1
|
Maximov PY, Fan P, Abderrahman B, Curpan R, Jordan VC. Estrogen Receptor Complex to Trigger or Delay Estrogen-Induced Apoptosis in Long-Term Estrogen Deprived Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:869562. [PMID: 35360069 PMCID: PMC8960923 DOI: 10.3389/fendo.2022.869562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antiestrogen therapy of breast cancer has been a "gold standard" of treatment of estrogen receptor (ER)-positive breast cancer for decades. Resistance to antiestrogen therapy may develop, however, a vulnerability in long-term estrogen deprived (LTED) breast cancer cells was discovered. LTED breast cancer cells may undergo estrogen-induced apoptosis within a week of treatment with estrogen in vitro. This phenomenon has been also validated in vivo and in the clinic. The molecular ER-mediated mechanism of action of estrogen-induced apoptosis was deciphered, however, the relationship between the structure of estrogenic ligands and the activity of the ER in LTED breast cancer cells remained a mystery until recently. In this review we provide an overview of the structure-activity relationship of various estrogens with different chemical structures and the modulation of estrogen-induced apoptosis in LTED breast cancer cells resistant to antihormone therapy. We provide analysis of evidence gathered over more than a decade of structure-activity relationship studies by our group on the role of the change in the conformation of the estrogen receptor and the biological activities of different classes of estrogens and the receptor as well in LTED breast cancer.
Collapse
Affiliation(s)
- Philipp Y. Maximov
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ping Fan
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Balkees Abderrahman
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ramona Curpan
- Institute of Chemistry, Romanian Academy, Timisoara, Romania
| | - V. Craig Jordan
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: V. Craig Jordan,
| |
Collapse
|
2
|
Khing TM, Choi WS, Kim DM, Po WW, Thein W, Shin CY, Sohn UD. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci Rep 2021; 11:23490. [PMID: 34873207 PMCID: PMC8648765 DOI: 10.1038/s41598-021-02503-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Paclitaxel is an anti-microtubule agent that has been shown to induce cell death in gastric cancer. However, the detailed mechanism of action is unclear. In this study, we reveal that the paclitaxel-induced cell death mechanism involves mitotic catastrophe, autophagy and apoptosis in AGS cells. Paclitaxel induced intrinsic apoptosis by activating caspase-3, caspase-9 and PARP. In addition, the significant increase in autophagy marker LC3B-II, together with Atg5, class III PI3K and Beclin-1, and the down-regulation of p62 following paclitaxel treatment verified that paclitaxel induced autophagy. Further experiments showed that paclitaxel caused mitotic catastrophe, cell cycle arrest of the accumulated multinucleated giant cells at the G2/M phase and induction of cell death in 24 h. Within 48 h, the arrested multinucleated cells escaped mitosis by decreasing cell division regulatory proteins and triggered cell death. Cells treated with paclitaxel for 48 h were grown in fresh medium for 24 h and checked for CDC2, CDC25C and lamin B1 protein expressions. These proteins had decreased significantly, indicating that the remaining cells became senescent. In conclusion, it is suggested that paclitaxel-induced mitotic catastrophe is an integral part of the cell death mechanism, in addition to apoptosis and autophagy, in AGS cells.
Collapse
Affiliation(s)
- Tin Myo Khing
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Won Seok Choi
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Min Kim
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wah Wah Po
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wynn Thein
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Yell Shin
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Uy Dong Sohn
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Fan P, Jordan VC. PERK, Beyond an Unfolded Protein Response Sensor in Estrogen-Induced Apoptosis in Endocrine-Resistant Breast Cancer. Mol Cancer Res 2021; 20:193-201. [PMID: 34728551 DOI: 10.1158/1541-7786.mcr-21-0702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
The discovery of 17β-estradiol (E2)-induced apoptosis has clinical relevance. Mechanistically, E2 over activates nuclear estrogen receptor α that results in stress responses. The unfolded protein response (UPR) is initiated by E2 in the endoplasmic reticulum after hours of treatment in endocrine-resistant breast cancer cells, thereby activating three UPR sensors-PRK-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6) with different functions. Specifically, PERK plays a critical role in induction of apoptosis whereas IRE1α and ATF6 are involved in the endoplasmic reticulum stress-associated degradation (ERAD) of PI3K/Akt/mTOR pathways. In addition to attenuating protein translation, PERK increases the DNA-binding activity of NF-κB and subsequent TNFα expression. In addition, PERK communicates with the mitochondria to regulate oxidative stress at mitochondria-associated endoplasmic reticulum membranes (MAM). Furthermore, PERK is a component enriched in MAMs that interacts with multifunctional MAM-tethering proteins and integrally modulates the exchange of metabolites such as lipids, reactive oxygen species (ROS), and Ca2+ at contact sites. MAMs are also critical sites for the initiation of autophagy to remove defective organelles and misfolded proteins through specific regulatory proteins. Thus, PERK conveys signals from nucleus to these membrane-structured organelles that form an interconnected network to regulate E2-induced apoptosis. Herein, we address the mechanistic progress on how PERK acts as a multifunctional molecule to commit E2 to inducing apoptosis in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
4
|
Jordan VC. Turning scientific serendipity into discoveries in breast cancer research and treatment: a tale of PhD students and a 50-year roaming tamoxifen team. Breast Cancer Res Treat 2021; 190:19-38. [PMID: 34398352 PMCID: PMC8557169 DOI: 10.1007/s10549-021-06356-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE This retrospective, about a single "mobile" laboratory in six locations on two continents, is intended as a case study in discovery for trainees and junior faculty in the medical sciences. Your knowledge of your topic is necessary to expect the unexpected. HISTORICAL METHOD In 1972, there was no tamoxifen, only ICI 46, 474, a non-steroidal anti-estrogen with little chance of clinical development. No one would ever be foolish enough to predict that the medicine, 20 years later, would achieve legendary status as the first targeted treatment for breast cancer, and millions of women would benefit from long-term adjuvant tamoxifen therapy. The secret of tamoxifen's success was a translational research strategy proposed in the mid 1970's. This strategy was to treat only patients with estrogen receptor (ER)-positive breast cancer and deploy 5 or more years of adjuvant tamoxifen therapy to prevent recurrence. Additionally, tamoxifen prevented mammary cancer in animals. Could the medicine prevent breast cancer in women? RESULTS Tamoxifen and the failed breast cancer drug raloxifene became the first selective estrogen receptor modulators (SERMs): a new drug group, discovered at the University of Wisconsin, Comprehensive Cancer Center. Serendipity can play a fundamental role in discovery, but there must be a rigorous preparation for the investigator to appreciate the possibility of a pending discovery. This article follows the unanticipated discoveries when PhD students "get the wrong answer." The secret of success of my six Tamoxifen Teams was their technical excellence to create models, to decipher mechanisms, that drove the development of new medicines. Discoveries are listed that either changed women's health or allowed an understanding of originally opaque mechanisms of action of potential therapies. These advances in women's health were supported entirely by government-sponsored peer-reviewed funding and major philanthropy from the Lynn Sage Breast Cancer Foundation, the Avon Foundation, and the Susan G. Komen Breast Cancer Foundation. The resulting lives saved or extended, families aided in a time of crisis and the injection of billions of dollars into national economies by drug development, is proof of the value of Federal or philanthropic investment into unencumbered research aimed at saving millions of lives.
Collapse
Affiliation(s)
- V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
YAYLA M, ÜN H, BİNNETOĞLU D. Neuroprotective effects of phloretin and phloridzin on paclitaxel-induced neuronal damage in primary neuron cells. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.871862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Jordan VC. Molecular Mechanism for Breast Cancer Incidence in the Women's Health Initiative. Cancer Prev Res (Phila) 2020; 13:807-816. [DOI: 10.1158/1940-6207.capr-20-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022]
|
7
|
Lin L, Wang Y, Xu L, Liu J, Zhu W, Mao S. Microbiome-host co-oscillation patterns in remodeling of colonic homeostasis during adaptation to a high-grain diet in a sheep model. Anim Microbiome 2020; 2:22. [PMID: 33499965 PMCID: PMC7807687 DOI: 10.1186/s42523-020-00041-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ruminant gastrointestinal tract homeostasis deploys interactive microbiome-host metabolic communication and signaling axes to underpin the fitness of the host. After this stable niche is destroyed by environmental triggers, remodeling of homeostasis can occur as a spontaneous physiological compensatory actor. RESULTS In this study, 20 sheep were randomly divided into four groups: a hay-fed control (CON) group and a high-grain (HG) diet group for 7, 14, or 28 days. Then, we examined 16S rRNA gene sequences and transcriptome sequences to outline the microbiome-host co-oscillation patterns in remodeling of colonic homeostasis in a sheep model during adaptation to a HG diet. Our data revealed that with durations of an HG diet, the higher starch levels directly affected the colonic lumen environment (lower pH and higher fermentation parameters), which in turn filtered lumen-specific functional taxonomic groups (HG-sensitive and HG-tolerant taxa). The colonic epithelium then gave rise to a new niche that triggered endoplasmic reticulum stress to activate unfolded protein response, if the duration of endoplasmic reticulum stress was overlong, this process would regulate cell apoptosis (Caspase-3, Caspase-8, and TNFRSF21) to achieve a functional transformation. CONCLUSIONS Our results provide a holistic view of the colonic microbial assemblages and epithelium functional profile co-oscillation patterns in remodeling of colonic homeostasis during adaptation to an HG diet in a sheep model. These findings also provide a proof of concept that the microbe-host collaboration is vital for maintaining hindgut homeostasis to adapt to dietary dichotomies.
Collapse
Affiliation(s)
- Limei Lin
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration center of Animal Science, National Center for International Research on Animal Gut Nutrition, Centre for ruminant nutrition and feed engineering technology research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yue Wang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration center of Animal Science, National Center for International Research on Animal Gut Nutrition, Centre for ruminant nutrition and feed engineering technology research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Xu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration center of Animal Science, National Center for International Research on Animal Gut Nutrition, Centre for ruminant nutrition and feed engineering technology research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration center of Animal Science, National Center for International Research on Animal Gut Nutrition, Centre for ruminant nutrition and feed engineering technology research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration center of Animal Science, National Center for International Research on Animal Gut Nutrition, Centre for ruminant nutrition and feed engineering technology research, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration center of Animal Science, National Center for International Research on Animal Gut Nutrition, Centre for ruminant nutrition and feed engineering technology research, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
8
|
Sengupta S, Sevigny CM, Bhattacharya P, Jordan VC, Clarke R. Estrogen-Induced Apoptosis in Breast Cancers Is Phenocopied by Blocking Dephosphorylation of Eukaryotic Initiation Factor 2 Alpha (eIF2α) Protein. Mol Cancer Res 2019; 17:918-928. [DOI: 10.1158/1541-7786.mcr-18-0481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
|
9
|
Modulation of nuclear factor-kappa B activation by the endoplasmic reticulum stress sensor PERK to mediate estrogen-induced apoptosis in breast cancer cells. Cell Death Discov 2018. [PMID: 29531812 PMCID: PMC5841410 DOI: 10.1038/s41420-017-0012-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stress responses are critical for estrogen (E2)-induced apoptosis in E2-deprived breast cancer cells. Nuclear factor-kappa B (NF-κB) is an important therapeutic target to prevent stress responses in chronic inflammatory diseases including cancer. However, whether E2 activates NF-κB to participate in stress-associated apoptosis in E2-deprived breast cancer cells is unknown. Here, we demonstrated that E2 differentially modulates NF-κB activity according to treatment time. E2 initially has significant potential to suppress NF-κB activation; it completely blocks tumor necrosis factor alpha (TNFα)-induced activation of NF-κB. We found that E2 preferentially and constantly enhances the expression of the adipogenic transcription factor CCAAT/enhancer binding protein beta (C/EBPβ), which is responsible for the suppression of NF-κB activation by E2 in MCF-7:5C cells. Interestingly, NF-κB p65 DNA-binding activity is increased when E2 is administered for 48 h, leading to the induction of TNFα and associated apoptosis. Blocking the nuclear translocation of NF-κB can completely prevent the induction of TNFα and apoptosis induced by E2. Further examination revealed that protein kinase RNA-like endoplasmic reticulum kinase (PERK), a stress sensor of unfolded protein response (UPR), plays an essential role in the late activation of NF-κB by E2. This modulation between PERK and NF-κB is mainly mediated by a stress responsive transcription factor, transducer and activator of transcription 3 (STAT3), independently of the classic canonical IκBα signaling pathway. Thus, inhibition of PERK kinase activity completely blocks the DNA binding of both STAT3 and NF-κB, thereby preventing induction of NF-κB-dependent genes and E2-induced apoptosis. All of these findings suggest that PERK is a key regulator to convey stress signals from the endoplasmic reticulum to the nucleus and illustrate a crucial role for the novel PERK/STAT3/NF-κB/TNFα axis in E2-induced apoptosis in E2-deprived breast cancer cells.
Collapse
|
10
|
Kajani AA, Zarkesh-Esfahani SH, Bordbar AK, Khosropour AR, Razmjou A, Kardi M. Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Fan P, Maximov PY, Curpan RF, Abderrahman B, Jordan VC. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy. Mol Cell Endocrinol 2015; 418 Pt 3:245-63. [PMID: 26052034 PMCID: PMC4760743 DOI: 10.1016/j.mce.2015.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 01/04/2023]
Abstract
During the past 20 years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed "morning after pill", was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite "antiestrogen" resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women's health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term hormone replacement therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Philipp Y Maximov
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ramona F Curpan
- Institute of Chemistry, Romanian Academy, Timisoara, Romania
| | | | - V Craig Jordan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Fan P, Cunliffe HE, Maximov PY, Agboke FA, McDaniel RE, Zou X, Ramos P, Russell ML, Jordan VC. Integration of Downstream Signals of Insulin-like Growth Factor-1 Receptor by Endoplasmic Reticulum Stress for Estrogen-Induced Growth or Apoptosis in Breast Cancer Cells. Mol Cancer Res 2015; 13:1367-76. [PMID: 26116171 DOI: 10.1158/1541-7786.mcr-14-0494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/12/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Estrogen (E2) exerts a dual function on E2-deprived breast cancer cells, with both initial proliferation and subsequent induction of stress responses to cause apoptosis. However, the mechanism by which E2 integrally regulates cell growth or apoptosis-associated pathways remains to be elucidated. Here, E2 deprivation results in many alterations in stress-responsive pathways. For instance, E2-deprived breast cancer cells had higher basal levels of stress-activated protein kinase, c-Jun N-terminal kinase (JNK), compared with wild-type MCF-7 cells. E2 treatment further constitutively activated JNK after 24 hours. However, inhibition of JNK (SP600125) was unable to abolish E2- induced apoptosis, whereas SP600125 alone arrested cells at the G2 phase of the cell cycle and increased apoptosis. Further examination showed that inhibition of JNK increased gene expression of TNFα and did not effectively attenuate expression of apoptosis-related genes induced by E2. A notable finding was that E2 regulated both JNK and Akt as the downstream signals of insulin-like growth factor-1 receptor (IGFIR)/PI3K, but with distinctive modulation patterns: JNK was constitutively activated, whereas Akt and Akt-associated proteins, such as PTEN and mTOR, were selectively degraded. Endoplasmic reticulum-associated degradation (ERAD) was involved in the selective protein degradation. These findings highlight a novel IGFIR/PI3K/JNK axis that plays a proliferative role during the prelude to E2-induced apoptosis and that the endoplasmic reticulum is a key regulatory site to decide cell fate after E2 treatment. IMPLICATIONS This study provides a new rationale for further exploration of E2-induced apoptosis to improve clinical benefit.
Collapse
Affiliation(s)
- Ping Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia. Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Heather E Cunliffe
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philipp Y Maximov
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia. Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Fadeke A Agboke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Russell E McDaniel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Xiaojun Zou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Pilar Ramos
- Computational Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Megan L Russell
- Computational Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - V Craig Jordan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia. Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
13
|
Obiorah IE, Jordan VC. Differences in the rate of oestrogen-induced apoptosis in breast cancer by oestradiol and the triphenylethylene bisphenol. Br J Pharmacol 2015; 171:4062-72. [PMID: 24819221 DOI: 10.1111/bph.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Triphenylethylene (TPE)-like compounds were the first agents to be used in the treatment of metastatic breast cancer in postmenopausal women. Although structurally related to the anti-oestrogen, 4-hydroxytamoxifen, TPEs possess oestrogenic properties in fully oestrogenized breast cancer cells but do not induce apoptosis with short-term treatment in long-term oestrogen-deprived breast cancer cells. This study determined the differential effects of bisphenol, a TPE, on growth and apoptosis based on the modulation of the shape of the ligand-oestrogen receptor complex. EXPERIMENTAL APPROACH Apoptotic flow cytometric studies were used to evaluate apoptosis over time. Proliferation of the breast cancer cells was assessed using DNA quantification and cell cycle analysis. Real-time PCR was performed to quantify mRNA levels of apoptotic genes. Regulation of cell cycle and apoptotic genes was determined using PCR-based arrays. KEY RESULTS Bisphenol induced an up-regulation of cell cycle genes similar to those induced by 17β oestradiol (E2 ). Unlike the changes induced by E2 that occur after 24 h, the apoptosis evoked by bisphenol occurred after 4 days, with quantifiable apoptotic changes noted at 6 days. A prolonged up-regulation of endoplasmic reticulum stress and inflammatory stress response genes was observed with subsequent activation of apoptosis-related genes in the second week of treatment with bisphenol. CONCLUSIONS AND IMPLICATIONS The bisphenol: ERα complex induces delayed biological effects on the growth and apoptosis of breast cancer cells. Both the shape of the complex and the duration of treatment control the initiation of apoptosis.
Collapse
Affiliation(s)
- I E Obiorah
- Tumor Biology Training Program, Georgetown University, Washington, DC, USA
| | | |
Collapse
|
14
|
Abstract
The successful use of high-dose synthetic estrogens to treat postmenopausal metastatic breast cancer is the first effective 'chemical therapy' proven in clinical trial to treat any cancer. This review documents the clinical use of estrogen for breast cancer treatment or estrogen replacement therapy (ERT) in postmenopausal hysterectomized women, which can either result in breast cancer cell growth or breast cancer regression. This has remained a paradox since the 1950s until the discovery of the new biology of estrogen-induced apoptosis at the end of the 20th century. The key to triggering apoptosis with estrogen is the selection of breast cancer cell populations that are resistant to long-term estrogen deprivation. However, estrogen-independent growth occurs through trial and error. At the cellular level, estrogen-induced apoptosis is dependent upon the presence of the estrogen receptor (ER), which can be blocked by nonsteroidal or steroidal antiestrogens. The shape of an estrogenic ligand programs the conformation of the ER complex, which, in turn, can modulate estrogen-induced apoptosis: class I planar estrogens (e.g., estradiol) trigger apoptosis after 24 h, whereas class II angular estrogens (e.g., bisphenol triphenylethylene) delay the process until after 72 h. This contrasts with paclitaxel, which causes G2 blockade with immediate apoptosis. The process is complete within 24 h. Estrogen-induced apoptosis is modulated by glucocorticoids and cSrc inhibitors, but the target mechanism for estrogen action is genomic and not through a nongenomic pathway. The process is stepwise through the creation of endoplasmic reticulum stress and inflammatory responses, which then initiate an unfolded protein response. This, in turn, initiates apoptosis through the intrinsic pathway (mitochondrial) with the subsequent recruitment of the extrinsic pathway (death receptor) to complete the process. The symmetry of the clinical and laboratory studies now permits the creation of rules for the future clinical application of ERT or phytoestrogen supplements: a 5-year gap is necessary after menopause to permit the selection of estrogen-deprived breast cancer cell populations to cause them to become vulnerable to apoptotic cell death. Earlier treatment with estrogen around menopause encourages growth of ER-positive tumor cells, as the cells are still dependent on estrogen to maintain replication within the expanding population. An awareness of the evidence that the molecular events associated with estrogen-induced apoptosis can be orchestrated in the laboratory in estrogen-deprived breast cancers now supports the clinical findings regarding the treatment of metastatic breast cancer following estrogen deprivation, decreases in mortality following long-term antihormonal adjuvant therapy, and the results of treatment with ERT and ERT plus progestin in the Women's Health Initiative for women over the age of 60. Principles have emerged for understanding and applying physiological estrogen therapy appropriately by targeting the correct patient populations.
Collapse
Affiliation(s)
- V Craig Jordan
- Departments of Breast Medical Oncology and Molecular and Cellular OncologyMD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Fan P, Craig Jordan V. Acquired resistance to selective estrogen receptor modulators (SERMs) in clinical practice (tamoxifen & raloxifene) by selection pressure in breast cancer cell populations. Steroids 2014; 90:44-52. [PMID: 24930824 PMCID: PMC4192097 DOI: 10.1016/j.steroids.2014.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tamoxifen, a pioneering selective estrogen receptor modulator (SERM), has long been a therapeutic choice for all stages of estrogen receptor (ER)-positive breast cancer. The clinical application of long-term adjuvant antihormone therapy for the breast cancer has significantly improved breast cancer survival. However, acquired resistance to SERM remains a significant challenge in breast cancer treatment. The evolution of acquired resistance to SERMs treatment was primarily discovered using MCF-7 tumors transplanted in athymic mice to mimic years of adjuvant treatment in patients. Acquired resistance to tamoxifen is unique because the growth of resistant tumors is dependent on SERMs. It appears that acquired resistance to SERM is initially able to utilize either E2 or a SERM as the growth stimulus in the SERM-resistant breast tumors. Mechanistic studies reveal that SERMs continuously suppress nuclear ER-target genes even during resistance, whereas they function as agonists to activate multiple membrane-associated molecules to promote cell growth. Laboratory observations in vivo further show that three phases of acquired SERM-resistance exists, depending on the length of SERMs exposure. Tumors with Phase I resistance are stimulated by both SERMs and estrogen. Tumors with Phase II resistance are stimulated by SERMs, but are inhibited by estrogen due to apoptosis. The laboratory models suggest a new treatment strategy, in which limited-duration, low-dose estrogen can be used to purge Phase II-resistant breast cancer cells. This discovery provides an invaluable insight into the evolution of drug resistance to SERMs, and this knowledge is now being used to justify clinical trials of estrogen therapy following long-term antihormone therapy. All of these results suggest that cell populations that have acquired resistance are in constant evolution depending upon selection pressure. The limited availability of growth stimuli in any new environment enhances population plasticity in the trial and error search for survival.
Collapse
Affiliation(s)
- Ping Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - V Craig Jordan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States.
| |
Collapse
|
16
|
Abstract
Antihormone therapy remains the gold standard of care in the treatment of estrogen receptor (ER) positive breast cancer. However, development of acquired long term antihormone resistance exposes a vulnerability to estrogen that induces apoptosis. Laboratory and clinical studies indicate that successful therapy with estrogens is dependent on the duration of estrogen withdrawal and menopausal status of a woman. Interrogation of estradiol (E2) induced apoptosis using molecular studies indicate treatment of long term estrogen deprived MCF-7 breast cancer cells with estrogen causes an endoplasmic reticulum stress response that induces an unfolded protein response signal to inhibit protein translation. E2 binds to the ER and mediates apoptosis through the classical genomic pathway. Furthermore, the induction of apoptosis by estrogens is dependent on the conformation of the estrogen-ER complex. In this review, we explore the mechanism and the processes involved in the paradox of estrogen induced apoptosis and the new selectivity of estrogen action on different cell populations that is correctly been deciphered for clinical practice.
Collapse
Affiliation(s)
- Ifeyinwa E Obiorah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Ping Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Surojeet Sengupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States
| | - V Craig Jordan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States.
| |
Collapse
|
17
|
Jordan VC. Avoiding the bad and enhancing the good of soy supplements in breast cancer. J Natl Cancer Inst 2014; 106:dju233. [PMID: 25190729 DOI: 10.1093/jnci/dju233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- V Craig Jordan
- Department of Oncology, Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC.
| |
Collapse
|