1
|
Pulawska-Moon K, Ponikwicka-Tyszko D, Lebiedzinska W, Pilaszewicz-Puza A, Bernaczyk P, Koda M, Lupu O, Milewska G, Huang CCJ, Zheng H, Schiele P, Na IK, Frentsch M, Li X, Toppari J, Wolczynski S, Coelingh Bennink HJT, Huhtaniemi I, Rahman NA. Novel ectopic expression of zona pellucida 3 glycoprotein in lung cancer promotes tumor growth. Int J Cancer 2024; 155:1846-1857. [PMID: 39039845 DOI: 10.1002/ijc.35098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
Zona pellucida 3 (ZP3) expression is classically found in the ZP-layer of the oocytes, lately shown in ovarian and prostate cancer. A successful ZP3 ovarian cancer immunotherapy in transgenic mice suggested its use as an attractive therapeutic target. The biological role of ZP3 in cancer growth and progression is still unknown. We found that ~88% of the analyzed adenocarcinoma, squamous and small cell lung carcinomas to express ZP3. Knockout of ZP3 in a ZP3-expressing lung adenocarcinoma cell line, significantly decreased cell viability, proliferation, and migration rates in vitro. Zona pellucida 3 knock out (ZP3-KO) cell tumors inoculated in vivo in immunodeficient non-obese diabetic, severe combined immunodeficient mice showed significant inhibition of tumor growth and mitigation of the malignant phenotype. RNA sequencing revealed the deregulation of cell migration/adhesion signaling pathways in ZP3-KO cells. This novel functional relevance of ZP3 in lung cancer emphasized the suitability of ZP3 as a target in cancer immunotherapy and as a potential cancer biomarker.
Collapse
Affiliation(s)
| | - Donata Ponikwicka-Tyszko
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Bernaczyk
- Department of Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Koda
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, Alabama, USA
| | - Huifei Zheng
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, Alabama, USA
| | - Phillip Schiele
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Il-Kang Na
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, and ECRC Experimental and Clinical Research Center, both Charité-Universitätsmedizin Berlin, Corporate members of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Marco Frentsch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiangdong Li
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Jorma Toppari
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | | | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Turku, Finland
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Nafis A Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Lee J, Sim W, Lee J, Kim JH. VSTM2L is a promising therapeutic target and a prognostic soluble-biomarker in cholangiocarcinoma. BMB Rep 2024; 57:324-329. [PMID: 38649146 PMCID: PMC11289506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 04/25/2024] Open
Abstract
The aim of the present study is to provide a rational background for silencing the V-set and transmembrane domain containing 2 like (VSTM2L) in consort with recognising soluble VSTM2L against cholangiocarcinoma. A therapeutic target against cholangiocarcinoma was selected using iterative patient partitioning (IPP) calculation, and it was verified by in vitro and in silico analyses. VSTM2L was selected as a potential therapeutic target against cholangiocarcinoma. Silencing the VSTM2L expression significantly attenuated the viability and survival of cholangiocarcinoma cells through blockade of the intracellular signalling pathway. In silico analysis showed that VSTM2L affected the positive regulation of cell growth in cholangiocarcinoma. Liptak's z value revealed that the expression of VSTM2L worsened the prognosis of cholangiocarcinoma patients. In addition, soluble VSTM2L was significantly detected in the whole blood of cholangiocarcinoma patients compared with that of healthy donors. Our report reveals that VSTM2L might be the potential therapeutic target and a soluble prognostic biomarker against cholangiocarcinoma. [BMB Reports 2024; 57(7): 324-329].
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, Jeju National University, Jeju 63243, Korea, Jeju 63243, Korea
| | - Woogwang Sim
- Department of Anatomy, University of California San Francisco, CA 94143, USA, Jeju 63243, Korea
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Jae-Hoon Kim
- Department of Applied Life Science, Jeju National University, Jeju 63243, Korea, Jeju 63243, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
3
|
Shi M, Wei Y, Guo R, Luo F. Integrated Analysis Identified TGFBI as a Biomarker of Disease Severity and Prognosis Correlated with Immune Infiltrates in Patients with Sepsis. J Inflamm Res 2024; 17:2285-2298. [PMID: 38645878 PMCID: PMC11027929 DOI: 10.2147/jir.s456132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Background Sepsis is a major contributor to morbidity and mortality among hospitalized patients. This study aims to identify markers associated with the severity and prognosis of sepsis, providing new approaches for its management and treatment. Methods Data were mined from the Gene Expression Omnibus (GEO) databases and were analyzed by multiple statistical methods like the Spearman correlation coefficient, Kaplan-Meier analysis, Cox regression analysis, and functional enrichment analysis. Candidate indicator' associations with immune infiltration and roles in sepsis development were evaluated. Additionally, we employed techniques such as flow cytometry and neutral red staining to evaluate its impact on macrophage functions like polarization and phagocytosis. Results Twenty-eight genes were identified as being closely linked to the severity of sepsis, among which transforming growth factor beta induced (TGFBI) emerged as a distinct marker for predicting clinical outcomes. Notably, reductions in TGFBI expression during sepsis correlate with poor prognosis and rapid disease progression. Elevated expression of TGFBI has been observed to mitigate abnormalities in sepsis-related immune cell infiltration that are critical to the pathogenesis and prognosis of the disease, including but not limited to type 17 T helper cells and activated CD8 T cells. Moreover, the protein-protein interaction network revealed the top ten genes that interact with TGFBI, showing significant involvement in the regulation of the actin cytoskeleton, extracellular matrix-receptor interactions, and phagosomes. These are pivotal elements in the formation of phagocytic cups by macrophages, squaring the findings of the Human Protein Atlas. Additionally, we discovered that TGFBI expression was significantly higher in M2-like macrophages, and its upregulation was found to inhibit lipopolysaccharide-induced polarization and phagocytosis in M1-like macrophages, thereby playing a role in preventing the onset of inflammation. Conclusion TGFBI warrants additional exploration as a promising biomarker for assessing illness severity and prognosis in patients with sepsis, considering its significant association with immunological and inflammatory responses in this condition.
Collapse
Affiliation(s)
- Mingjie Shi
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Runmin Guo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Fei Luo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| |
Collapse
|
4
|
Lee J, Lee J, Sim W, Kim JH. Soluble TGFBI aggravates the malignancy of cholangiocarcinoma through activation of the ITGB1 dependent PPARγ signalling pathway. Cell Oncol (Dordr) 2022; 45:275-291. [PMID: 35357655 DOI: 10.1007/s13402-022-00668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is a devastating cancer with a poor prognosis. Previous reports have presented conflicting results on the role of transforming growth factor-β-induced protein (TGFBI) in malignant cancers. Currently, our understanding of the role of TGFBI in cholangiocarcinoma is ambiguous. The aim of the present study was to investigate the role of TGFBI in human cholangiocarcinoma. METHODS Iterative patient partitioning (IPP) scoring and consecutive elimination methods were used to select prognostic biomarkers. mRNA and protein expression levels were determined using Gene Expression Omnibus (GEO), Western blot and ELISA analyses. Biological activities of selected biomarkers were examined using both in vitro and in vivo assays. Prognostic values were assessed using Kaplan-Meier and Liptak's z score analyses. RESULTS TGFBI was selected as a candidate cholangiocarcinoma biomarker. GEO database analysis revealed significantly higher TGFBI mRNA expression levels in cholangiocarcinoma tissues compared to matched normal tissues. TGFBI protein was specifically detected in a soluble form in vitro and in vivo. TGFBI silencing evoked significant anti-cancer effects in vitro. Soluble TGFBI treatment aggravated the malignancy of cholangiocarcinoma cells both in vitro and in vivo through activation of the integrin beta-1 (ITGB1) dependent PPARγ signalling pathway. High TGFBI expression was associated with a poor prognosis in patients with cholangiocarcinoma. CONCLUSIONS Our data suggest that TGFBI may serve as a promising prognostic biomarker and therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Woogwang Sim
- Department of Anatomy, University of California,, San Francisco, CA, 94143, USA
| | - Jae-Hoon Kim
- Department of Biotechnology, College of Applied Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju-si, Jeju-do, 690-756, Republic of Korea.
| |
Collapse
|
5
|
Chen Y, Zhao H, Feng Y, Ye Q, Hu J, Guo Y, Feng Y. Pan-Cancer Analysis of the Associations of TGFBI Expression With Prognosis and Immune Characteristics. Front Mol Biosci 2021; 8:745649. [PMID: 34671645 PMCID: PMC8521171 DOI: 10.3389/fmolb.2021.745649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023] Open
Abstract
Transforming growth factor-beta-induced (TGFBI) protein has important roles in tumor growth, metastasis, and immunity. However, there is currently no pan-cancer evidence regarding TGFBI. In this study, we conducted a pan-cancer analysis of TGFBI mRNA and protein expression and prognoses of various cancer types using public databases. We also investigated the associations of TGFBI expression with tumor microenvironment (TME) components, immune cell infiltration, tumor mutational burden (TMB), and microsatellite instability (MSI), along with the TGFBI genetic alteration types. The results showed that TGFBI expression varied among different cancer types, and it was positively or negatively related to prognosis in various cancers. TGFBI expression was also significantly correlated with TME components, TMB, MSI, immune cell infiltration, and immunoinhibitory and immunostimulatory gene subsets. These findings indicate that TGFBI participates in various immune responses and it may function as a prognostic marker in various cancers. The findings may be useful for developing immunotherapies that target TGFBI.
Collapse
Affiliation(s)
- Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yunzhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Kim HJ, Ahn D, Park TI, Jeong JY. TGFBI Expression Predicts the Survival of Patients With Oropharyngeal Squamous Cell Carcinoma. In Vivo 2021; 34:3005-3012. [PMID: 32871844 DOI: 10.21873/invivo.12132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM This study was conducted to investigate transforming growth factor beta-induced protein (TGFBI) expression and analyze the clinical and prognostic significance of TGFBI in oropharyngeal squamous cell carcinoma (OPSCC). PATIENTS AND METHODS We evaluated TGFBI expression by immunohistochemistry in 94 patients with OPSCC. For comprehensive analysis, TGFBI expression was subdivided into tumor cell score (T), stroma score (S), and the sum of two scores (TS) calculated using H-score. Clinicopathological features and survival outcomes were compared between groups of high expression and low expression of TGFBI in each area. RESULTS Overall, 12 patients (12.8%) showed high T score, and 41 patients (43.6%) revealed high S score. Although T score showed no significant difference both in overall survival (OS) (p=0.080) and recurrence free survival (RFS) (p=0.272), high S score patients had significantly worse OS (p=0.003) and worse RFS (p=0.043). High TS score also showed significant association with worse OS (p=0.011) and worse RFS (p=0.021). High S score was an independent prognostic factor predicting shorter OS (HR=6.352, 95%CI=1.206-40.050, p=0.029) and RFS (HR=18.843, 95%CI=1.030-344.799, p=0.048) in the multivariate analysis. CONCLUSION High S score of TGFBI was a significant predictor of poor prognosis in OPSCC. TGFBI could be a useful new predictive and prognostic biomarker in OPSCC.
Collapse
Affiliation(s)
- Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dongbin Ahn
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-In Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea .,Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| |
Collapse
|
7
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
8
|
Wang Y, Wei Q, Chen Y, Long S, Yao Y, Fu K. Identification of Hub Genes Associated With Sensitivity of 5-Fluorouracil Based Chemotherapy for Colorectal Cancer by Integrated Bioinformatics Analysis. Front Oncol 2021; 11:604315. [PMID: 33912443 PMCID: PMC8071956 DOI: 10.3389/fonc.2021.604315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. 5-fluorouracil (5-FU) has been used for the standard first-line treatment for CRC patients for several decades. Although 5-FU based chemotherapy has increased overall survival (OS) of CRC patients, the resistance of CRC to 5-FU based chemotherapy is the principal cause for treatment failure. Thus, identifying novel biomarkers to predict response to 5-FU based chemotherapy is urgently needed. In the present study, the gene expression profile of GSE3964 from the Gene Expression Omnibus database was used to explore the potential genes related to intrinsic resistance to 5-FU. A gene module containing 81 genes was found to have the highest correlation with chemotherapy response using Weighted Gene Co-expression Network Analysis (WGCNA). Then a protein-protein interaction (PPI) network was constructed and ten hub genes (TGFBI, NID, LEPREL2, COL11A1, CYR61, PCOLCE, IGFBP7, COL4A2, CSPG2, and VTN) were identified using the CytoHubba plugin of Cytoscape. Seven of these hub genes showed significant differences in expression between chemotherapy-sensitive and chemotherapy-resistant samples. The prognostic value of these seven genes was evaluated using TCGA COAD (Colorectal Adenocarcinoma) data. The results showed that TGFBI was highly expressed in chemotherapy-sensitive patients, and patients with high TGFBI expression have better survival.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qunhui Wei
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shichao Long
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Ruiz M, Toupet K, Maumus M, Rozier P, Jorgensen C, Noël D. TGFBI secreted by mesenchymal stromal cells ameliorates osteoarthritis and is detected in extracellular vesicles. Biomaterials 2020; 226:119544. [DOI: 10.1016/j.biomaterials.2019.119544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
|
10
|
Marini KD, Croucher DR, McCloy RA, Vaghjiani V, Gonzalez-Rajal A, Hastings JF, Chin V, Szczepny A, Kostyrko K, Marquez C, Jayasekara WSN, Alamgeer M, Boolell V, Han JZR, Waugh T, Lee HC, Oakes SR, Kumar B, Harrison CA, Hedger MP, Lorensuhewa N, Kita B, Barrow R, Robinson BW, de Kretser DM, Wu J, Ganju V, Sweet-Cordero EA, Burgess A, Martelotto LG, Rossello FJ, Cain JE, Watkins DN. Inhibition of activin signaling in lung adenocarcinoma increases the therapeutic index of platinum chemotherapy. Sci Transl Med 2019; 10:10/451/eaat3504. [PMID: 30045976 DOI: 10.1126/scitranslmed.aat3504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
Resistance to platinum chemotherapy is a long-standing problem in the management of lung adenocarcinoma. Using a whole-genome synthetic lethal RNA interference screen, we identified activin signaling as a critical mediator of innate platinum resistance. The transforming growth factor-β (TGFβ) superfamily ligands activin A and growth differentiation factor 11 (GDF11) mediated resistance via their cognate receptors through TGFβ-activated kinase 1 (TAK1), rather than through the SMAD family of transcription factors. Inhibition of activin receptor signaling or blockade of activin A and GDF11 by the endogenous protein follistatin overcame this resistance. Consistent with the role of activin signaling in acute renal injury, both therapeutic interventions attenuated acute cisplatin-induced nephrotoxicity, its major dose-limiting side effect. This cancer-specific enhancement of platinum-induced cell death has the potential to dramatically improve the safety and efficacy of chemotherapy in lung cancer patients.
Collapse
Affiliation(s)
- Kieren D Marini
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, New South Wales 2010, Australia.,School of Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Rachael A McCloy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Vijesh Vaghjiani
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Alvaro Gonzalez-Rajal
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Venessa Chin
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,Department of Medical Oncology, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Kaja Kostyrko
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cesar Marquez
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Muhammad Alamgeer
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Department of Medical Oncology, Monash Medical Centre, East Bentleigh, Victoria 3165, Australia
| | - Vishal Boolell
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Medical Oncology, Monash Medical Centre, East Bentleigh, Victoria 3165, Australia
| | - Jeremy Z R Han
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Todd Waugh
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Hong Ching Lee
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Samantha R Oakes
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Beena Kumar
- Department of Pathology, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Mark P Hedger
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | - Badia Kita
- Paranta Biosciences Limited, Melbourne, Victoria 3004, Australia
| | - Ross Barrow
- Paranta Biosciences Limited, Melbourne, Victoria 3004, Australia
| | - Bruce W Robinson
- School of Medicine and Pharmacology, Queen Elizabeth II Medical Centre Unit, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - David M de Kretser
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Paranta Biosciences Limited, Melbourne, Victoria 3004, Australia
| | - Jianmin Wu
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, New South Wales 2010, Australia.,Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China.,Center for Cancer Bioinformatics, Peking University Cancer Hospital and Institute, Hai-Dian District, Beijing 100142, China
| | - Vinod Ganju
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | - Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,ANZAC Research Institute, Concord, New South Wales 2139, Australia
| | - Luciano G Martelotto
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Center for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Clayton, Victoria 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | - D Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia. .,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, New South Wales 2010, Australia.,Department of Thoracic Medicine, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
11
|
Palomeras S, Diaz-Lagares Á, Viñas G, Setien F, Ferreira HJ, Oliveras G, Crujeiras AB, Hernández A, Lum DH, Welm AL, Esteller M, Puig T. Epigenetic silencing of TGFBI confers resistance to trastuzumab in human breast cancer. Breast Cancer Res 2019; 21:79. [PMID: 31277676 PMCID: PMC6612099 DOI: 10.1186/s13058-019-1160-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background Acquired resistance to trastuzumab is a major clinical problem in the treatment of HER2-positive (HER2+) breast cancer patients. The selection of trastuzumab-resistant patients is a great challenge of precision oncology. The aim of this study was to identify novel epigenetic biomarkers associated to trastuzumab resistance in HER2+ BC patients. Methods We performed a genome-wide DNA methylation (450K array) and a transcriptomic analysis (RNA-Seq) comparing trastuzumab-sensitive (SK) and trastuzumab-resistant (SKTR) HER2+ human breast cancer cell models. The methylation and expression levels of candidate genes were validated by bisulfite pyrosequencing and qRT-PCR, respectively. Functional assays were conducted in the SK and SKTR models by gene silencing and overexpression. Methylation analysis in 24 HER2+ human BC samples with complete response or non-response to trastuzumab-based treatment was conducted by bisulfite pyrosequencing. Results Epigenomic and transcriptomic analysis revealed the consistent hypermethylation and downregulation of TGFBI, CXCL2, and SLC38A1 genes in association with trastuzumab resistance. The DNA methylation and expression levels of these genes were validated in both sensitive and resistant models analyzed. Of the genes, TGFBI presented the highest hypermethylation-associated silencing both at the transcriptional and protein level. Ectopic expression of TGFBI in the SKTR model suggest an increased sensitivity to trastuzumab treatment. In primary tumors, TGFBI hypermethylation was significantly associated with trastuzumab resistance in HER2+ breast cancer patients. Conclusions Our results suggest for the first time an association between the epigenetic silencing of TGFBI by DNA methylation and trastuzumab resistance in HER2+ cell models. These results provide the basis for further clinical studies to validate the hypermethylation of TGFBI promoter as a biomarker of trastuzumab resistance in HER2+ breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s13058-019-1160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sònia Palomeras
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain
| | - Ángel Diaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain.,Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago(CHUS/SERGAS), CIBERONC, Santiago de Compostela, Spain
| | - Gemma Viñas
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.,Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Girona Biomedical Research Institute (IDIBGI), E-17071, Girona, Catalonia, Spain
| | - Fernando Setien
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Glòria Oliveras
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.,Pathology Department, Dr. Josep Trueta Hospital and Catalan Institute of Health (ICS), E-17071, Girona, Catalonia, Spain
| | - Ana B Crujeiras
- Laboratory of Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela, Spain
| | - Alejandro Hernández
- Medical Oncology Department, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - David H Lum
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Catalonia, Spain. .,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain. .,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain. .,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain. .,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
| | - Teresa Puig
- New Therapeutics Targets Lab (TargetsLab), Department of Medical Sciences, University of Girona, E-17071, Girona, Catalonia, Spain.
| |
Collapse
|
12
|
Song J, Tian J, Zhang L, Qu X, Qian W, Zheng B, Zhang L, Zhao J, Niu M, Zhou M, Cui L, Liu Y, Zhao M. Development and validation of a prognostic index for efficacy evaluation and prognosis of first-line chemotherapy in stage III-IV lung squamous cell carcinoma. Eur Radiol 2019; 29:2388-2398. [PMID: 30643941 PMCID: PMC6443600 DOI: 10.1007/s00330-018-5912-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/13/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To establish a pre-therapy prognostic index model (PIM) of the first-line chemotherapy aiming to achieve accurate prediction of time to progression (TTP) and overall survival among the patients diagnosed with locally advanced (stage III) or distant metastasis (stage IV) lung squamous cell carcinoma (LSCC). METHODS Ninety-six LSCC patients treated with first-line chemotherapy were retrospectively enrolled to build the model. Fourteen epidermal growth factor receptor (EGFR)-mutant LSCC patients treated with first-line EGFR-tyrosine kinase inhibitor (TKI) therapy were enrolled for validation dataset. From CT images, 56,000 phenotype features were initially computed. PIM was constructed by integrating a CT phenotype signature selected by the least absolute shrinkage and selection operator and the significant blood-based biomarkers selected by multivariate Cox regression. PIM was then compared with other four prognostic models constructed by the CT phenotype signature, clinical factors, post-therapy tumor response, and Glasgow Prognostic Score. RESULTS The signature includes eight optimal features extracted from co-occurrence, run length, and Gabor features. By using PIM, chemotherapy efficacy of patients categorized in the low-risk, intermediate-risk, and high-risk progression subgroups (median TTP = 7.2 months, 3.4 months, and 1.8 months, respectively) was significantly different (p < 0.0001, log-rank test). Chemotherapy efficacy of the low-risk progression subgroup was comparable with EGFR-TKI therapy (p = 0.835, log-rank test). Prognostic prediction of chemotherapy efficacy by PIM was significantly higher than other models (p < 0.05, z test). CONCLUSION The study demonstrated that the PIM yielded significantly higher performance to identify individual stage III-IV LSCC patients who can potentially benefit most from first-line chemotherapy, and predict the risk of failure from chemotherapy for individual patients. KEY POINTS • TTP and OS of first-line chemotherapy in individual stage III-IV LSCC patients could be predicted by pre-therapy blood-based biomarkers and image-based signatures. • Risk status of pre-therapy indicators affected the efficacy of first-line chemotherapy in stage III-IV LSCC patients. • Those stage III-IV LSCC patients who were able to achieve similar efficacy to EGFR-TKI therapy through chemotherapy were identified.
Collapse
Affiliation(s)
- Jiangdian Song
- School of Medical Informatics, China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lina Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Wei Qian
- College of Engineering, University of Texas, El Paso, TX, USA
- Sino-Dutch Biomedical Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Bin Zheng
- Sino-Dutch Biomedical Engineering School, Northeastern University, Shenyang, Liaoning, China
- Medicine and Biological Information Engineering, University of Oklahoma, Norman, OK, USA
| | - Lina Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Meng Niu
- Department interventional therapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mu Zhou
- Artificial Intelligence in Medicine and Imaging (AIMI) Center, Department of Radiology, Stanford University, San Francisco, CA, USA
| | - Lei Cui
- School of Medical Informatics, China Medical University, Shenyang, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
13
|
Seok Y, Lee WK, Park JY, Kim DS. TGFBI Promoter Methylation is Associated with Poor Prognosis in Lung Adenocarcinoma Patients. Mol Cells 2019; 42:161-165. [PMID: 30726660 PMCID: PMC6399005 DOI: 10.14348/molcells.2018.0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/01/2018] [Accepted: 12/10/2018] [Indexed: 11/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide and has high rates of metastasis. Transforming growth factor beta-inducible protein (TGFBI) is an extracellular matrix component involved in tumour growth and metastasis. However, the exact role of TGFBI in NSCLC remains controversial. Gene silencing via DNA methylation of the promoter region is common in lung tumorigenesis and could thus be used for the development of molecular biomarkers. We analysed the methylation status of the TGFBI promoter in 138 NSCLC specimens via methylation-specific PCR and evaluated the correlation between TGFBI methylation and patient survival. TGFBI promoter methylation was detected in 25 (18.1%) of the tumours and was demonstrated to be associated with gene silencing. We observed no statistical correlation between TGFBI methylation and clinicopathological characteristics. Univariate and multivariate analyses showed that TGFBI methylation is significantly associated with poor survival outcomes in adenocarcinoma cases (adjusted hazard ratio = 2.88, 95% confidence interval = 1.19-6.99, P = 0.019), but not in squamous cell cases. Our findings suggest that methylation in the TGFBI promoter may be associated with pathogenesis of NSCLC and can be used as a predictive marker for lung adenocarcinoma prognosis. Further large-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Yangki Seok
- Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu 702-422,
Korea
| | - Won Kee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu 702-422,
Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 702-422,
Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 702-422,
Korea
| |
Collapse
|
14
|
Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma. J Neurooncol 2018; 141:315-325. [PMID: 30460633 DOI: 10.1007/s11060-018-03051-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Peritumoural brain zone (PT) of glioblastoma (GBM) is the area where tumour recurrence is often observed. We aimed to identify differentially regulated genes between tumour core (TC) and PT to understand the underlying molecular characteristics of infiltrating tumour cells in PT. METHODS 17 each histologically characterised TC and PT tissues of GBM along with eight control tissues were subjected to cDNA Microarray. PT tissues contained 25-30% infiltrating tumour cells. Data was analysed using R Bioconductor software. Shortlisted genes were validated using qRT-PCR. Expression of one selected candidate gene, PDZ Binding Kinase (PBK) was correlated with patient survival, tumour recurrence and functionally characterized in vitro using gene knock-down approach. RESULTS Unsupervised hierarchical clustering showed that TC and PT have distinct gene expression profiles compared to controls. Further, comparing TC with PT, we observed a significant overlap in gene expression profile in both, despite PT having fewer infiltrating tumour cells. qRT-PCR for 13 selected genes validated the microarray data. Expression of PBK was higher in PT as compared to TC and recurrent when compared to newly diagnosed GBM tumours. PBK knock-down showed a significant reduction in cell proliferation, migration and invasion with increase in sensitivity to radiation and Temozolomide treatment. CONCLUSIONS We show that several genes of TC are expressed even in PT contributing to the vulnerability of PT for tumour recurrence. PBK is identified as a novel gene up-regulated in PT of GBM with a strong role in conferring aggressiveness, including radio-chemoresistance, thus contributing to recurrence in GBM tumours.
Collapse
|
15
|
Bissey PA, Law JH, Bruce JP, Shi W, Renoult A, Chua MLK, Yip KW, Liu FF. Dysregulation of the MiR-449b target TGFBI alters the TGFβ pathway to induce cisplatin resistance in nasopharyngeal carcinoma. Oncogenesis 2018; 7:40. [PMID: 29795279 PMCID: PMC5966388 DOI: 10.1038/s41389-018-0050-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/26/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
Despite the improvement in locoregional control of nasopharyngeal carcinoma (NPC), distant metastasis (DM), and chemoresistance persist as major causes of mortality. This study identified a novel role for miR-449b, an overexpressed gene in a validated four-miRNA signature for NPC DM, leading to chemoresistance via the direct targeting of transforming growth factor beta-induced (TGFBI). In vitro shRNA-mediated downregulation of TGFBI induced phosphorylation of PTEN and AKT, increasing cisplatin resistance. Conversely, the overexpression of TGFBI sensitized the NPC cells to cisplatin. In NPC patients treated with concurrent chemoradiotherapy (CRT), the overall survival (OS) was significantly inversely correlated with miR-449b, and directly correlated with both TGFBI mRNA and protein expression, as assessed by RNA sequencing and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation demonstrated that TGFBI competes with pro-TGFβ1 for integrin receptor binding. Decreased TGFBI led to increased pro-TGFβ1 activation and TGFβ1 canonical/noncanonical pathway-induced cisplatin resistance. Thus, overexpression of miR-449b decreases TGFBI, thereby altering the balance between TGFBI and pro-TGFβ1, revealing a novel mechanism of chemoresistance in NPC.
Collapse
Affiliation(s)
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aline Renoult
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Melvin L K Chua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.,Division of Radiation Oncology, National Cancer Centre, Singapore, Singapore.,Duke-NUS Graduate School, Singapore, Singapore
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Villalba M, Diaz-Lagares A, Redrado M, de Aberasturi AL, Segura V, Bodegas ME, Pajares MJ, Pio R, Freire J, Gomez-Roman J, Montuenga LM, Esteller M, Sandoval J, Calvo A. Epigenetic alterations leading to TMPRSS4 promoter hypomethylation and protein overexpression predict poor prognosis in squamous lung cancer patients. Oncotarget 2017; 7:22752-69. [PMID: 26989022 PMCID: PMC5008398 DOI: 10.18632/oncotarget.8045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, which highlights the need of innovative therapeutic options. Although targeted therapies can be successfully used in a subset of patients with lung adenocarcinomas (ADC), they are not appropriate for patients with squamous cell carcinomas (SCC). In addition, there is an unmet need for the identification of prognostic biomarkers that can select patients at risk of relapse in early stages. Here, we have used several cohorts of NSCLC patients to analyze the prognostic value of both protein expression and DNA promoter methylation status of the prometastatic serine protease TMPRSS4. Moreover, expression and promoter methylation was evaluated in a panel of 46 lung cancer cell lines. We have demonstrated that a high TMPRSS4 expression is an independent prognostic factor in SCC. Similarly, aberrant hypomethylation in tumors, which correlates with high TMPRSS4 expression, is an independent prognostic predictor in SCC. The inverse correlation between expression and methylation status was also observed in cell lines. In vitro studies showed that treatment of cells lacking TMPRSS4 expression with a demethylating agent significantly increased TMPRSS4 levels. In conclusion, TMPRSS4 is a novel independent prognostic biomarker regulated by epigenetic changes in SCC and a potential therapeutic target in this tumor type, where targeted therapy is still underdeveloped.
Collapse
Affiliation(s)
- Maria Villalba
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain.,IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Miriam Redrado
- IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Arrate L de Aberasturi
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain.,IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Victor Segura
- IDISNA and Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Maria Elena Bodegas
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain
| | - Maria J Pajares
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain.,IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Ruben Pio
- IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Navarra, Spain
| | - Javier Freire
- Department of Pathology, University Hospital Marques de Valdecilla, IDIVAL, Santander, Spain
| | - Javier Gomez-Roman
- Department of Pathology, University Hospital Marques de Valdecilla, IDIVAL, Santander, Spain
| | - Luis M Montuenga
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain.,IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, Spain
| | - Juan Sandoval
- Department of Personalized Medicine, Epigenomics Unit, Medical Research Institute La Fe, Valencia, Spain
| | - Alfonso Calvo
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain.,IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
17
|
TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS One 2017; 12:e0181945. [PMID: 28750100 PMCID: PMC5531541 DOI: 10.1371/journal.pone.0181945] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Extracellular matrix production and accumulation stabilize the heart under normal conditions as well as form a protective scar after myocardial infarction injury, although excessive extracellular matrix accumulation with long-standing heart disease is pathological. In the current study we investigate the role of the matricellular protein, transforming growth factor beta-induced (TGFBI), which is induced in various forms of heart disease. Additionally, we sought to understand whether TGFBI is functionally redundant to its closely related family member periostin, which is also induced in the diseased heart. Surgical models of myocardial infarction and cardiac pressure overload were used in mice with genetic loss of Postn and/or Tgfbi to examine the roles of these genes during the fibrotic response. Additionally, cardiac-specific TGFBI transgenic mice were generated and analyzed. We observed that deletion of Tgfbi did not alter cardiac disease after myocardial infarction in contrast to greater ventricular wall rupture in Postn gene-deleted mice. Moreover, Tgfbi and Postn double gene-deleted mice showed a similar post-myocardial infarction disease phenotype as Postn-deleted mice. Over-expression of TGFBI in the hearts of mice had a similar effect as previously shown in mice with periostin over-expression. Thus, TGFBI and periostin act similarly in the heart in affecting fibrosis and disease responsiveness, although TGFBI is not seemingly necessary in the heart after myocardial infarction injury and is fully compensated by the more prominently expressed effector periostin.
Collapse
|
18
|
Kriegsmann M, Longuespée R, Wandernoth P, Mohanu C, Lisenko K, Weichert W, Warth A, Dienemann H, De Pauw E, Katzenberger T, Aust D, Baretton G, Kriegsmann J, Casadonte R. Typing of colon and lung adenocarcinoma by high throughput imaging mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:858-864. [PMID: 27939606 DOI: 10.1016/j.bbapap.2016.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
In advanced tumor stages, diagnosis is frequently made from metastatic tumor tissue. In some cases, the identification of the tumor of origin may be difficult by histology alone. In this setting, immunohistochemical and molecular biological methods are often required. In a subset of tumors definite diagnosis cannot be achieved. Thus, additional new diagnostic methods are required for precise tumor subtyping. Mass spectrometric methods are of special interest for the discrimination of different tumor types. We investigated whether it is possible to discern adenocarcinomas of colon and lung using high-throughput imaging mass spectrometry on formalin-fixed paraffin-embedded tissue microarrays. 101 primary adenocarcinoma of the colon and 91 primary adenocarcinoma of the lung were used to train a Linear Discriminant Analysis model. Results were validated on an independent set of 116 colonic and 75 lung adenocarcinomas. In the validation cohort 109 of 116 patients with colonic and 67 of 75 patients with lung adenocarcinomas were correctly classified. The ability to define proteomic profiles capable to discern different tumor types promises a valuable tool in cancer diagnostics and might complement current approaches. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | - Katharina Lisenko
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| | | | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Germany.
| | - Hendrik Dienemann
- Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, Heidelberg, Germany.
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liège, Belgium.
| | | | - Daniela Aust
- Institute of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Gustavo Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Joerg Kriegsmann
- Proteopath GmbH, Trier, Germany; Center for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany.
| | | |
Collapse
|
19
|
Comparative proteome analysis across non-small cell lung cancer cell lines. J Proteomics 2015; 130:1-10. [PMID: 26361996 DOI: 10.1016/j.jprot.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) cell lines are widely used model systems to study molecular aspects of lung cancer. Comparative and in-depth proteome expression data across many NSCLC cell lines has not been generated yet, but would be of utility for the investigation of candidate targets and markers in oncogenesis. We employed a SILAC reference approach to perform replicate proteome quantifications across 23 distinct NSCLC cell lines. On average, close to 4000 distinct proteins were identified and quantified per cell line. These included many known targets and diagnostic markers, indicating that our proteome expression data represents a useful resource for NSCLC pre-clinical research. To assess proteome diversity within the NSCLC cell line panel, we performed hierarchical clustering and principal component analysis of proteome expression data. Our results indicate that general proteome diversity among NSCLC cell lines supersedes potential effects common to K-Ras or epidermal growth factor receptor (EGFR) oncoprotein expression. However, we observed partial segregation of EGFR or KRAS mutant cell lines for certain principal components, which reflected biological differences according to gene ontology enrichment analyses. Moreover, statistical analysis revealed several proteins that were significantly overexpressed in KRAS or EGFR mutant cell lines.
Collapse
|
20
|
Urso L, Calabrese F, Favaretto A, Conte P, Pasello G. Critical review about MDM2 in cancer: Possible role in malignant mesothelioma and implications for treatment. Crit Rev Oncol Hematol 2015; 97:220-30. [PMID: 26358421 DOI: 10.1016/j.critrevonc.2015.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 regulates genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis and senescence. p53 is mutated in about 50% of the human cancers, while in tumors with wild-type p53 gene, the protein function may be lost because of overexpression of Murine Double Minute 2 (MDM2). MDM2 targets p53 for ubiquitylation and proteasomal degradation. p53 reactivation through MDM2 inhibitors seems to be a promising strategy to sensitize p53 wild-type cancer cells to apoptosis. Moreover, additional p53-independent molecular functions of MDM2, such as neoangiogenesis promotion, have been suggested. Thus, MDM2 might be a target for anticancer treatment because of its antiapoptotic and proangiogenetic role. Malignant pleural mesothelioma (MPM) is an aggressive asbestos-related tumor where wild-type p53 might be present. The present review gives a complete landscape about the role of MDM2 in cancer pathogenesis, prognosis and treatment, with particular focus on Malignant Pleural Mesothelioma.
Collapse
Affiliation(s)
- Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy
| | - Adolfo Favaretto
- Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - PierFranco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy; Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy.
| |
Collapse
|
21
|
Lai X, Chen S. Identification of novel biomarker candidates for immunohistochemical diagnosis to distinguish low-grade chondrosarcoma from enchondroma. Proteomics 2015; 15:2358-68. [DOI: 10.1002/pmic.201400528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Xianyin Lai
- Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis IN USA
- Department of Cellular & Integrative Physiology; Indiana University School of Medicine; Indianapolis IN USA
| | - Shaoxiong Chen
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis IN USA
| |
Collapse
|
22
|
Zhu LC, Gao J, Hu ZH, Schwab CL, Zhuang HY, Tan MZ, Yan LM, Liu JJ, Zhang DY, Lin B. Membranous expressions of Lewis y and CAM-DR-related markers are independent factors of chemotherapy resistance and poor prognosis in epithelial ovarian cancer. Am J Cancer Res 2015; 5:830-843. [PMID: 25973320 PMCID: PMC4396026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Chemotherapy resistance is a common problem faced by patients diagnosed with epithelial ovarian cancer (EOC). Currently there are no specific or sensitive clinical biomarkers that maybe implemented to identify chemotherapy resistance and give insight to prognosis. The aim of this study is to investigate the roles of Lewis y antigen and the markers associated with cell-adhesion-mediated drug resistance (CAM-DR) in patients with EOC. METHODS 92 EOC patients who were treated with systemic chemotherapy after cytoreductive surgery were included in this analysis. Patients were divided into two groups, chemotherapy sensitive (n = 56) and resistant (n = 36). Immunohistochemical (IHC) staining for Lewis y and CAM-DR-related cell surface proteins including CD44, CD147, HE4 (Human epididymis protein 4), integrin α5, β1, αv and β3 were conducted on tissues collected during primary debulking surgery. Using multivariate logistic regressions, IHC results were compared to clinical variables and chemotherapy resistance to determine possible correlations. The relationships between IHC expression and progression-free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier method and Cox regression analysis. RESULTS Membranous expression of Lewis y and all these CAM-DR-related markers were significantly higher in the resistant group than that of the sensitive group (all P < 0.01). Multivariate regression analysis revealed that high expression of Lewis y, CD44, HE4, integrin α5 and β1 as well as advanced FIGO stage were independent risk factors for chemotherapy resistance (all P < 0.05). Advanced FIGO stage, lymph node metastasis and high expression of Lewis y, CD44, CD147, HE4, integrin α5, β1 were associated with a shorter PFS and OS (all P < 0.05). Moreover, multivariate COX analysis demonstrated that the following variates were independent predictors of worse PFS and OS survival: late FIGO stage (P = 0.013, 0.049), high expressions of Lewis y (P = 0.010, 0.036), HE4 (P = 0.006, 0.013) and integrin β1 (PFS, P = 0.003), integrin α5 (OS, P = 0.019). CONCLUSION Membranous expression of Lewis y and CAM-DR-related markers including CD44, CD147, HE4, integrin α5, β1, αv and β3 are associated with the development of chemotherapy resistance. High expression of Lewis y antigen and CAM-DR-related markers including CD44, CD147, HE4, integrin α5 and β1 are independent markers for PFS and OS, in which Lewis y and HE4 are the most significant.
Collapse
Affiliation(s)
- Lian-Cheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zhen-Hua Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Carlton L Schwab
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine333 Cedar Street, PO Box 208063, New Haven, Connecticut 06520-8063, USA
| | - Hui-Yu Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Ming-Zi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Li-Mei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Juan-Juan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Dan-Ye Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| |
Collapse
|
23
|
Chen Y, Xing P, Chen Y, Zou L, Zhang Y, Li F, Lu X. High p-Smad2 expression in stromal fibroblasts predicts poor survival in patients with clinical stage I to IIIA non-small cell lung cancer. World J Surg Oncol 2014; 12:328. [PMID: 25373709 PMCID: PMC4230723 DOI: 10.1186/1477-7819-12-328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that the TGFβ/Smad signaling pathway plays a prominent role in tumor initiation, progression, and metastasis. Therefore, we investigate the expression of p-Smad2 in surgical resection specimens from non-small cell lung cancer, and evaluate the prognostic significance of p-Smad2 expression in stromal fibroblasts and cancer cells for patients with clinical stage I to IIIA non-small cell lung cancer. METHODS The immunohistochemical expression of p-Smad2 was evaluated in 78 formalin-fixed paraffin-embedded surgical resection specimens from clinical stage I to IIIA non-small cell lung cancer. Correlations between p-Smad2 expression and clinicopathologic characteristics were determined by Chi-square test. The prognostic significance of p-Smad2 expression in stromal fibroblasts and cancer cells with regard to overall survival was determined by Kaplan-Meier. RESULTS There were 38.5% (30/78) and 92.3% (72/78) patients with high p-Smad2 expression in stromal fibroblasts and cancer cells, respectively. There was a positive correlation between the p-Smad2 expression level in stromal fibroblasts and the p-Smad2 expression level in cancer cells (χ2=4.176, P=0.045). No significant correlation of p-Smad2 expression in stromal fibroblasts or cancer cells with any of clinicopathologic characteristics was found. The 3-year overall survival rates with low and high p-Smad2 expression in stromal fibroblasts were 53.7% and 37.7%, respectively (χ2=3.86, P=0.049). No significant association was found between low and high p-Smad2 expression in cancer cells with respect to overall survival, respectively (χ2=0.34, P=0.562). CONCLUSIONS The results suggested that high p-Smad2 expression in stromal fibroblasts predicted poor survival in patients with clinical stage I to IIIA non-small cell lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xueguan Lu
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, Jiangsu Province, P,R, China.
| |
Collapse
|
24
|
Chen B, Chen X, Wu X, Wang X, Wang Y, Lin TY, Kurata J, Wu J, Vonderfecht S, Sun G, Huang H, Yee JK, Hu J, Lin RJ. Disruption of microRNA-21 by TALEN leads to diminished cell transformation and increased expression of cell-environment interaction genes. Cancer Lett 2014; 356:506-516. [PMID: 25304376 DOI: 10.1016/j.canlet.2014.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/23/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
Abstract
MicroRNA-21 is dysregulated in many cancers and fibrotic diseases. Since miR-21 suppresses several tumor suppressor and anti-apoptotic genes, it is considered a cancer therapeutic target. Antisense oligonucleotides are commonly used to inhibit a miRNA; however, blocking miRNA function via an antagomir is temporary, often only achieves a partial knock-down, and may be complicated by off-target effects. Here, we used transcription activator-like effector nucleases (TALENs) to disrupt miR-21 in cancerous cells. Individual deletion clones were screened and isolated without drug selection. Sequencing and quantitative RT-PCR identified clones with no miR-21 expression. The loss of miR-21 led to subtle but global increases of mRNAs containing miR-21 target sequences. Cells without miR-21 became more sensitive to cisplatin and less transformed in culture and in mouse xenografts. In addition to the increase of PDCD4 and PTEN protein, mRNAs for COL4A1, JAG1, SERPINB5/Maspin, SMAD7, and TGFBI - all are miR-21 targets and involved in TGFβ and fibrosis regulation - were significantly upregulated in miR-21 knockout cells. Gene ontology and pathway analysis suggested that cell-environment interactions involving extracellular matrix can be an important miR-21 pathogenic mechanism. The study also demonstrates the value of using TALEN-mediated microRNA gene disruption in human pathobiological studies.
Collapse
Affiliation(s)
- Buyuan Chen
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xinji Chen
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Xiaoling Wang
- Department of Virology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Yingjia Wang
- Department of Virology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ting-Yu Lin
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jessica Kurata
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Jun Wu
- Division of Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Steven Vonderfecht
- Division of Comparative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Guihua Sun
- Department of Diabetes & Metabolic Diseases, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - He Huang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiing-Kuan Yee
- Department of Virology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ren-Jang Lin
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA.,Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| |
Collapse
|