1
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Kotalwar KS, Deshmukh AV, Gangane NM. Role of Caspase-8 as a Prognostic Biomarker in Breast Cancer—A Pilot Study in Central India. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer 2020; 1873:188357. [PMID: 32147543 DOI: 10.1016/j.bbcan.2020.188357] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is a cysteine - aspartate specific protease that classically triggers the extrinsic apoptotic pathway, in response to the activation of cell surface Death Receptors (DRs) like FAS, TRAIL-R and TNF-R. Besides it's roles in triggering death receptor-mediated apoptosis, Caspase-8 has also been implicated in the onsets of anoikis, autophagy and pyroptosis. Furthermore, Caspase-8 also plays a crucial pro-survival function by inhibiting an alternative form of programmed cell death called necroptosis. Low expression levels of pro-Caspase-8 is therefore associated with the malignant transformation of cancers. However, the long-held notion that pro-Caspase-8 expression/activity is generally lost in most cancers, thereby contributing to apoptotic escape and enhanced resistance to anti-cancer therapeutics, has been found to be true for only a minority of cancers types. In the majority of cases, pro-Caspase-8 expression is maintained and sometimes elevated, while it's apoptotic activity is regulated through different mechanisms. This supports the notion that the non-apoptotic functions of Caspase-8 offer growth advantage in these cancer types and have, therefore, gained renewed interest in the recent years. In light of these reasons, a number of therapeutic approaches have been employed, with the intent of targeting pro-Caspase-8 in cancer cells. In this review, we would attempt to discuss - the classic roles of Caspase-8 in initiating apoptosis; it's non-apoptotic functions; it's the clinical significance in different cancer types; and the therapeutic applications exploiting the ability of pro-Caspase-8 to regulate various cellular functions.
Collapse
|
4
|
Bagherabad MB, Afzaljavan F, Vahednia E, Rivandi M, Vakili F, Sadr SSH, Shandiz FH, Pasdar A. Association of caspase 8 promoter variants and haplotypes with the risk of breast cancer and its molecular profile in an Iranian population: A case‐control study. J Cell Biochem 2019; 120:16435-16444. [DOI: 10.1002/jcb.28781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/25/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Matineh Barati Bagherabad
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Elham Vahednia
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mahdi Rivandi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Fatemeh Vakili
- Midwifery Department, Faculty of Nursing and Midwifery Mashhad University of Medical Sciences Mashhad Iran
| | - Susan Sadat Hashemi Sadr
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Division of Applied Medicine, Medical School University of Aberdeen, Foresterhill Aberdeen UK
| |
Collapse
|
5
|
Jo EB, Lee YS, Lee H, Park JB, Park H, Choi YL, Hong D, Kim SJ. Combination therapy with c-met inhibitor and TRAIL enhances apoptosis in dedifferentiated liposarcoma patient-derived cells. BMC Cancer 2019; 19:496. [PMID: 31126284 PMCID: PMC6534902 DOI: 10.1186/s12885-019-5713-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Liposarcoma (LPS) is a tumor derived from adipose tissue, and has the highest incidence among soft tissue sarcomas. Dedifferentiated liposarcoma (DDLPS) is a malignant tumor with poor prognosis. Recurrence and metastasis rates in LPS remain high even after chemotherapy and radiotherapy following complete resection. Therefore, the development of advanced treatment strategies for LPS is required. In the present study, we investigated the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor on cell viability and apoptosis in LPS and DDLPS cell lines of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor. Methods We analyzed cell viability after treatment with TRAIL and a c-Met inhibitor by measuring CCK8 and death receptor 5 (DR5) expression levels via fluorescence activated cell sorting (FACS) in both sarcoma cell lines and DDLPS patient-derived cells (PDCs). Moreover, we validated the effects of TRAIL alone and in combination with c-Met inhibitor on apoptosis in LPS cell lines and DDLPS PDCs via FACS. Results Our results revealed that combination treatment with a c-Met inhibitor and human recombinant TRAIL (rhTRAIL) suppressed cell viability and induced cell death in both sarcoma cell lines and DDLPS PDCs, which showed varying sensitivities to rhTRAIL alone. Also, we confirmed that treatment with a c-Met inhibitor upregulated DR5 levels in sarcoma cell lines and DDLPS PDCs. In both TRAIL-susceptible and TRAIL-resistant cells subjected to combination treatment, promotion of apoptosis was dependent on DR5 upregulation. Conclusion From these results, our findings validated that DR5 up-regulation caused by combination therapy with a c-Met inhibitor and rhTRAIL enhanced TRAIL sensitization and promoted apoptosis. We propose the use of this approach to overcome TRAIL resistance and serve as a novel treatment strategy for clinical trials. Electronic supplementary material The online version of this article (10.1186/s12885-019-5713-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun Byeol Jo
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea
| | - Young Sang Lee
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea
| | - Hyunjoo Lee
- Personalized Medicine, Children's Cancer Institute Australia, Sydney, NSW, Australia
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hyojun Park
- Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Yoon-La Choi
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Department of Pathology, Samsung Medical Center, Seoul, Republic of Korea
| | - Doopyo Hong
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Sung Joo Kim
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea. .,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|