:219-229. [PMID: 36895926 PMCID: PMC9989805 DOI: 10.21037/tlcr-22-613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Background Despite immune checkpoint inhibitors (ICI) being widely used to treat patients with advanced non-small cell lung cancer (NSCLC), few studies examine the role of ICI in patients with proto-oncogene B-Raf, serine/threonine kinase (BRAF) mutations. Methods A retrospective study was conducted for patients with BRAF-mutant NSCLC who received treatment at Shanghai Pulmonary Hospital between 2014 and 2022. Primary end point was progression-free survival (PFS). Secondary end point was best response (RECIST, version 1.1). Results The study involved a total of 34 patients with 54 treatments recorded. The median PFS for the whole cohort was 5.8 months and the overall objective response rate (ORR) was 24%. Patients who were treated with ICI combined with chemotherapy reported a median PFS of 12.6 months and an ORR of 44%. Those who were treated with non-ICI therapy came with a median PFS of 5.3 months and an ORR of 14%. Specifically, patients had better clinical benefits with first-line ICI-combined therapy. The PFS was 18.5 months whereas that of non-ICI group was 4.1 months. The ORR was 56% in ICI-combined group and 10% in non-ICI cohort. Conclusions The findings observed an evidential and significant susceptibility to ICIs combined therapy in patients with BRAF-mutant NSCLC, especially in first-line treatment.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingyun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenlei Cai
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Unraveling the Impact of Intratumoral Heterogeneity on EGFR Tyrosine Kinase Inhibitor Resistance in EGFR-Mutated NSCLC. Int J Mol Sci 2023; 24:ijms24044126. [PMID: 36835536 PMCID: PMC9964908 DOI: 10.3390/ijms24044126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The advent of tyrosine kinase inhibitors (TKIs) for treating epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) has been a game changer in lung cancer therapy. However, patients often develop resistance to the drugs within a few years. Despite numerous studies that have explored resistance mechanisms, particularly in regards to collateral signal pathway activation, the underlying biology of resistance remains largely unknown. This review focuses on the resistance mechanisms of EGFR-mutated NSCLC from the standpoint of intratumoral heterogeneity, as the biological mechanisms behind resistance are diverse and largely unclear. There exist various subclonal tumor populations in an individual tumor. For lung cancer patients, drug-tolerant persister (DTP) cell populations may have a pivotal role in accelerating the evolution of tumor resistance to treatment through neutral selection. Cancer cells undergo various changes to adapt to the new tumor microenvironment caused by drug exposure. DTP cells may play a crucial role in this adaptation and may be fundamental in mechanisms of resistance. Intratumoral heterogeneity may also be precipitated by DNA gains and losses through chromosomal instability, and the role of extrachromosomal DNA (ecDNA) may play an important role. Significantly, ecDNA can increase oncogene copy number alterations and enhance intratumoral heterogeneity more effectively than chromosomal instability. Additionally, advances in comprehensive genomic profiling have given us insights into various mutations and concurrent genetic alterations other than EGFR mutations, inducing primary resistance in the context of tumor heterogeneity. Understanding the mechanisms of resistance is clinically crucial since these molecular interlayers in cancer-resistance mechanisms may help to devise novel and individualized anticancer therapeutic approaches.
Collapse
|
29
|
Guaitoli G, Zullo L, Tiseo M, Dankner M, Rose AAN, Facchinetti F. Non-small-cell lung cancer: how to manage BRAF-mutated disease. Drugs Context 2023; 12:dic-2022-11-3. [PMID: 37168877 PMCID: PMC10166262 DOI: 10.7573/dic.2022-11-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023] Open
Abstract
BRAF mutations are reported in about 3-5% of non-small-cell lung cancer (NSCLC), almost exclusively in adenocarcinoma histology, and are classified into three different classes. The segmentation of BRAF mutations into V600 (class 1) and non-V600 (classes 2 and 3) relies on their biological characteristics and is of interest for predicting the therapeutic benefit of targeted therapies and immunotherapy. Given the relative rarity of this molecular subset of disease, evidence supporting treatment choices is limited. This review aims to offer a comprehensive update about available therapeutic options for patients with NSCLC harbouring BRAF mutations to guide the physician in the choice of treatment strategies. We collected the most relevant available data, from single-arm phase II studies and retrospective analyses conducted in advanced NSCLC, regarding the efficacy of BRAF and MEK inhibitors in both V600 and non-V600 BRAF mutations. We included case reports and smaller experiences that could provide information on specific alterations. With respect to immunotherapy, we reviewed retrospective evidence on immune-checkpoint inhibitors in this molecular subset, whereas data about chemo-immunotherapy in this molecular subgroup are lacking. Moreover, we included the available, though limited, retrospective evidence of immunotherapy as consolidation after chemo-radiation for unresectable stage III BRAF-mutant NSCLC, and an overview of ongoing clinical trials in the peri-operative setting that could open new perspectives in the future.
Collapse
Affiliation(s)
- Giorgia Guaitoli
- Université Paris-Saclay, Gustave Roussy, INSERM U981, Villejuif, France
- PhD Program Clinical & Experimental Medicine, University of Modena & Reggio Emilia, Modena, Italy
| | - Lodovica Zullo
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marcello Tiseo
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Matthew Dankner
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - April AN Rose
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Francesco Facchinetti
- Université Paris-Saclay, Gustave Roussy, INSERM U981, Villejuif, France
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
30
|
Alpert O, Siddiqui B, Shabbir Z, Soudan M, Garren P. The role of psychiatry in quality of life in young patients with non-small cell lung cancer. Brain Behav Immun Health 2022; 25:100507. [PMID: 36133954 PMCID: PMC9483727 DOI: 10.1016/j.bbih.2022.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is often seen in geriatric patients, with an age of onset of approximately 60 years. Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related mortality in the United States and around the world. Young patients are rarely diagnosed with lung cancer, with less than 3.5% of patients presenting with this tumor at an age less than 45. In this paper, we examine NSCLC in young patients, between 18 and 35 years of age, which most commonly occurs in non-smokers and is characterized by a higher proportion of adenocarcinoma histology and advanced disease at presentation. These patients often present with metastasis involving one organ and they test positive for driver gene mutations including, but not limited to, epidermal growth factor receptor (EGFR), tyrosine kinase inhibitor (TKI) sensitive mutation and anaplastic lymphoma kinase (ALK). We addressed depression and anxiety and their effect on quality of life (QOL) and attempted to examine how improvement in QOL in these young patients could affect their course of illness and prognosis. Methods We conducted a literature review using PubMed, Cochrane, and Google search. We concentrated our search on two elements, reviewing approximately 50 articles focusing on the driver mutations EGFR and ALK as well as genetic mapping of lung adenocarcinoma in patients aged 18–35 years old. We also conducted a review of approximately 30 articles focusing on quality of life in the context of anxiety and depression within this patient population. Results We have described a case of a 28-year-old male with new-onset metastatic lung adenocarcinoma that we had treated in our hospital. He was found to have mutations in EGFR and ALK rearrangement. We aimed to address his depression, anxiety, and poor QOL in the context of his diagnosis. Due to his presenting symptoms leading to the diagnosis of adjustment disorder, he was treated with pharmacotherapy as well as conventional therapy to improve his QOL. Due to the time required to identify mutations, our patient passed away before a more targeted treatment could be offered. Conclusion It is important to fully explore the nature of the cancer, including mutation types. Our case demonstrates that the detection of the driver gene mutation EGFR and/or ALK rearrangement could affect treatment and prognosis in this patient population. There are many studies available that highlight targeted therapies for these mutations as well as chemotherapy and radiation. Psychiatry has a significant role in improving quality of life in these patients, which could enhance their response to treatment and survival. Involving psychiatry early in the course results in lower rates of depression, anxiety and premature death.
Detection of the driver gene mutation EGFR and or ALK rearrangement could affect treatment within the young adult population. Early psychiatric intervention can improve quality of life. Early psychiatric intervention can lower rates of depression, anxiety, and suicidal ideation.
Collapse
Affiliation(s)
- Orna Alpert
- Nuvance Health, Department of Psychiatry, United States
- Corresponding author.
| | | | - Zed Shabbir
- Nuvance Health, Department of Psychiatry, United States
| | - Majd Soudan
- Nuvance Health, Department of Psychiatry, United States
| | - Patrik Garren
- University of Pennsylvania, Department of Biobehavioral and Health Sciences, United States
| |
Collapse
|
31
|
Evaluating Real World Mutational Differences Between Hispanics and Asians in NSCLC at a Large Academic Institution in Los Angeles. Clin Lung Cancer 2022; 23:e443-e452. [PMID: 35902325 DOI: 10.1016/j.cllc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Hispanics living in the United States have higher rates of Epidermal Growth Factor Receptor (EGFR) mutations compared with Non-Hispanic Whites. While this higher incidence is like Asian patients living in the United States, the outcomes for Hispanic patients differ. We looked to compare the variances in mutational profiles between Hispanics and Asians in Los Angeles. PATIENTS AND METHODS Three hundred ninety three non-small cell lung cancer (NSCLC) patients treated at Los Angeles County + University of Southern California (LAC + USC) Medical Center and Norris Comprehensive Cancer Center who received comprehensive genomic profiling (CGP) were evaluated from July 2017 to August 2020. CGP was done using tissue biopsies (n = 211) from Caris Life Sciences and liquid biopsies (n = 231) from Guardant Health. Multivariate logistic regression evaluated the role of race between Hispanics and Asians. RESULTS In the Hispanic cohort (n = 90), 50.0% were male, median age of diagnosis was 62, 54.5% were non-smokers, and 85.5% had adenocarcinoma. In Asians (n = 142), 47.5% were male, median age of diagnosis was 65, 59.6% were non-smokers, and 83.8% had adenocarcinoma. Hispanic patients had greater prevalence of Kirsten rat sarcoma virus (KRAS) mutations (odds ratio [OR] 4.42, 95% confidence interval [95% CI]: 1.63-12.83) and lesser prevalence of EGFR mutations (OR 0.31, 95% CI: 0.16-0.59). There were a greater proportion of Hispanic smokers with KRAS mutations (14/41; 34.1%) than Asian smokers (4/58; 6.9%). CONCLUSION We saw a greater percentage of Hispanics with KRAS mutations despite similar smoking percentages along with a greater percentage of Asians with EGFR mutations. This study shows that ethnic and racial backgrounds of the patient can influence the effects of potentially carcinogenic exposures leading to variances of mutation frequency of NSCLC among different ethnicities.
Collapse
|
32
|
Chow YP, Zainul Abidin N, Kow KS, Tho LM, Wong CL. Analytical and clinical validation of a custom 15-gene next-generation sequencing panel for the evaluation of circulating tumor DNA mutations in patients with advanced non-small-cell lung cancer. PLoS One 2022; 17:e0276161. [PMID: 36256645 PMCID: PMC9578623 DOI: 10.1371/journal.pone.0276161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This is a pilot proof-of-concept study to evaluate the utility of a custom 15-gene circulating tumor DNA (ctDNA) panel as a potential companion molecular next-generation sequencing (NGS) assay for identifying somatic single nucleotide variants and indels in non-small-cell lung cancer (NSCLC) patients. The custom panel covers the hotspot mutations in EGFR, KRAS, NRAS, BRAF, PIK3CA, ERBB2, MET, KIT, PDGFRA, ALK, ROS1, RET, NTRK1, NTRK2 and NTRK3 genes which serve as biomarkers for guiding treatment decisions in NSCLC patients. METHOD The custom 15-gene ctDNA NGS panel was designed using ArcherDX Assay Designer. A total of 20 ng or 50 ng input ctDNA was used to construct the libraries. The analytical performance was evaluated using reference standards at different allellic frequencies (0.1%, 1%, 5% and parental). The clinical performance was evaluated using plasma samples collected from 10 treatment naïve advanced stage III or IV NSCLC patients who were tested for tissue EGFR mutations. The bioinformatics analysis was performed using the proprietary Archer Analysis Software. RESULTS For the analytical validation, we achieved 100% sensitivity and specificity for the detection of known mutations in the reference standards. The limit of detection was 1% allelic frequency. Clinical validation showed that the clinical sensitivity and specificity of the assay for detecting EGFR mutation were 83.3% and 100% respectively. In addition, the NGS panel also detected other mutations of uncertain significance in 6 out of 10 patients. CONCLUSION This preliminary analysis showed that the custom 15-gene ctDNA NGS panel demonstrated good analytical and clinical performances for the EGFR mutation. Further studies incorporating the validation of other candidate gene mutations are warranted.
Collapse
Affiliation(s)
- Yock Ping Chow
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Norziha Zainul Abidin
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Ken Siong Kow
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Lye Mun Tho
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Chieh Lee Wong
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Haematology Unit, Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Centre for Haematology, Hammersmith Hospital, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Wagner SA. Clinical associations and genetic interactions of oncogenic BRAF alleles. PeerJ 2022; 10:e14126. [PMID: 36275468 PMCID: PMC9586110 DOI: 10.7717/peerj.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023] Open
Abstract
BRAF is a serine/threonine-specific protein kinase that regulates the MAPK/ERK signaling pathway, and mutations in the BRAF gene are considered oncogenic drivers in diverse types of cancer. Based on the signaling mechanism, oncogenic BRAF mutations can be assigned to three different classes: class 1 mutations constitutively activate the kinase domain and lead to RAS-independent signaling, class 2 mutations induce artificial dimerization of BRAF and RAS-independent signaling and class 3 mutations display reduced or abolished kinase function and require upstream signals. Despite the importance of BRAF mutations in cancer, the clinical associations, genetic interactions and therapeutic implications of non-V600 BRAF mutations have not been explored comprehensively yet. In this study, the author analyzed publically available data from the AACR Project GENIE to further understand clinical associations and genetic interactions of oncogenic BRAF mutations. The analyses identified 93 recurrent BRAF mutations, out of which 50 could be assigned to a functional class based on literature review. The author could show that the frequency of BRAF mutations varies across cancer types and subtypes, and that the BRAF mutation classes are unequally distributed across cancer types and subtypes. Using permutation testing-based co-occurrence analyses, the author defined the genetic interactions of BRAF mutations in multiple cancer types and revealed unexplored genetic interactions that might define clinically relevant subgroups. With non-small cell lung cancer as example, the author further showed that the genetic interactions are BRAF mutation class-specific. The presented analyses explore the properties of oncogenic BRAF mutations and will help to further delineate the complex role of BRAF in cancer.
Collapse
Affiliation(s)
- Sebastian A. Wagner
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany,Frankfurt Cancer Institute (FCI), Frankfurt, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Lin DL, Ding L, Shao SH, Xin FJ, Zhang LX, Li GQ, Zhao P. Bronchiolar adenoma-like tumour with monolayered component: Represent malignant transformation of bronchiolar adenoma? A series of five cases. Pathol Res Pract 2022; 238:154079. [PMID: 35988356 DOI: 10.1016/j.prp.2022.154079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Pulmonary bronchiolar adenoma (BA) is a rare lung tumour, it is unclear whether BA can develop into a malignancy. We presented five cases of BA-like tumour with monolayered components. This type of tumour may represent the malignant transformation of BA. Histologically, these tumours showed acinar and lepidic growth patterns. The acinar components were well-differentiated. The glandular tumour cells in these tumours contained cuboidal to columnar cells resembling type II pneumocytes or club (Clara) cells. A small number of mucinous cells were found in two cases. A few scattered ciliated cells were detected in three cases. The ciliated cells only existed in the bilayered components. The basal cells were highlighted by CK5/6 and p40 in a partial region of the tumour rather than in the entire tumour. The glandular tumour cells, including those in the bilayered component, were diffusely positive for TTF-1 and napsin-A. EGFR Exon19 deletions were found in four cases, and BRAF V600E mutation was found in one case. These BA-like tumours have biphasic morphological and molecular characteristics of BA and lung adenocarcinoma, suggesting distal-type BA may develop into a malignancy. More cases should be studied and especially cases with metastasis should be searched to further prove the malignant transformation.
Collapse
Affiliation(s)
- Dong-Liang Lin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Li Ding
- Medical Affairs Department, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shi-Hong Shao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Fang-Jie Xin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Long-Xiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Guang-Qi Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Peng Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
35
|
Horgan D, Čufer T, Gatto F, Lugowska I, Verbanac D, Carvalho Â, Lal JA, Kozaric M, Toomey S, Ivanov HY, Longshore J, Malapelle U, Hasenleithner S, Hofman P, Alix-Panabières C. Accelerating the Development and Validation of Liquid Biopsy for Early Cancer Screening and Treatment Tailoring. Healthcare (Basel) 2022; 10:1714. [PMID: 36141326 PMCID: PMC9498805 DOI: 10.3390/healthcare10091714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating tumor-derived components in body fluids. It provides an alternative to current cancer screening methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to determine how far the regulatory, policy, and governance framework provide support to LB implementation into healthcare systems and how the situation can be improved. For that reason, the European Alliance for Personalised Medicine (EAPM) organized series of expert panels including different key stakeholders to identify different steps, challenges, and opportunities that need to be taken to effectively implement LB technology at the country level across Europe. To accomplish a change of patient care with an LB approach, it is required to establish collaboration between multiple stakeholders, including payers, policymakers, the medical and scientific community, and patient organizations, both at the national and international level. Regulators, pharma companies, and payers could have a major impact in their own domain. Linking national efforts to EU efforts and vice versa could help in implementation of LB across Europe, while patients, scientists, physicians, and kit manufacturers can generate a pull by undertaking more research into biomarkers.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Tanja Čufer
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Francesco Gatto
- Department of Oncology-Pathology, Karolinska Institute, 171 64 Stockholm, Sweden
| | - Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute and Oncology Centre (MSCI), 02781 Warsaw, Poland
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ângela Carvalho
- i3S—nstituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, GROW School of Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Marta Kozaric
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
| | - Sinead Toomey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Smurfit Building, D09 Dublin, Ireland
| | - Hristo Y. Ivanov
- Department of Paediatric and Medical Genetics, Medical University, 4000 Plovdiv, Bulgaria
| | - John Longshore
- Astra Zeneca, 1800 Concord Pike, Wilmington, DE 19803, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80137 Naples, Italy
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8036 Graz, Austria
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, University Côte d’Azur, CEDEX 01, 06001 Nice, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 641 Avenue du Doyen Gaston Giraud, CEDEX 5, 34093 Montpellier, France
| |
Collapse
|
36
|
Park HJ, Park SH. The Ethanolic Extract of Trichosanthes Kirilowii Root Exerts anti-Cancer Effects in Human Non-Small Cell Lung Cancer Cells Resistant to EGFR TKI. Nutr Cancer 2022; 75:376-387. [PMID: 36004720 DOI: 10.1080/01635581.2022.2114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate whether the ethanol extract of the Trichosanthes kirilowii root (ETK), traditionally used to treat lung diseases, exhibits anticancer activity in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) cells. ETK treatment suppressed the growth of EGFR TKI-resistant NSCLC cells, including H1299, H1975, PC9/ER (erlotinib-resistant PC9) and PC9/GR (gefitinib-resistant PC9) cells, in a concentration- and time-dependent manner. Dose-dependent decline in anchorage-dependent and -independent colony formation was also detected following ETK treatment. We demonstrate that the growth-inhibitory effect of ETK was related to apoptosis induction, based on flow cytometry results showing ETK-induced increase in the percentage of cells with sub-G1 DNA and the population of annexin V-positive cells. Consistently, ETK induced chromatin condensation and cleavage of poly(ADP-ribose) polymerase (PARP). As a molecular mechanism, the phosphorylation level of signal transducer and activator of transcription 3 (STAT3) and Src was decreased by ETK. ETK-induced apoptosis was partially reversed by transfection of constitutively activated STAT3, indicating that STAT3 inactivation mediated ETK-induced apoptosis in EGFR TKI-resistant NSCLC cells. Our results provide basic evidence supporting the role of ETK as a novel therapeutic in EGFR TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
37
|
Molecular Biology and Therapeutic Perspectives for K-Ras Mutant Non-Small Cell Lung Cancers. Cancers (Basel) 2022; 14:cancers14174103. [PMID: 36077640 PMCID: PMC9454753 DOI: 10.3390/cancers14174103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/28/2022] Open
Abstract
In non-small cell lung cancer (NSCLC) the most common alterations are identified in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, accounting for approximately 30% of cases in Caucasian patients. The majority of mutations are located in exon 2, with the c.34G > T (p.G12C) change being the most prevalent. The clinical relevance of KRAS mutations in NSCLC was not recognized until a few years ago. What is now emerging is a dual key role played by KRAS mutations in the management of NSCLC patients. First, recent data report that KRAS-mutant lung AC patients generally have poorer overall survival (OS). Second, a KRAS inhibitor specifically targeting the c.34G > T (p.G12C) variant, Sotorasib, has been approved by the U.S. Food and Drug Administration (FDA) and by the European Medicines Agency. Another KRAS inhibitor targeting c.34G > T (p.G12C), Adagrasib, is currently being reviewed by the FDA for accelerated approval. From the description of the biology of KRAS-mutant NSCLC, the present review will focus on the clinical aspects of KRAS mutations in NSCLC, in particular on the emerging efficacy data of Sotorasib and other KRAS inhibitors, including mechanisms of resistance. Finally, the interaction between KRAS mutations and immune checkpoint inhibitors will be discussed.
Collapse
|
38
|
Ding Y, He C, Zhao X, Xue S, Tang J. Adding predictive and diagnostic values of pulmonary ground-glass nodules on lung cancer via novel non-invasive tests. Front Med (Lausanne) 2022; 9:936595. [PMID: 36059824 PMCID: PMC9433577 DOI: 10.3389/fmed.2022.936595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary ground-glass nodules (GGNs) are highly associated with lung cancer. Extensive studies using thin-section high-resolution CT images have been conducted to analyze characteristics of different types of GGNs in order to evaluate and determine the predictive and diagnostic values of GGNs on lung cancer. Accurate prediction of their malignancy and invasiveness is critical for developing individualized therapies and follow-up strategies for a better clinical outcome. Through reviewing the recent 5-year research on the association between pulmonary GGNs and lung cancer, we focused on the radiologic and pathological characteristics of different types of GGNs, pointed out the risk factors associated with malignancy, discussed recent genetic analysis and biomarker studies (including autoantibodies, cell-free miRNAs, cell-free DNA, and DNA methylation) for developing novel diagnostic tools. Based on current progress in this research area, we summarized a process from screening, diagnosis to follow-up of GGNs.
Collapse
Affiliation(s)
- Yizong Ding
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunming He
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Xue
- Department of Cardiovascular Surgery, Reiji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Tang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian Tang,
| |
Collapse
|
39
|
Tripathi S, Moyer EJ, Augustin AI, Zavalny A, Dheer S, Sukumaran R, Schwartz D, Gorski B, Dako F, Kim E. RadGenNets: Deep learning-based radiogenomics model for gene mutation prediction in lung cancer. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Wang K, Xue M, Qiu J, Liu L, Wang Y, Li R, Qu C, Yue W, Tian H. Genomics Analysis and Nomogram Risk Prediction of Occult Lymph Node Metastasis in Non-Predominant Micropapillary Component of Lung Adenocarcinoma Measuring ≤ 3 cm. Front Oncol 2022; 12:945997. [PMID: 35912197 PMCID: PMC9326108 DOI: 10.3389/fonc.2022.945997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background The efficacy of sublobar resection and selective lymph node dissection is gradually being accepted by thoracic surgeons for patients within early-stage non-small cell lung cancer (NSCLC). Nevertheless, there are still some NSCLC patients develop lymphatic metastasis at clinical T1 stage. Lung adenocarcinoma with a micropapillary (MP) component poses a higher risk of lymph node metastasis and recurrence even when the MP component is not predominant. Our study aimed to explore the genetic features and occult lymph node metastasis (OLNM) risk factors in patients with a non-predominant micropapillary component (NP-MPC) in a large of patient’s cohort with surgically resected lung adenocarcinoma. Methods Between January 2019 and December 2021, 6418 patients who underwent complete resection for primary lung adenocarcinoma at the Qilu Hospital of Shandong University. In our study, 442 patients diagnosed with lung adenocarcinoma with NP-MPC with a tumor size ≤3 cm were included. Genetic alterations were analyzed using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Abnormal protein expression of gene mutations was validated using immunohistochemistry. A nomogram risk model based on clinicopathological parameters was developed to predict OLNM. This model was invalidated using the calibration plot and concordance index. Results In our retrospective cohort, the incidence rate of the micropapillary component was 11.17%, and OLNM was observed in 20.13% of the patients in our study. ARMS-PCR suggested that EGFR exon 19 del was the most frequent alteration in NP-MCP patients compared with other gene mutations (frequency: 21.2%, P<0.001). Patients harboring exon 19 del showed significantly higher risk of OLNM (P< 0.001). A nomogram was developed based on five risk parameters, which showed good calibration and reliable discrimination ability (C-index = 0.84) for evaluating OLNM risk. Conclusions. Intense expression of EGFR exon 19 del characterizes lung adenocarcinoma in patients with NP-MCP and it’s a potential risk factor for OLNM. We firstly established a nomogram based on age, CYFRA21-1 level, tumor size, micropapillary and solid composition, that was effective in predicting OLNM among NP-MCP of lung adenocarcinoma measuring ≤ 3 cm.
Collapse
Affiliation(s)
- Kun Wang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Mengchao Xue
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jianhao Qiu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ling Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Yueyao Wang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Chenghao Qu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Hui Tian,
| |
Collapse
|
41
|
Gu Y, Li Y, Zhao S, Jin M, Lu J, Jiang X. Real-World Data of EGFR Mutation Testing in Chinese Non-small Cell Carcinoma: Low Tumor Cell Number and Tumor Cellularity can be Accepted. Pathol Res Pract 2022; 236:153965. [DOI: 10.1016/j.prp.2022.153965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
42
|
Huang L, Liao Z, Liu Z, Chen Y, Huang T, Xiao H. Application and Prospect of CRISPR/Cas9 Technology in Reversing Drug Resistance of Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:900825. [PMID: 35620280 PMCID: PMC9127258 DOI: 10.3389/fphar.2022.900825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer drug resistance has always been a major factor affecting the treatment of non-small cell lung cancer, which reduces the quality of life of patients. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology, as an efficient and convenient new gene-editing technology, has provided a lot of help to the clinic and accelerated the research of cancer and drug resistance. In this review, we introduce the mechanisms of drug resistance in non-small cell lung cancer (NSCLC), discuss how the CRISPR/Cas9 system can reverse multidrug resistance in NSCLC, and focus on drug resistance gene mutations. To improve the prognosis of NSCLC patients and further improve patients' quality of life, it is necessary to utilize the CRISPR/Cas9 system in systematic research on cancer drug resistance.
Collapse
Affiliation(s)
- Lu Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhi Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhixi Liu
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Yan Chen
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingwenli Huang
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
43
|
Wang JL, Fu YD, Gao YH, Li XP, Xiong Q, Li R, Hou B, Huang RS, Wang JF, Zhang JK, Lv JL, Zhang C, Li HW. Unique characteristics of G719X and S768I compound double mutations of epidermal growth factor receptor (EGFR) gene in lung cancer of coal-producing areas of East Yunnan in Southwestern China. Genes Environ 2022; 44:17. [PMID: 35606799 PMCID: PMC9125819 DOI: 10.1186/s41021-022-00248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background The principal objective of this project was to investigate the Epidermal Growth Factor Receptor (EGFR) gene mutation characteristics of lung cancer patients, which can provide a molecular basis for explaining the clinicopathological features, epidemiology and use of targeted therapy in lung cancer patients in the coal-producing areas of East Yunnan. Methodology We collected 864 pathologically confirmed lung cancer patients’ specimens in First People’s Hospital of Qujing City of Yunnan Province from September 2016 to September 2021. We thereafter employed Next Generation Sequencing (NGS) technology to detect all exons present in the EGFR gene. Results The overall mutation frequency of the EGFR gene was 47.22%. The frequency of EGFR gene mutations in the tissue, plasma, and cytology samples were found to be 53.40%, 23.33%, and 62.50%, respectively. Univariate analysis indicated that the coal-producing areas and Fuyuan county origin were significantly associated with relatively low EGFR gene mutation frequency. Female, non-smoking history, adenocarcinoma, non-brain metastasis, and tissue specimens were found to be related to high EGFR gene mutation frequency. Multivariate logistic regression analysis suggested the lung cancer patients in the central area of Qujing City, stage Ia, non-coal-producing areas, non-Fuyuan origin, and non-Xuanwei origin were more likely to develop EGFR gene mutations. The most common mutations were L858R point mutation (33.09%) and exon 19 deletion (19-del) (21.32%). Interestingly, the mutation frequency of G719X (p = 0.001) and G719X + S768I (p = 0.000) in the coal-producing areas were noted to be more significant than those in non-coal-producing regions. Conclusion This findings of this study might be important in establishing the correlation between routine using NGS for EGFR gene mutation diagnosis and clinical practice in the lung cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-022-00248-z.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China
| | - Yu-Dong Fu
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Yan-Hong Gao
- Department of Traditional Chinese Medicine, First People's Hospital of Qujing, Qujing, 655000, China
| | - Xiu-Ping Li
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China
| | - Qian Xiong
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China
| | - Rui Li
- Department of Medical Administration, First People's Hospital of Qujing, Qujing, 655000, China
| | - Bo Hou
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Ruo-Shan Huang
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Jun-Feng Wang
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Jian-Kun Zhang
- Department of Pathology, First People's Hospital of Qujing, Qujing, 655000, China
| | - Jia-Ling Lv
- Department of Oncology, First People's Hospital of Qujing, Qujing, 655000, China
| | - Chao Zhang
- Department of Oncology, First People's Hospital of Qujing, Qujing, 655000, China.
| | - Hong-Wei Li
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China.
| |
Collapse
|
44
|
Li J, Chen S, Xue H, Wang H, Huang T, Xie H, He J, Ke C, Yu Z, Ni B. Genomic Alteration Spectrum of Non-Small Cell Lung Cancer Patients in East-China Characterized by Tumor Tissue DNA and Cell-Free DNA. Onco Targets Ther 2022; 15:571-584. [PMID: 35615557 PMCID: PMC9126294 DOI: 10.2147/ott.s351085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction From an oncologic perspective, genetic detection is becoming a frontline clinical test, used to identify actionable alterations for targeted therapy, monitor molecular clonal tumor evolution, indicate disease progression and prognosis, and predict medication efficacy and resistance. From analysis of both tumor tissue and cell-free DNA from a large cohort of non-small cell lung cancer patients in East-China, we characterized the full spectrum of genomic alterations. Methods The study comprised 3000 unpaired samples including 1351 tumor tissue DNA (tDNA) and 1649 cell-free circulating tumor DNA (cfDNA) samples, from which 67 cancer-related genes were sequenced and the genetic alteration profiles were depicted. Integrative molecular analyses identified the frequently mutated genes, uncovered co-occurring somatic alterations, described the distribution of hotspot variants, analyzed the frequency of variant alleles, and notably distinguished actionable, novel variants. Results The most commonly affected genes were EGFR, TP53, KRAS, CDKN2A, and PIK3CA in both tDNA and cfDNA samples. EGFR and CTNNB1, PIK3CA and PTEN, ERBB2 and SMO were found to have frequent co-occurring alterations in tDNA samples, while EGFR and SMO, KRAS and PDGFRA, PIK3CA and KDR were in cfDNA samples. A large number of primary druggable variants were identified in tDNA samples, while numerous drug-resistance variants, rare actionable variants, and non-EGFR actionable variants were detected in cfDNA samples. Novel variants were enriched in KDR, KIT, TP53, ABL1, FGFR1 in tDNA samples while the majority of novel variants were distributed in PDGFRA, EGFR, KIT, ROS1, BRCA2 in cfDNA samples. Variant allele frequency in tDNA samples was significantly (P < 0.001) higher than that in cfDNA samples. Conclusion The results revealed considerable differences in the alteration characteristics between the two kinds of specimens. To date, this study represents the largest real-world investigation of its kind, derived from the largest number of patients in East-China. It reinforced and expanded the mechanism of molecular analysis of neoplastic genetic profiles.
Collapse
Affiliation(s)
- Jie Li
- Department of General Medical Ward, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Siwen Chen
- Department of General Medical Ward, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Hui Xue
- Department of Oncology Medical Ward, Hanzhong Central Hospital, Hanzhong, People’s Republic of China
| | - Haoyi Wang
- Hangzhou D.A. Medical Laboratory, Hangzhou, People’s Republic of China
| | - Tianwei Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Hongya Xie
- Department of Thoracic Surgery, Suzhou Municipal Hospital, Suzhou, People’s Republic of China
| | - Jiang He
- Department of Thoracic Surgery, Suzhou Wuzhong People’s Hospital, Suzhou, People’s Republic of China
| | - Cai Ke
- Hangzhou D.A. Medical Laboratory, Hangzhou, People’s Republic of China
| | - Zhaonan Yu
- Hangzhou D.A. Medical Laboratory, Hangzhou, People’s Republic of China
- Zhaonan Yu, Hangzhou D.A. Medical Laboratory, Hangzhou, People’s Republic of China, Tel +86 15558078770, Email
| | - Bin Ni
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Correspondence: Bin Ni, Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China, Tel +86 17774015977, Email
| |
Collapse
|
45
|
Yang Y, Yang X, Wang Y, Xu J, Shen H, Gou H, Qin X, Jiang G. Combined Consideration of Tumor-Associated Immune Cell Density and Immune Checkpoint Expression in the Peritumoral Microenvironment for Prognostic Stratification of Non-Small-Cell Lung Cancer Patients. Front Immunol 2022; 13:811007. [PMID: 35222387 PMCID: PMC8866234 DOI: 10.3389/fimmu.2022.811007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Given the complexity and highly heterogeneous nature of the microenvironment and its effects on antitumor immunity and cancer immune evasion, the prognostic value of a single immune marker is limited. Here, we show how the integration of immune checkpoint molecule expression and tumor-associated immune cell distribution patterns can influence prognosis prediction in non-small-cell lung cancer (NSCLC) patients. We analyzed tissue microarray (TMA) data derived from multiplex immunohistochemistry results and measured the densities of tumor-infiltrating CD8+ and FOXP3+ immune cells and tumor cells (PanCK+), as well as the densities of programmed cell death 1 (PD-1)+ and programmed cell death ligand 1 (PD-L1)+ cells in the peritumor and intratumor subregions. We found a higher density of infiltrating CD8+ and FOXP3+ immune cells in the peritumoral compartment than in the intratumoral compartment. In addition, unsupervised hierarchical clustering analysis of these markers revealed that the combination of high CD8/FOXP3 expression, low PD-1 and PD-L1 immune checkpoint expression, and lack of epidermal growth factor receptor (EGFR) mutation could be a favorable predictive marker. On the other hand, based on the clustering analysis, low CD8/FOXP3 and immune checkpoint (PD-1 and PD-L1) expression might be a marker for patients who are likely to respond to strategies targeting regulatory T (Treg) cells. Furthermore, an immune risk score model was established based on multivariate Cox regression, and the risk score was determined to be an independent prognostic factor for NSCLC patients. These results indicate that the immune context is heterogeneous because of the complex interactions of different components and that using multiple factors in combination might be promising for predicting the prognosis of and stratifying NSCLC patients.
Collapse
Affiliation(s)
- Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaobao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingsong Xu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyu Shen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongquan Gou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Yan N, Guo S, Zhang H, Zhang Z, Shen S, Li X. BRAF-Mutated Non-Small Cell Lung Cancer: Current Treatment Status and Future Perspective. Front Oncol 2022; 12:863043. [PMID: 35433454 PMCID: PMC9008712 DOI: 10.3389/fonc.2022.863043] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
V-Raf murine sarcoma viral oncogene homolog B (BRAF) kinase, which was encoded by BRAF gene, plays critical roles in cell signaling, growth, and survival. Mutations in BRAF gene will lead to cancer development and progression. In non-small cell lung cancer (NSCLC), BRAF mutations commonly occur in never-smokers, women, and aggressive histological types and accounts for 1%-2% of adenocarcinoma. Traditional chemotherapy presents limited efficacy in BRAF-mutated NSCLC patients. However, the advent of targeted therapy and immune checkpoint inhibitors (ICIs) have greatly altered the treatment pattern of NSCLC. However, ICI monotherapy presents limited activity in BRAF-mutated patients. Hence, the current standard treatment of choice for advanced NSCLC with BRAF mutations are BRAF-targeted therapy. However, intrinsic or extrinsic mechanisms of resistance to BRAF-directed tyrosine kinase inhibitors (TKIs) can emerge in patients. Hence, there are still some problems facing us regarding BRAF-mutated NSCLC. In this review, we summarized the BRAF mutation types, the diagnostic challenges that BRAF mutations present, the strategies to treatment for BRAF-mutated NSCLC, and resistance mechanisms of BRAF-targeted therapy.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | - Xingya Li
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Wang J, Jiang D, Zheng X, Li W, Zhao T, Wang D, Yu H, Sun D, Li Z, Zhang J, Zhang Z, Hou L, Jiang G, Fei K, Zhang F, Yang K, Zhang P. Tertiary lymphoid structure and decreased CD8 + T cell infiltration in minimally invasive adenocarcinoma. iScience 2022; 25:103883. [PMID: 35243243 PMCID: PMC8873609 DOI: 10.1016/j.isci.2022.103883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Knowledge of the tumor microenvironment (TME) in patients with early lung cancer, especially in comparison with the matched adjacent tissues, remains lacking. To characterize TME of early-stage lung adenocarcinoma, we performed RNA-seq profiling on 58 pairs of minimally invasive adenocarcinoma (MIA) tumors and matched adjacent normal tissues. MIA tumors exhibited an adaptive TME characterized by high CD4+ T cell infiltration, high B-cell activation, and low CD8+ T cell infiltration. The high expression of markers for B cells, activated CD4+ T cells, and follicular helper T (Tfh) cells in bulk MIA samples and three independent single-cell RNA-seq datasets implied tertiary lymphoid structures (TLS) formation. Multiplex immunohistochemistry staining validated TLS formation and revealed an enrichment of follicular regulatory T cells (Tfr) in TLS follicles, which may explain the lower CD8+ T cell infiltration and attenuated anti-tumor immunity in MIA. Our study demonstrates how integrating transcriptome and pathology characterize TME and elucidate potential mechanisms of tumor immune evasion.
Collapse
Affiliation(s)
- Jin Wang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dongbo Jiang
- Department of Immunology, School of Basic Medicine, Air-Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Wang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Tian Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Di Wang
- Tissue Bank, Department of Pathology, Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huansha Yu
- Tissue Bank, Department of Pathology, Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongqing Sun
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ziyi Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhe Zhang
- Department of Gynecologic Oncology, Chinese PLA General Hospital, Beijing, China
| | - Likun Hou
- Tissue Bank, Department of Pathology, Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Kun Yang
- Department of Immunology, School of Basic Medicine, Air-Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Lin L, Pan H, Li X, Zhao C, Sun J, Hu X, Zhang Y, Wang M, Ren X, Luo X, Shan G, Hui A, Wu Z, Liu H, Tian L, Shi Y. A phase I study of FCN-411, a pan-HER inhibitor, in EGFR-mutated advanced NSCLC after progression on EGFR tyrosine kinase inhibitors. Lung Cancer 2022; 166:98-106. [DOI: 10.1016/j.lungcan.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022]
|
49
|
Huang Q, Chen C, Hu S, Wu H, Yu D, Zhu X, Xue C, Wu Y, Tang J, Xie R, Ran F. Long-term survival in a patient with advanced lung adenocarcinoma harboring synchronous EGFR exon 18 G719A and BRAF V600E mutations and treated with afatinib: a case report. Anticancer Drugs 2022; 33:e730-e733. [PMID: 34387589 DOI: 10.1097/cad.0000000000001159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
EGFR and BRAF V600E mutations are both early driven and usually mutually exclusive. We report the case of a 59-year-old woman diagnosed with advanced lung adenocarcinoma harboring coexisting EGFR exon 18 G719A and BRAF V600E mutations. She experienced a long-term response to oral afatinib, with a progression-free survival rate of 33 months and an overall survival rate of 11 years. Lung adenocarcinoma with synchronous EGFR G719A and BRAF V600E mutations is rare and has not been previously reported. This case highlights the importance of an adequate response to afatinib and provides an optimal therapeutic option for such patients.
Collapse
Affiliation(s)
- Qing Huang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li J, Wei B, Feng J, Wu X, Chang Y, Wang Y, Yang X, Zhang H, Han S, Zhang C, Zheng J, Groen H, van den Berg A, Ma J, Li H, Guo Y. Case report: TP53 and RB1 loss may facilitate the transformation from lung adenocarcinoma to small cell lung cancer by expressing neuroendocrine markers. Front Endocrinol (Lausanne) 2022; 13:1006480. [PMID: 36583000 PMCID: PMC9792468 DOI: 10.3389/fendo.2022.1006480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Transformation from lung adenocarcinoma (LUAD) to small cell lung cancer (SCLC) is one of the mechanisms responsible for acquired EGFR-TKIs resistance. Although it rarely happens this event determines a rapid disease deterioration and needs specific treatment. PATIENT AND METHOD We report a case of 75-year-old LUAD female with a p.L858R mutation in Epidermal Growth Factor Receptor (EGFR) who presented with SCLC transformation after responding to first line osimertinib treatment for only 6 months. To understand the underlying molecular mechanism, we retrospectively sequenced the first (LUAD) and the second (SCLC) biopsy using a 56 multi-gene panel. Immunohistochemistry (IHC) staining and Fluorescence In Situ Hybridization (FISH) was applied to confirm the genetic aberrations identified. RESULTS EGFR p.E709A and p.L858R, Tumor Protein p53 (TP53) p.A159D and Retinoblastoma 1 (RB1) c.365-1G>A were detected in both the diagnostic LUAD and transformed SCLC samples. A high copy number gain for Proto-Oncogene C-Myc (MYC) and a Phosphoinositide 3-Kinase Alpha (PIK3CA) p.E545K mutation were found in the transformed sample specifically. Strong TP53 staining and negative RB1 staining were observed in both LUAD and SCLC samples, but FISH only identified MYC amplification in SCLC tissue. CONCLUSION We consider the combined presence of MYC amplification with mutations in TP53 and RB1 as drivers of SCLC transformation. Our results highlight the need to systematically evaluate TP53 and RB1 status in LUAD patients to offer a different therapeutic strategy.
Collapse
Affiliation(s)
- Jun Li
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Bing Wei
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Junnan Feng
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Xinxin Wu
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Yuxi Chang
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Yi Wang
- Department of Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiuli Yang
- Department of Oncology, First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Haiyan Zhang
- Department of Pathology, First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Sile Han
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Cuiyun Zhang
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Jiawen Zheng
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jie Ma
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
| | - Hongle Li
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
- *Correspondence: Yongjun Guo, ; Hongle Li,
| | - Yongjun Guo
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Henan International Joint Laboratory of Cancer Molecular Genetics, Zhengzhou, China
- *Correspondence: Yongjun Guo, ; Hongle Li,
| |
Collapse
|