1
|
Wada Y, Okano K, Sato K, Sugimoto M, Shimomura A, Nagao M, Matsukawa H, Ando Y, Suto H, Oshima M, Kondo A, Asano E, Kishino T, Kumamoto K, Kobara H, Kamada H, Masaki T, Soga T, Suzuki Y. Tumor metabolic alterations after neoadjuvant chemoradiotherapy predict postoperative recurrence in patients with pancreatic cancer. Jpn J Clin Oncol 2022; 52:887-895. [PMID: 35523689 DOI: 10.1093/jjco/hyac074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We investigated the metabolic changes in pancreatic ductal adenocarcinoma to identify the mechanisms of treatment response of neoadjuvant chemoradiation therapy. METHODS Frozen tumor and non-neoplastic pancreas tissues were prospectively obtained from 88 patients with pancreatic ductal adenocarcinoma who underwent curative-intent surgery. Sixty-two patients received neoadjuvant chemoradiation therapy and 26 patients did not receive neoadjuvant therapy (control group). Comprehensive analysis of metabolites in tumor and non-neoplastic pancreatic tissue was performed by capillary electrophoresis-mass spectrometry. RESULTS Capillary electrophoresis-mass spectrometry detected 90 metabolites for analysis among more than 500 ionic metabolites quantified. There were significant differences in 27 tumor metabolites between the neoadjuvant chemoradiation therapy and control groups. There were significant differences in eight metabolites [1-MethylnNicotinamide, Carnitine, Glucose, Glutathione (red), N-acetylglucosamine 6-phosphate, N-acetylglucosamine 1-phosphate, UMP, Phosphocholine] between good responder and poor responder for neoadjuvant chemoradiation therapy. Among these metabolites, phosphocholine, Carnitine and Glutathione were associated with recurrence-free survival only in the neoadjuvant chemoradiation therapy group. Microarray confirmed marked gene suppression of choline transporters [CTL1-4 (SLC44A1-44A4)] in pancreatic ductal adenocarcinoma tissue of neoadjuvant chemoradiation therapy group. CONCLUSION The present study identifies several important metabolic consequences and potential neoadjuvant chemoradiation therapy targets in pancreatic ductal adenocarcinoma. Choline metabolism is one of the key pathways involved in recurrence of the patients with pancreatic ductal adenocarcinoma who received neoadjuvant chemoradiation therapy.
Collapse
Affiliation(s)
- Yukiko Wada
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kiyotoshi Sato
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Japan
| | - Ayaka Shimomura
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Mina Nagao
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hiroyuki Matsukawa
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Yasuhisa Ando
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hironobu Suto
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Minoru Oshima
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Akihiro Kondo
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Eisuke Asano
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Takayoshi Kishino
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kensuke Kumamoto
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
2
|
Roy-Luzarraga M, Reynolds LE, de Luxán-Delgado B, Maiques O, Wisniewski L, Newport E, Rajeeve V, Drake RJ, Gómez-Escudero J, Richards FM, Weller C, Dormann C, Meng YM, Vermeulen PB, Saur D, Sanz-Moreno V, Wong PP, Géraud C, Cutillas PR, Hodivala-Dilke K. Suppression of Endothelial Cell FAK Expression Reduces Pancreatic Ductal Adenocarcinoma Metastasis after Gemcitabine Treatment. Cancer Res 2022; 82:1909-1925. [PMID: 35350066 PMCID: PMC9381116 DOI: 10.1158/0008-5472.can-20-3807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Louise E. Reynolds
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Beatriz de Luxán-Delgado
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Laura Wisniewski
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Emma Newport
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Vinothini Rajeeve
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Rebecca J.G. Drake
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Jesús Gómez-Escudero
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Frances M. Richards
- Translational Medicine Operations, Astrazeneca Oncology, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Céline Weller
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christof Dormann
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peter B. Vermeulen
- Department of Oncological Research, Translational Cancer Research Unit, Oncology Center GZA—GZA Hospitals St. Augustinus and University of Antwerp, Antwerp, Belgium
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg and Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, München, Germany
| | - Victoria Sanz-Moreno
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cyrill Géraud
- Department of Dermatology, Section of Clinical and Molecular Dermatology, Venereology and Allergology, University Medical Center and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pedro R. Cutillas
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute—A CR-UK Center of Excellence, Queen Mary University of London, John Vane Science Center, Charterhouse Square, London, United Kingdom
| |
Collapse
|
3
|
Strittmatter N, Richards FM, Race AM, Ling S, Sutton D, Nilsson A, Wallez Y, Barnes J, Maglennon G, Gopinathan A, Brais R, Wong E, Serra MP, Atkinson J, Smith A, Wilson J, Hamm G, Johnson TI, Dunlop CR, Kaistha BP, Bunch J, Sansom OJ, Takats Z, Andrén PE, Lau A, Barry ST, Goodwin RJA, Jodrell DI. Method To Visualize the Intratumor Distribution and Impact of Gemcitabine in Pancreatic Ductal Adenocarcinoma by Multimodal Imaging. Anal Chem 2022; 94:1795-1803. [PMID: 35005896 DOI: 10.1021/acs.analchem.1c04579] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gemcitabine (dFdC) is a common treatment for pancreatic cancer; however, it is thought that treatment may fail because tumor stroma prevents drug distribution to tumor cells. Gemcitabine is a pro-drug with active metabolites generated intracellularly; therefore, visualizing the distribution of parent drug as well as its metabolites is important. A multimodal imaging approach was developed using spatially coregistered mass spectrometry imaging (MSI), imaging mass cytometry (IMC), multiplex immunofluorescence microscopy (mIF), and hematoxylin and eosin (H&E) staining to assess the local distribution and metabolism of gemcitabine in tumors from a genetically engineered mouse model of pancreatic cancer (KPC) allowing for comparisons between effects in the tumor tissue and its microenvironment. Mass spectrometry imaging (MSI) enabled the visualization of the distribution of gemcitabine (100 mg/kg), its phosphorylated metabolites dFdCMP, dFdCDP and dFdCTP, and the inactive metabolite dFdU. Distribution was compared to small-molecule ATR inhibitor AZD6738 (25 mg/kg), which was codosed. Gemcitabine metabolites showed heterogeneous distribution within the tumor, which was different from the parent compound. The highest abundance of dFdCMP, dFdCDP, and dFdCTP correlated with distribution of endogenous AMP, ADP, and ATP in viable tumor cell regions, showing that gemcitabine active metabolites are reaching the tumor cell compartment, while AZD6738 was located to nonviable tumor regions. The method revealed that the generation of active, phosphorylated dFdC metabolites as well as treatment-induced DNA damage primarily correlated with sites of high proliferation in KPC PDAC tumor tissue, rather than sites of high parent drug abundance.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Translational Medicine, Oncology R&D, Astra Zeneca, Cambridge CB4 0WG, United Kingdom
| | - Alan M Race
- Institute of Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35032 Marburg, Germany
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Daniel Sutton
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Yann Wallez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Jennifer Barnes
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Gareth Maglennon
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Aarthi Gopinathan
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Rebecca Brais
- Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, United Kingdom
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB12 6GH, United Kingdom
| | - Maria Paola Serra
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - James Atkinson
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Joanne Wilson
- DMPK, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Timothy I Johnson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
| | - Brajesh P Kaistha
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Clinical IO group, Early Oncology, AstraZeneca, Cambridge CB12 6GH, United Kingdom
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory, Teddington TW11 0LW, United Kingdom
- Rosalind Franklin Institute, Didcot OX11 0QS, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
- Rosalind Franklin Institute, Didcot OX11 0QS, United Kingdom
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, U.K
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| |
Collapse
|
4
|
Cai L, Ying M, Wu H. Microenvironmental Factors Modulating Tumor Lipid Metabolism: Paving the Way to Better Antitumoral Therapy. Front Oncol 2021; 11:777273. [PMID: 34888248 PMCID: PMC8649922 DOI: 10.3389/fonc.2021.777273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming is one of the emerging hallmarks of cancer and is driven by both the oncogenic mutations and challenging microenvironment. To satisfy the demands of energy and biomass for rapid proliferation, the metabolism of various nutrients in tumor cells undergoes important changes, among which the aberrant lipid metabolism has gained increasing attention in facilitating tumor development and metastasis in the past few years. Obstacles emerged in the aspect of application of targeting lipid metabolism for tumor therapy, due to lacking of comprehensive understanding on its regulating mechanism. Tumor cells closely interact with stromal niche, which highly contributes to metabolic rewiring of critical nutrients in cancer cells. This fact makes the impact of microenvironment on tumor lipid metabolism a topic of renewed interest. Abundant evidence has shown that many factors existing in the tumor microenvironment can rewire multiple signaling pathways and proteins involved in lipid metabolic pathways of cancer cells. Hence in this review, we summarized the recent progress on the understanding of microenvironmental factors regulating tumor lipid metabolism, and discuss the potential of modulating lipid metabolism as an anticancer approach.
Collapse
Affiliation(s)
- Limeng Cai
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Identification of CCT3 as a prognostic factor and correlates with cell survival and invasion of head and neck squamous cell carcinoma. Biosci Rep 2021; 41:229752. [PMID: 34505628 PMCID: PMC8529339 DOI: 10.1042/bsr20211137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Recurrent locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) is associated with dismal prognosis because of its highly invasive behavior and resistance to conventional intensive chemotherapy. The identification of effective markers for early diagnosis and prognosis is important for reducing mortality and ensuring that therapy for HNSCC is effective. Chaperonin-containing TCP-1 3 (CCT3) folds cancer-related proteins to control carcinogenesis. The prognostic value and growth association of CCT3 and HNSCC remain unknown. METHODS The GEO, Oncomine and UALCAN databases were used to examine CCT3 expression in HNSCC. A few clinical HNSCC samples with normal tissues were used to detect CCT3 expression by using immunohistochemistry method. The TCGA-HNSC dataset was used to evaluate the association between expression of CCT3 and prognosis. The molecular mechanism was investigated with gene set enrichment analysis (GSEA). CCK-8 and wound healing assays were used to detect cell growth and invasion of HNSCC, respectively. RESULTS CCT3 expression was significantly up-regulated in HNSCC in both mRNA and protein levels. In addition, up-regulated CCT3 expression was associated with various clinicopathological parameters. High expression of CCT3 was significantly correlated with inferior survival of HNSCC patients. Knockdown of CCT3 significantly inhibited cell growth and invasion of HNSCC cell lines. GSEA analysis indicated that CCT3 was closely correlated with tumor-related signaling pathways and HNSCC cell survival. CONCLUSION Our findings suggest that CCT3 is a biomarker of poor prognosis and related to the process of HNSCC.
Collapse
|
6
|
Wren S, Collins L, Hughes LP, Jones I. Measuring the rate of in-vitro drug release from polymeric nanoparticles by 19F solution state NMR spectroscopy. J Pharm Sci 2021; 110:3546-3549. [PMID: 34400184 DOI: 10.1016/j.xphs.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022]
Abstract
We report what we believe is the first use of 19F NMR spectroscopy to directly measure in-vitro release (IVR) from polymeric nanoparticles (PNPs). Using 19F NMR we selectively measured IVR of AZD2811 from PNPs. Due to rapid nuclear relaxation in solid-like environments only AZD2811 in solution is detected, and physical separation from the PNPs isn't required. The NMR approach and ultra-centrifugation/UHPLC were shown to be equivalent. The selectivity of 19F NMR means it is readily applied to complex IVR media such as recombinant human serum albumin (rHSA).
Collapse
Affiliation(s)
- Stephen Wren
- New Modalities and Parenterals Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK.
| | - Laura Collins
- New Modalities and Parenterals Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Ian Jones
- New Modalities and Parenterals Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| |
Collapse
|
7
|
Dunlop CR, Wallez Y, Johnson TI, Bernaldo de Quirós Fernández S, Durant ST, Cadogan EB, Lau A, Richards FM, Jodrell DI. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br J Cancer 2020; 123:1424-1436. [PMID: 32741974 PMCID: PMC7591912 DOI: 10.1038/s41416-020-1016-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Personalised medicine strategies may improve outcomes in pancreatic ductal adenocarcinoma (PDAC), but validation of predictive biomarkers is required. Having developed a clinical trial to assess the ATR inhibitor, AZD6738, in combination with gemcitabine (ATRi/gem), we investigated ATM loss as a predictive biomarker of response to ATRi/gem in PDAC. METHODS Through kinase inhibition, siRNA depletion and CRISPR knockout of ATM, we assessed how ATM targeting affected the sensitivity of PDAC cells to ATRi/gem. Using flow cytometry, immunofluorescence and immunoblotting, we investigated how ATRi/gem synergise in ATM-proficient and ATM-deficient cells, before assessing the impact of ATM loss on ATRi/gem sensitivity in vivo. RESULTS Complete loss of ATM function (through pharmacological inhibition or CRISPR knockout), but not siRNA depletion, sensitised to ATRi/gem. In ATM-deficient cells, ATRi/gem-induced replication catastrophe was augmented, while phospho-Chk2-T68 and phospho-KAP1-S824 persisted via DNA-PK activity. ATRi/gem caused growth delay in ATM-WT xenografts in NSG mice and induced regression in ATM-KO xenografts. CONCLUSIONS ATM loss augments replication catastrophe-mediated cell death induced by ATRi/gem and may predict clinical responsiveness to this combination. ATM status should be carefully assessed in tumours from patients with PDAC, since distinction between ATM-low and ATM-null could be critical in maximising the success of clinical trials using ATM expression as a predictive biomarker.
Collapse
Affiliation(s)
- Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Yann Wallez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | - Alan Lau
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Pancreatic adenocarcinoma preferentially takes up and is suppressed by synthetic nanoparticles carrying apolipoprotein A-II and a lipid gemcitabine prodrug in mice. Cancer Lett 2020; 495:112-122. [PMID: 32949679 DOI: 10.1016/j.canlet.2020.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022]
Abstract
We hypothesised that synthetic HDL nanoparticles carrying a gemcitabine prodrug and apolipoprotein A-II (sHDLGemA2) would target scavenger receptor-B1 (SR-B1) to preferentially and safely deliver gemcitabine into pancreatic ductal adenocarcinoma (PDAC). We designed, manufactured and characterised sHDLGemA2 nanoparticles sized ~130 nm, incorporating 20 mol% of a gemcitabine prodrug within the lipid bilayer, which strengthens on adding ApoA-II. We measured their ability to inhibit growth in cell lines and cell-derived and patient-derived murine PDAC xenografts. Fluorescent-labelled sHDLGemA2 delivered gemcitabine inside xenografts. Xenograft levels of active gemcitabine after sHDLGemA2 were similar to levels after high-dose free gemcitabine. Growth inhibition in mice receiving 4.5 mg gemcitabine/kg/d, carried in sHDLGemA2, was equivalent to inhibition after high-dose (75 mg/kg/d) free gemcitabine, and greater than inhibition after low-dose (4.5 mg/kg/d) free gemcitabine. sHDLGemA2 slowed growth in semi-resistant cells and a resistant human xenograft. sHDLGemA2 targeted xenografts more effectively than sHDLGemA1. SR-B1 was over-expressed in PDAC cells and xenografts. Targeting by ApoA-II was suppressed by anti-SR-B1. Because sHDLGemA2 provided only ~6% of the free gemcitabine dose for an equivalent response, patient side effects can be greatly reduced, and the sHDLGemA2 concept should be developed through clinical trials.
Collapse
|
9
|
Buchholz SM, Goetze RG, Singh SK, Ammer-Herrmenau C, Richards FM, Jodrell DI, Buchholz M, Michl P, Ellenrieder V, Hessmann E, Neesse A. Depletion of Macrophages Improves Therapeutic Response to Gemcitabine in Murine Pancreas Cancer. Cancers (Basel) 2020; 12:E1978. [PMID: 32698524 PMCID: PMC7409345 DOI: 10.3390/cancers12071978] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is composed of fibro-inflammatory cells and extracellular matrix (ECM) components. However, the exact contribution of the various TME compartments towards therapeutic response is unknown. Here, we aim to dissect the specific contribution of tumor-associated macrophages (TAMs) towards drug delivery and response in pancreatic ductal adenocarcinoma (PDAC). METHODS The effect of gemcitabine was assessed in human and murine macrophages, human pancreatic stellate cells (hPSCs), and tumor cells (L3.6pl, BxPC3 and KPC) in vitro. The drug metabolism of gemcitabine was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Preclinical studies were conducted using KrasG12D;p48-Cre and KrasG12D;p53172H;Pdx-Cre mice to investigate gemcitabine delivery at different stages of tumor progression and upon pharmacological TAM depletion. RESULTS Gemcitabine accumulation was significantly increased in murine PDAC tissue compared to pancreatic intraepithelial neoplasia (PanIN) lesions and healthy control pancreas tissue. In vitro, macrophages accumulated and rapidly metabolized gemcitabine resulting in a significant drug scavenging effect for gemcitabine. Finally, pharmacological TAM depletion enhanced therapeutic response to gemcitabine in tumor-bearing KPC mice. CONCLUSION Macrophages rapidly metabolize gemcitabine in vitro, and pharmacological depletion improves the therapeutic response to gemcitabine in vivo. Our study supports the notion that TAMs might be a promising therapeutic target in PDAC.
Collapse
Affiliation(s)
- Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Robert G. Goetze
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Frances M. Richards
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge CB2 1TN, UK; (F.M.R.); (D.I.J.)
| | - Duncan I. Jodrell
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge CB2 1TN, UK; (F.M.R.); (D.I.J.)
| | - Malte Buchholz
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, 35037 Marburg, Germany;
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany;
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| |
Collapse
|
10
|
Ponz-Sarvise M, Corbo V, Tiriac H, Engle DD, Frese KK, Oni TE, Hwang CI, Öhlund D, Chio IIC, Baker LA, Filippini D, Wright K, Bapiro TE, Huang P, Smith P, Yu KH, Jodrell DI, Park Y, Tuveson DA. Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer. Clin Cancer Res 2019; 25:6742-6755. [PMID: 31492749 PMCID: PMC6858952 DOI: 10.1158/1078-0432.ccr-19-1398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE KRAS is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells. EXPERIMENTAL DESIGN We evaluated the expression and activation of receptor tyrosine kinases in response to combined MEK and AKT inhibition in KPC mice and pancreatic ductal organoids. In addition, we sought to determine the therapeutic efficacy of targeting resistance pathways induced by MEK and AKT inhibition in order to identify malignant-specific vulnerabilities. RESULTS Combined MEK and AKT inhibition modestly extended the survival of KPC mice and increased Egfr and ErbB2 phosphorylation levels. Tumor organoids, but not their normal counterparts, exhibited elevated phosphorylation of ERBB2 and ERBB3 after MEK and AKT blockade. A pan-ERBB inhibitor synergized with MEK and AKT blockade in human PDA organoids, whereas this was not observed for the EGFR inhibitor erlotinib. Combined MEK and ERBB inhibitor treatment of human organoid orthotopic xenografts was sufficient to cause tumor regression in short-term intervention studies. CONCLUSIONS Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models, pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT, and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Mariano Ponz-Sarvise
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Vincenzo Corbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | | | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Daniel Öhlund
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dea Filippini
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Kevin Wright
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Tashinga E Bapiro
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - Paul Smith
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Kenneth H Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Medical College at Cornell University, New York, New York
| | - Duncan I Jodrell
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
11
|
Ramu I, Buchholz SM, Patzak MS, Goetze RG, Singh SK, Richards FM, Jodrell DI, Sipos B, Ströbel P, Ellenrieder V, Hessmann E, Neesse A. SPARC dependent collagen deposition and gemcitabine delivery in a genetically engineered mouse model of pancreas cancer. EBioMedicine 2019; 48:161-168. [PMID: 31597597 PMCID: PMC6838446 DOI: 10.1016/j.ebiom.2019.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterised by extensive matrix deposition that has been implicated in impaired drug delivery and therapeutic resistance. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates collagen deposition and is highly upregulated in the activated stroma subtype with poor prognosis in PDAC patients. METHODS KrasG12D;p48-Cre;SPARC-/- (KC-SPARC-/-) and KrasG12D;p48-Cre;SPARCWT (KC-SPARCWT) were generated and analysed at different stages of carcinogenesis by histological grading, immunohistochemistry for epithelial and stromal markers, survival and preclinical analysis. Pharmacokinetic and pharmacodynamic studies were conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunohistochemistry following gemcitabine treatment (100 mg/kg) in vivo. FINDINGS Global genetic ablation of SPARC in a KrasG12D driven mouse model resulted in significantly reduced overall and mature collagen deposition around early and advanced pancreatic intraepithelial neoplasia (PanIN) lesions and in invasive PDAC (p < .001). However, detailed pathological scoring and molecular analysis showed no effects on PanIN to PDAC progression, vessel density (CD31), tumour incidence, grading or metastatic frequency. Despite comparable tumour kinetics, ablation of SPARC resulted in a significantly shortened survival in KC-SPARC-/- mice (280 days versus 485 days, p < .03, log-rank-test). Using LC-MS/MS, we show that SPARC dependent collagen deposition does not affect intratumoural gemcitabine accumulation or immediate therapeutic response in tumour bearing KC-SPARCWT and KC-SPARC-/-mice. INTERPRETATION Global SPARC ablation reduces the collagen-rich microenvironment in murine PDAC. Moreover, global SPARC depletion did not affect tumour growth kinetics, grading or metastatic frequency. Notably, the dense-collagen matrix did not restrict access of gemcitabine to the tumour. These findings may have direct translational implications in clinical trial design.
Collapse
Affiliation(s)
- Iswarya Ramu
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Sören M Buchholz
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Melanie S Patzak
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Robert G Goetze
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, The University of Cambridge, United Kingdom
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, The University of Cambridge, United Kingdom
| | - Bence Sipos
- Institute of Pathology and Neuropathology, University Clinic Tübingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Centre Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Göttingen, Germany.
| |
Collapse
|
12
|
Abstract
Metabolic reprograming is an established hallmark of cancer cells. Pancreatic cancer cells, by virtue of the underlying oncogenic drivers, demonstrate metabolic reprograming to sustain growth, invasiveness, and therapy resistance. The increased demands of the growing tumor cells alter the metabolic and signaling pathways to meet the growing nutrient requirements. Investigating the metabolic vulnerabilities of tumor cells can help in developing effective therapeutics to target pancreatic cancer. In this chapter, we explain in detail the methods to evaluate the metabolic changes occurring in the tumor. This includes the glucose/glutamine uptake assays and the measurement of reactive oxygen species, extracellular acidification rate, and oxygen consumption rate in the tumor cells. All these physiological assays help in understanding the metabolic nature of the tumor.
Collapse
|
13
|
Patzak MS, Kari V, Patil S, Hamdan FH, Goetze RG, Brunner M, Gaedcke J, Kitz J, Jodrell DI, Richards FM, Pilarsky C, Gruetzmann R, Rümmele P, Knösel T, Hessmann E, Ellenrieder V, Johnsen SA, Neesse A. Cytosolic 5'-nucleotidase 1A is overexpressed in pancreatic cancer and mediates gemcitabine resistance by reducing intracellular gemcitabine metabolites. EBioMedicine 2019; 40:394-405. [PMID: 30709769 PMCID: PMC6413477 DOI: 10.1016/j.ebiom.2019.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cytosolic 5'-nucleotidase 1A (NT5C1A) dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. Here, we investigate NT5C1A expression in pancreatic ductal adenocarcinoma (PDAC) and its impact on gemcitabine metabolism and therapeutic efficacy. METHODS NT5C1A expression was determined by semiquantitative immunohistochemistry using tissue microarrays. Gemcitabine metabolites and response were assessed in several human and murine PDAC cell lines using crystal violet assays, Western blot, viability assays, and liquid chromatography tandem mass-spectrometry (LC-MS/MS). FINDINGS NT5C1A was strongly expressed in tumor cells of a large subgroup of resected PDAC patients in two independent patient cohorts (44-56% score 2 and 8-26% score 3, n = 414). In contrast, NT5C1A was expressed at very low levels in the tumor stroma, and neither stromal nor tumoral expression was a prognostic marker for postoperative survival. In vitro, NT5C1A overexpression increased gemcitabine resistance by reducing apoptosis levels and significantly decreased intracellular amounts of cytotoxic dFdCTP in +NT5C1A tumor cells. Co-culture experiments with conditioned media from +NT5C1A PSCs improved gemcitabine efficacy in tumor cells. In vivo, therapeutic efficacy of gemcitabine was significantly decreased and serum levels of the inactive gemcitabine metabolite dFdU significantly increased in mice bearing NT5C1A overexpressing tumors. INTERPRETATION NT5C1A is robustly expressed in tumor cells of resected PDAC patients. Moreover, NT5C1A mediates gemcitabine resistance by decreasing the amount of intracellular dFdCTP, leading to reduced tumor cell apoptosis and larger pancreatic tumors in mice. Further studies should clarify the role of NT5C1A as novel predictor for gemcitabine treatment response in patients with PDAC.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- Animals
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacokinetics
- Deoxycytidine/pharmacology
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Expression
- Humans
- Mice
- Mice, Transgenic
- Models, Biological
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Melanie S Patzak
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Vijayalakshmi Kari
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Shilpa Patil
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Feda H Hamdan
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Robert G Goetze
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Marius Brunner
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Jochen Gaedcke
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Julia Kitz
- University Medical Center Goettingen, Institute of Pathology, Goettingen, Germany
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Christian Pilarsky
- University Medical Center Erlangen, Department of Surgery, Erlangen, Germany
| | - Robert Gruetzmann
- University Medical Center Erlangen, Department of Surgery, Erlangen, Germany
| | - Petra Rümmele
- University Medical Center Erlangen, Institute of Pathology, Erlangen, Germany
| | - Thomas Knösel
- Ludwig Maximilian University Munich, Institute of Pathology, Munich, Germany
| | - Elisabeth Hessmann
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Volker Ellenrieder
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Steven A Johnsen
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Albrecht Neesse
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany.
| |
Collapse
|
14
|
Heinzmann K, Nguyen QD, Honess D, Smith DM, Stribbling S, Brickute D, Barnes C, Griffiths J, Aboagye E. Depicting Changes in Tumor Biology in Response to Cetuximab Monotherapy or Combination Therapy by Apoptosis and Proliferation Imaging Using 18F-ICMT-11 and 18F-FLT PET. J Nucl Med 2018; 59:1558-1565. [PMID: 29794225 PMCID: PMC6167530 DOI: 10.2967/jnumed.118.209304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Imaging biomarkers must demonstrate their value in monitoring treatment. Two PET tracers, the caspase-3/7-specific isatin-5-sulfonamide 18F-ICMT-11 (18F-(S)-1-((1-(2-fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)-5-(2(2,4-difluoro-phenoxymethyl)-pyrrolidine-1-sulfonyl)isatin) and 18F-FLT (3'-deoxy-3'-18F-fluorothymidine), were used to detect early treatment-induced changes in tumor biology and determine whether any of these changes indicate a response to cetuximab, administered as monotherapy or combination therapy with gemcitabine. Methods: In mice bearing cetuximab-sensitive H1975 tumors (non-small lung cancer), the effects of single or repeated doses of the antiepidermal growth factor receptor antibody cetuximab (10 mg/kg on day 1 only or on days 1 and 2) or a single dose of gemcitabine (125 mg/kg on day 2) were investigated by 18F-ICMT-11 or 18F-FLT on day 3. Imaging was also performed after 2 doses of cetuximab (days 1 and 2) in mice bearing cetuximab-insensitive HCT116 tumors (colorectal cancer). For imaging-histology comparison, tumors were evaluated for proliferation (Ki-67 and thymidine kinase 1 [TK1]), cell death (cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling [TUNEL]), and target engagement (epidermal growth factor receptor expression) by immunohistochemistry, immunofluorescence, and immunoblotting, respectively. Tumor and plasma were analyzed for thymidine and gemcitabine metabolites by liquid chromatography-mass spectrometry. Results: Retention of both tracers was sensitive to cetuximab in H1975 tumors. 18F-ICMT-11 uptake and ex vivo cleaved caspase-3 staining notably increased in tumors treated with repeated doses of cetuximab (75%) and combination treatment (46%). Although a single dose of cetuximab was insufficient to induce apoptosis, it did affect proliferation. Significant reductions in tumor 18F-FLT uptake (44%-50%; P < 0.001) induced by cetuximab monotherapy and combination therapy were paralleled by a clear decrease in proliferation (Ki-67 decrease, 72%-95%; P < 0.0001), followed by a marked tumor growth delay. TK1 expression and tumor thymidine concentrations were profoundly reduced. Neither imaging tracer depicted the gemcitabine-induced tumor changes. However, cleaved caspase-3 and Ki-67 staining did not significantly differ after gemcitabine treatment whereas TK1 expression and thymidine concentrations increased. No cetuximab-induced modulation of the imaging tracers or other response markers was detected in the insensitive model of HCT116. Conclusion:18F-ICMT-11 and 18F-FLT are valuable tools to assess cetuximab sensitivity depicting distinct and time-variant aspects of treatment response.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Quang-Dé Nguyen
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Davina Honess
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | | | - Stephen Stribbling
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Diana Brickute
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Chris Barnes
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - John Griffiths
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | - Eric Aboagye
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| |
Collapse
|
15
|
Wallez Y, Dunlop CR, Johnson TI, Koh SB, Fornari C, Yates JWT, Bernaldo de Quirós Fernández S, Lau A, Richards FM, Jodrell DI. The ATR Inhibitor AZD6738 Synergizes with Gemcitabine In Vitro and In Vivo to Induce Pancreatic Ductal Adenocarcinoma Regression. Mol Cancer Ther 2018; 17:1670-1682. [PMID: 29891488 PMCID: PMC6076438 DOI: 10.1158/1535-7163.mct-18-0010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers, and overall survival rates have barely improved over the past five decades. The antimetabolite gemcitabine remains part of the standard of care but shows very limited antitumor efficacy. Ataxia telangiectasia and Rad3-related protein (ATR), the apical kinase of the intra-S-phase DNA damage response, plays a central role in safeguarding cells from replication stress and can therefore limit the efficacy of antimetabolite drug therapies. We investigated the ability of the ATR inhibitor, AZD6738, to prevent the gemcitabine-induced intra-S-phase checkpoint activation and evaluated the antitumor potential of this combination in vitro and in vivo In PDAC cell lines, AZD6738 inhibited gemcitabine-induced Chk1 activation, prevented cell-cycle arrest, and restrained RRM2 accumulation, leading to the strong induction of replication stress markers only with the combination. Moreover, synergistic growth inhibition was identified in a panel of 5 mouse and 7 human PDAC cell lines using both Bliss Independence and Loewe models. In clonogenic assays, the combination abrogated survival at concentrations for which single agents had minor effects. In vivo, AZD6738 in combination with gemcitabine was well tolerated and induced tumor regression in a subcutaneous allograft model of a KrasG12D; Trp53R172H; Pdx-Cre (KPC) mouse cancer cell line, significantly extending survival. Remarkably, the combination also induced regression of a subgroup of KPC autochthonous tumors, which generally do not respond well to conventional chemotherapy. Altogether, our data suggest that AZD6738 in combination with gemcitabine merits evaluation in a clinical trial in patients with PDAC. Mol Cancer Ther; 17(8); 1670-82. ©2018 AACR.
Collapse
Affiliation(s)
- Yann Wallez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Isaac Johnson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Siang-Boon Koh
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Chiara Fornari
- Safety and ADME Translational Sciences Department, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - James W T Yates
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | | | - Alan Lau
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Ma Y, Wu Q, Li X, Gu X, Xu J, Yang J. Pancreatic cancer: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:458. [PMID: 28090514 PMCID: PMC5220038 DOI: 10.21037/atm.2016.11.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022]
Abstract
Pancreatic cancer is recognized as the king of carcinoma, and the gap between basic research and clinical practice is difficult to improve the treatment effect. Translational medicine builds an important bridge between pancreatic cancer basic research and clinical practice from the pathogenesis, early diagnosis of pancreatic carcinoma, drug screening, treatment strategies and metastasis prediction. This article will carry on the concrete elaboration to the above several aspects.
Collapse
Affiliation(s)
- Yaokai Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing Wu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xin Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaoqiang Gu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jinzu Yang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
17
|
McCluskey GD, Mohamady S, Taylor SD, Bearne SL. Exploring the Potent Inhibition of CTP Synthase by Gemcitabine-5'-Triphosphate. Chembiochem 2016; 17:2240-2249. [PMID: 27643605 DOI: 10.1002/cbic.201600405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a target for the development of antiviral, anticancer, antiprotozoal, and immunosuppressive agents. Exposure of cell lines to the antineoplastic cytidine analogue gemcitabine causes depletion of intracellular CTP levels, but the direct inhibition of CTPS by its metabolite gemcitabine-5'-triphosphate (dF-dCTP) has not been demonstrated. We show that dF-dCTP is a potent competitive inhibitor of Escherichia coli CTPS with respect to UTP [Ki =(3.0±0.1) μm], and that its binding affinity exceeds that of CTP ≈75-fold. Site-directed mutagenesis studies indicated that Glu149 is an important binding determinant for both CTP and dF-dCTP. Comparison of the binding affinities of the 5'-triphosphates of 2'-fluoro-2'-deoxycytidine and 2'-fluoro-2'-deoxyarabinocytidine revealed that the 2'-F-arabino group contributes markedly to the strong binding of dF-dCTP. Geminal 2'-F substitution on UTP (dF-dUTP) did not result in an increase in binding affinity with CTPS. Remarkably, CTPS catalyzed the conversion of dF-dUTP into dF-dCTP, thus suggesting that dF-dCTP might be regenerated in vivo from its catabolite dF-dUTP.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, 11837, Cairo, Egypt
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
18
|
Carapuça EF, Gemenetzidis E, Feig C, Bapiro TE, Williams MD, Wilson AS, Delvecchio FR, Arumugam P, Grose RP, Lemoine NR, Richards FM, Kocher HM. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma. J Pathol 2016; 239:286-96. [PMID: 27061193 PMCID: PMC5025731 DOI: 10.1002/path.4727] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
Stromal targeting for pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming an attractive option, due to the lack of efficacy of standard chemotherapy and increased knowledge about PDAC stroma. We postulated that the addition of stromal therapy may enhance the anti-tumour efficacy of chemotherapy. Gemcitabine and all-trans retinoic acid (ATRA) were combined in a clinically applicable regimen, to target cancer cells and pancreatic stellate cells (PSCs) respectively, in 3D organotypic culture models and genetically engineered mice (LSL-Kras(G12D) (/+) ;LSL-Trp53(R172H) (/+) ;Pdx-1-Cre: KPC mice) representing the spectrum of PDAC. In two distinct sets of organotypic models as well as KPC mice, we demonstrate a reduction in cancer cell proliferation and invasion together with enhanced cancer cell apoptosis when ATRA is combined with gemcitabine, compared to vehicle or either agent alone. Simultaneously, PSC activity (as measured by deposition of extracellular matrix proteins such as collagen and fibronectin) and PSC invasive ability were both diminished in response to combination therapy. These effects were mediated through a range of signalling cascades (Wnt, hedgehog, retinoid, and FGF) in cancer as well as stellate cells, affecting epithelial cellular functions such as epithelial-mesenchymal transition, cellular polarity, and lumen formation. At the tissue level, this resulted in enhanced tumour necrosis, increased vascularity, and diminished hypoxia. Consequently, there was an overall reduction in tumour size. The enhanced effect of stromal co-targeting (ATRA) alongside chemotherapy (gemcitabine) appears to be mediated by dampening multiple signalling cascades in the tumour-stroma cross-talk, rather than ablating stroma or targeting a single pathway. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Elisabete F Carapuça
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Emilios Gemenetzidis
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christine Feig
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Tashinga E Bapiro
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Michael D Williams
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Abigail S Wilson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Francesca R Delvecchio
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Prabhu Arumugam
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Frances M Richards
- The University of Cambridge Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Barts and The London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
19
|
Bapiro TE, Richards FM, Jodrell DI. Understanding the Complexity of Porous Graphitic Carbon (PGC) Chromatography: Modulation of Mobile-Stationary Phase Interactions Overcomes Loss of Retention and Reduces Variability. Anal Chem 2016; 88:6190-4. [PMID: 27228284 PMCID: PMC5362737 DOI: 10.1021/acs.analchem.6b01167] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/26/2016] [Indexed: 01/24/2023]
Abstract
Porous graphitic carbon (PGC) is an important tool in a chromatographer's armory that retains polar compounds with mass spectrometry (MS)-compatible solvents. However, its applicability is severely limited by an unpredictable loss of retention, which can be attributed to contamination. The solutions offered fail to restore the original retention and our observations of retention time shifts of gemcitabine/metabolites on PGC are not consistent with contamination. The mobile phase affects the ionization state of analytes and the polarizable PGC surface that influences the strength of dispersive forces governing retention on the stationary phase. We hypothesized that failure to maintain the same PGC surface before and after running a gradient is a cause of the observed retention loss/variability on PGC. Herein, we optimize the choice of mobile phase solvent in a gradient program with three parts: a preparatory phase, which allows binding of analytes to column; an elution phase, which gives the required separation/peak shape; and a maintenance phase, to preserve the required retention capacity. Via liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of gemcitabine and its metabolites extracted from tumor tissue, we demonstrate reproducible chromatography on three PGC columns of different ages. This approach simplifies use of the PGC to the same level as that of a C-18 column, removes the need for column regeneration, and minimizes run times, thus allowing PGC columns to be used to their full potential.
Collapse
Affiliation(s)
| | - Frances M. Richards
- Cancer
Research UK Cambridge
Institute, University of Cambridge, Li Ka
Shing Centre, Box 278, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Duncan I. Jodrell
- Cancer
Research UK Cambridge
Institute, University of Cambridge, Li Ka
Shing Centre, Box 278, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|