1
|
Deng J, Tu S, Li L, Li G, Zhang Y. Diagnostic, predictive and prognostic molecular biomarkers in clear cell renal cell carcinoma: A retrospective study. Cancer Rep (Hoboken) 2024; 7:e2116. [PMID: 38837683 PMCID: PMC11150078 DOI: 10.1002/cnr2.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common and aggressive subtype of kidney cancer. Many patients are diagnosed at advanced stages, making early detection crucial. Unfortunately, there are currently no noninvasive tests for ccRCC, emphasizing the need for new biomarkers. Additionally, ccRCC often develops resistance to treatments like radiotherapy and chemotherapy. Identifying biomarkers that predict treatment outcomes is vital for personalized care. The integration of artificial intelligence (AI), multi-omics analysis, and computational biology holds promise in bolstering detection precision and resilience, opening avenues for future investigations. The amalgamation of radiogenomics and biomaterial-basedimmunomodulation signifies a revolutionary breakthrough in diagnostic medicine. This review summarizes existing literature and highlights emerging biomarkers that enhance diagnostic, predictive, and prognostic capabilities for ccRCC, setting the stage for future clinical research.
Collapse
Affiliation(s)
- Jian Deng
- Department of OncologyHejiang Hospital of Traditional Chinese MedicineLuzhouPeople's Republic of China
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhouPeople's Republic of China
| | - ShengYuan Tu
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhouPeople's Republic of China
| | - Lin Li
- School of StomatologySouthwest Medical UniversityLuzhouPeople's Republic of China
| | - GangLi Li
- Department of OncologyHejiang Hospital of Traditional Chinese MedicineLuzhouPeople's Republic of China
| | - YinHui Zhang
- Department of PharmacyThe Affiliated Hospital of Southwest Medical UniversityLuzhouPeople's Republic of China
- Department of AnesthesiologyHospital (T.C.M) Affiliated to Southwest Medical UniversityLuzhouPeople's Republic of China
- Department of PharmacyHejiang Hospital of Traditional Chinese MedicineLuzhouPeople's Republic of China
| |
Collapse
|
2
|
Borges Dos Reis R, Shu X, Ye Y, Borregales L, Karam JA, Adibi M, Wu X, Reis LO, Wood CG. Urinary miRNAs Predict Metastasis in Patients With Clinically Localized Clear Cell Renal Cell Carcinoma Treated With Nephrectomy. Clin Genitourin Cancer 2024; 22:e156-e162.e4. [PMID: 37945405 DOI: 10.1016/j.clgc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/26/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Patients with clear cell renal cell carcinoma (ccRCC) might develop metastasis after surgery with curative intent. We aimed to characterize the expression levels of microRNAs in the urine (UmiRNAs) of patients before and after nephrectomy to determine the impact of UmiRNAs expression in the emergence of metastases. METHODS We prospectively collected pre- and post-nephrectomy urine samples from 117 patients with clinically localized and locally advanced ccRCC. UmiRNAs were extracted, purified, and measured using RT-PCR. Relative quantifications (RQ) of 137 UmiRNAs were calculated through 2-∆∆ method. The post-surgery/pre-surgery RQs ratio represented the magnitude of the expression levels of the UmiRNAs. The association of UmiRNA expression and the development of distant metastases was tested with Cox regression model. RESULTS Five UmiRNAs (miR-191-5p, miR-324-3p, miR-186-5p, miR-93-5p, miR-30b-5p) levels were upregulated before nephrectomy (p < .05). This conferred a 2- to 4-fold increased risk of metastasis, with miR-191-5p showing the most significant association with this endpoint (HR = 4.16, 95% CI = 1.38-12.58, p = .011). In a multivariate model stratified with stage and Fuhrman grade, we found that miR-191-5p, miR-324-3p, and miR-186-5p exhibited a strong association with metastasis development in patients with pathological T3 (pT3) tumors. Enrichment analysis with the most differentially expressed UmiRNAs showed that these UmiRNAs targeted genes that regulate cell survival and proliferation. CONCLUSION Our study indicated UmiR-191-5p, UmiR-324-3p, and UmiR-186-5p are potential markers to predict the development of metastasis, particularly in pT3 patients. PATIENT SUMMARY We compared changes of UmiRNAs expression detected pre- and postnephrectomy of patients with ccRCC. Our findings suggest that UmiRNA expression likely reflects tumor-specific changes that can be promising to predict the metastasis development, particularly in patients with non-metastatic locally advanced ccRCC. If confirmed, these findings may be useful for surveillance protocols for adjuvant therapy protocols.
Collapse
Affiliation(s)
- Rodolfo Borges Dos Reis
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Xiang Shu
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Leonardo Borregales
- Department of Urology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jose A Karam
- Department of Urology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Mehad Adibi
- Department of Urology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Leonardo O Reis
- UroScience, State University of Campinas, Unicamp, and Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Sao Paulo, Brazil.
| | - Christopher G Wood
- Department of Urology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Aalami AH, Abdeahad H, Aalami F, Amirabadi A. Can microRNAs be utilized as tumor markers for recurrence following nephrectomy in renal cell carcinoma patients? A meta-analysis provides the answer. Urol Oncol 2023; 41:52.e1-52.e10. [PMID: 36280530 DOI: 10.1016/j.urolonc.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is an aggressive tumor. Many studies investigated microRNAs (miRs) as RCC prognostic biomarkers, often reporting inconsistent findings. We present a meta-analysis to identify if tissue-derived miRs can be used as a prognostic factor in patients after nephrectomy. METHODS Data were obtained from PubMed, Embase, and Web of Science. The hazard ratio with 95% confidence intervals assessed the prognostic value of microRNAs. Outcomes of interest included the prognosis role of microRNAs in overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival (CSS) in nephrectomy patients. RESULTS Nine retrospective studies that evaluated microRNAs in 1,541 nephrectomy patients were collected. There were heterogeneities across studies for microRNAs in the 15 studies examining OS, RFS, and CSS (I2 = 84.51%; P < 0.01); the random-effect model was calculated (HR = 1.371; (95% CI: 0.831-2.260); P = 0.216). CONCLUSION Our study indicated that miRNAs cannot be used as a marker for recurrence in RCC patients after nephrectomy, and researchers shouldn't make the mistake that if miRs can be used as a biomarker in RCC, they cannot be used as a marker after nephrectomy in RCC. As all of these findings were from retrospective studies, further studies are needed to verify the role of microRNAs in clinical trials.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir Amirabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
4
|
Shen T, Song Y, Wang X, Wang H. Characterizing the molecular heterogeneity of clear cell renal cell carcinoma subgroups classified by miRNA expression profile. Front Mol Biosci 2022; 9:967934. [PMID: 36090028 PMCID: PMC9459094 DOI: 10.3389/fmolb.2022.967934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease that is associated with poor prognosis. Recent works have revealed the significant roles of miRNA in ccRCC initiation and progression. Comprehensive characterization of ccRCC based on the prognostic miRNAs would contribute to clinicians’ early detection and targeted treatment. Here, we performed unsupervised clustering using TCGA-retrieved prognostic miRNAs expression profiles. Two ccRCC subtypes were identified after assessing principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and consensus heatmaps. We found that the two subtypes are associated with distinct clinical features, overall survivals, and molecular characteristics. C1 cluster enriched patients in relatively early stage and have better prognosis while patients in C2 cluster have poor prognosis with relatively advanced state. Mechanistically, we found the differentially expressed genes (DEGs) between the indicated subgroups dominantly enriched in biological processes related to transmembrane transport activity. In addition, we also revealed a miRNA-centered DEGs regulatory network, which severed as essential regulators in both transmembrane transport activity control and ccRCC progression. Together, our work described the molecular heterogeneity among ccRCC cancers, provided potential targets served as effective biomarkers for ccRCC diagnosis and prognosis, and paved avenues to better understand miRNA-directed regulatory network in ccRCC progression.
Collapse
Affiliation(s)
- Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Yingdong Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Xiangting Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Haiyang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
5
|
Olgun G, Tastan O. miRCoop: Identifying Cooperating miRNAs via Kernel Based Interaction Tests. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1760-1771. [PMID: 33382660 DOI: 10.1109/tcbb.2020.3047901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although miRNAs can cause widespread changes in expression programs, single miRNAs typically induce mild repression on their targets. Cooperativity among miRNAs is reported as one strategy to overcome this constraint. Expanding the catalog of synergistic miRNAs is critical for understanding gene regulation and for developing miRNA-based therapeutics. In this study, we develop miRCoop to identify synergistic miRNA pairs that have weak or no repression on the target mRNA individually, but when act together, induce strong repression. miRCoop uses kernel-based statistical interaction tests, together with miRNA and mRNA target information. We apply our approach to patient data of two different cancer types. In kidney cancer, we identify 66 putative triplets. For 64 of these triplets, there is at least one common transcription factor that potentially regulates all participating RNAs of the triplet, supporting a functional association among them. Furthermore, we find that identified triplets are enriched for certain biological processes that are relevant to kidney cancer. Some of the synergistic miRNAs are very closely encoded in the genome, hinting a functional association among them. In applying the method on tumor data with the primary liver site, we find 3105 potential triplet interactions. We believe miRCoop can aid our understanding of the complex regulatory interactions in different health and disease states of the cell and can help in designing miRNA-based therapies. Matlab code for the methodology is provided in https://github.com/guldenolgun/miRCoop.
Collapse
|
6
|
Renal Cell Cancer and Obesity. Int J Mol Sci 2022; 23:ijms23063404. [PMID: 35328822 PMCID: PMC8951303 DOI: 10.3390/ijms23063404] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancers are a frequent cause of morbidity and mortality. There are many risk factors for tumours, including advanced age, personal or family history of cancer, some types of viral infections, exposure to radiation and some chemicals, smoking and alcohol consumption, as well as obesity. Increasing evidence suggest the role of obesity in the initiation and progression of various cancers, including renal cell carcinoma. Since tumours require energy for their uncontrollable growth, it appears plausible that their initiation and development is associated with the dysregulation of cells metabolism. Thus, any state characterised by an intake of excessive energy and nutrients may favour the development of various cancers. There are many factors that promote the development of renal cell carcinoma, including hypoxia, inflammation, insulin resistance, excessive adipose tissue and adipokines and others. There are also many obesity-related alterations in genes expression, including DNA methylation, single nucleotide polymorphisms, histone modification and miRNAs that can promote renal carcinogenesis. This review focuses on the impact of obesity on the risk of renal cancers development, their aggressiveness and patients’ survival.
Collapse
|
7
|
Liu Q, Lei C. LINC01232 serves as a novel biomarker and promotes tumour progression by sponging miR-204-5p and upregulating RAB22A in clear cell renal cell carcinoma. Ann Med 2021; 53:2153-2164. [PMID: 34783622 PMCID: PMC8604453 DOI: 10.1080/07853890.2021.2001563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in the progression of various cancers, including clear cell renal cell carcinoma (ccRCC). This study aimed to investigate the expression and prognostic value of long intergenic non-protein coding RNA (LINC) 01232 in ccRCC and preliminary explore the molecular mechanism underlying the role of LINC01232 in ccRCC progression. METHODS Tumour tissues and adjacent normal tissues of 122 patients with ccRCC were collected in this study. The levels of LINC01232, microRNA (miR)-204-5p and RAB22A were measured by quantitative real-time PCR. The proliferation, migration and invasion of ccRCC cells were detected by cell counting kit-8 assay and Transwell assay, respectively. The interaction among LINC01232, miR-204-5p and RAB22A was confirmed by bioinformatics analysis, dual-luciferase reporter assay and Pearson correlation analysis. The association of LINC01232 and miR-204-5p with ccRCC patient survival was verified by the Kaplan-Meier method and log-rank test. The prognostic value of LINC01232 in ccRCC was confirmed by Cox regression analysis. RESULTS LINC01232 expression was increased in ccRCC tumour tissues and ccRCC cells and independently predicted the prognosis of ccRCC patients. In addition, LINC01232 silencing inhibited ccRCC cell proliferation, migration and invasion. Moreover, LINC01232 served as a sponge for miR-204-5p, and miR-204-5p reduction reversed the inhibitory effect of LINC01232 silencing on ccRCC cell function. Furthermore, LINC01232 could sponge miR-204-5p, causing the elevation of RAB22A in ccRCC, thereby promoting ccRCC cell function. CONCLUSION LINC01232 may be an independent prognostic biomarker in ccRCC and plays an oncogenic role in ccRCC progression by sponging miR-204-5p and upregulating RAB22A.
Collapse
Affiliation(s)
- Qingling Liu
- Department of Clinical Laboratory, Zibo Maternal and Child Health Hospital, Shandong, China
| | - Chengbin Lei
- Department of Clinical Laboratory, Zibo Central Hospital, Shandong, China
| |
Collapse
|
8
|
Fasanella D, Antonaci A, Esperto F, Scarpa RM, Ferro M, Schips L, Marchioni M. Potential prognostic value of miRNAs as biomarker for progression and recurrence after nephrectomy in renal cell carcinoma: a literature review. Diagnosis (Berl) 2021; 9:157-165. [PMID: 34674417 DOI: 10.1515/dx-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES We provide a systematic literature review on tissue miRNAs in patients with RCC to evaluate and summarize their usefulness as prognostic markers. We undertook a systematic search for articles in English using the PubMed-Medline database from January 2010 to December 2020. Studies were identified and selected according to the PRISMA criteria and the PICO methodology. The population consisted of RCC patients undergoing nephrectomy and the main outcome of interest was recurrence-free survival (RFS). Only studies providing hazard ratios (HRs) from multivariate or univariate analyzes with corresponding 95% confidence intervals (CI) and/or area under the curve (AUC) were considered. CONTENT All nine included studies (1,541 patients) analyzed the relationship between tissue miRNA expression levels (up or downregulated) and RFS. Some of these found that the methylation status of miR-9-1, miR-9-3 and miR-124 was associated with a high risk of relapse. Moreover, miR-200b overexpression was associated with OS. MiR-210 overexpression indicated a shorter OS than those who were miR-210 negative. Finally, patients with high miR-125b expression had shorter CSS than those with low expression; similarly, patients with low miR-126 expression also had shorter CSS time. SUMMARY AND OUTLOOK Several studies tested the usefulness of specific miRNAs to predict RCC recurrence. Some of them showed a fair accuracy and strong relationship between specific miRNA over or under-expression and survival outcomes. However, results from these studies are preliminary and miRNAs use in routine clinical practice is still far to come.
Collapse
Affiliation(s)
- Daniela Fasanella
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| | - Alessio Antonaci
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| | - Francesco Esperto
- Department of Urology, Campus Biomedico University of Rome, Rome, Italy
| | - Roberto M Scarpa
- Department of Urology, Campus Biomedico University of Rome, Rome, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology-IRCCS, Milan, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, Urology Unit, SS Annunziata Hospital, Chieti, Italy
| |
Collapse
|
9
|
Wu J, Zhang F, Zhang J, Sun Z, Hao C, Cao H, Wang W. A Novel miRNA-Based Model Can Predict the Prognosis of Clear Cell Renal Cell Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211027923. [PMID: 34159861 PMCID: PMC8237220 DOI: 10.1177/15330338211027923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent renal malignant cancer, whose survival rate and quality of life of patients are still not satisfactory. Nevertheless, the TNM staging system currently used in clinical cannot make accurate survival predictions and precise treatment decisions for ccRCC patients. Therefore, there is an urgent need for more reliable biomarkers to identify high-risk subgroups of ccRCC patients to guide timely intervention and treatment. Recently, MiRNAs have been shown to be closely related to the procession of a variety of tumors, and they have high stability in various tissues, which makes them suggested to have the potential as a prognostic biomarker of ccRCC. In this study, by analyzing and processing the miRNAs expression profile of ccRCC patients from the TCGA database, we finally constructed an excellent miRNAs signature and verified it through a variety of methods. In order to build a more accurate and reliable clinical predictive model, we integrated the miRNAs signature with other prognostic-related clinical parameters to construct a nomogram. Functional enrichment analysis showed that miRNAs in the signature may regulate the genes involved in the Hippo signaling pathway, Tight junction, and Wnt signaling pathway to cause different prognoses of ccRCC patients, which may provide a reference for subsequent basic research and targeted therapy. To conclude, our study constructed a useful miRNAs signature, which allows the prognosis stratification for ccRCC patients and thereby guides the timely and effective interventions on high-risk patients. At the same time, this study also found the potential biological pathways involved in the procession of ccRCC.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Changzhen Hao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Talib WH, Mahmod AI, Abuarab SF, Hasen E, Munaim AA, Haif SK, Ayyash AM, Khater S, AL-Yasari IH, Kury LTA. Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products. Molecules 2021; 26:2179. [PMID: 33920079 PMCID: PMC8070467 DOI: 10.3390/molecules26082179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is considered the second leading cause of death worldwide and in 2018 it was responsible for approximately 9.6 million deaths. Globally, about one in six deaths are caused by cancer. A strong correlation was found between diabetes mellitus and carcinogenesis with the most evident correlation was with type 2 diabetes mellitus (T2DM). Research has proven that elevated blood glucose levels take part in cell proliferation and cancer cell progression. However, limited studies were conducted to evaluate the efficiency of conventional therapies in diabetic cancer patients. In this review, the correlation between cancer and diabetes will be discussed and the mechanisms by which the two diseases interact with each other, as well as the therapeutics challenges in treating patients with diabetes and cancer with possible solutions to overcome these challenges. Natural products targeting both diseases were discussed with detailed mechanisms of action. This review will provide a solid base for researchers and physicians to test natural products as adjuvant alternative therapies to treat cancer in diabetic patients.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Sara Feras. Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Eliza Hasen
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amer A. Munaim
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Shatha Khaled Haif
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amani Marwan Ayyash
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 00964, Iraq;
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
11
|
Kinget L, Roussel E, Lambrechts D, Boeckx B, Vanginderhuysen L, Albersen M, Rodríguez-Antona C, Graña-Castro O, Inglada-Pérez L, Verbiest A, Zucman-Rossi J, Couchy G, Caruso S, Laenen A, Baldewijns M, Beuselinck B. MicroRNAs Possibly Involved in the Development of Bone Metastasis in Clear-Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13071554. [PMID: 33800656 PMCID: PMC8036650 DOI: 10.3390/cancers13071554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastases cause substantial morbidity and implicate worse clinical outcomes for clear-cell renal cell carcinoma patients. MicroRNAs are small RNA molecules that modulate gene translation and are involved in the development of cancer and metastasis. We identified six microRNAs that are potentially specifically involved in metastasis to bone, of which two seem protective and four implicate a higher risk. This aids further understanding of the process of metastasizing to bone. Furthermore, these microRNA hold potential for biomarkers or therapeutic targets. Abstract Bone metastasis in clear-cell renal cell carcinoma (ccRCC) leads to substantial morbidity through skeletal related adverse events and implicates worse clinical outcomes. MicroRNAs (miRNA) are small non-protein coding RNA molecules with important regulatory functions in cancer development and metastasis. In this retrospective analysis we present dysregulated miRNA in ccRCC, which are associated with bone metastasis. In particular, miR-23a-3p, miR-27a-3p, miR-20a-5p, and miR-335-3p specifically correlated with the earlier appearance of bone metastasis, compared to metastasis in other organs. In contrast, miR-30b-3p and miR-139-3p were correlated with less occurrence of bone metastasis. These miRNAs are potential biomarkers and attractive targets for miRNA inhibitors or mimics, which could lead to novel therapeutic possibilities for bone targeted treatment in metastatic ccRCC.
Collapse
Affiliation(s)
- Lisa Kinget
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (D.L.); (B.B.)
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (D.L.); (B.B.)
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Loïc Vanginderhuysen
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | | | - Osvaldo Graña-Castro
- Centro Nacional de Investigaciones Oncológicas (CNIO), 28040 Madrid, Spain; (C.R.-A.); (O.G.-C.)
| | - Lucía Inglada-Pérez
- Department of Statistics and Operational Research, Faculty of Medicine, Complutense University, 28040 Madrid, Spain;
| | - Annelies Verbiest
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | - Gabrielle Couchy
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Équipe Labellisée Ligue Nationale contre le Cancer, Labex OncoImmunology, F-75006 Paris, France; (J.Z.-R.); (G.C.); (S.C.)
| | | | | | - Benoit Beuselinck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (L.V.); (A.V.)
- Correspondence: ; Tel.: +32-16-346900
| |
Collapse
|
12
|
Guo Y, Li X, Zheng J, Fang J, Pan G, Chen Z. Identification of a novel immune-related microRNA prognostic model in clear cell renal cell carcinoma. Transl Androl Urol 2021; 10:888-899. [PMID: 33718090 PMCID: PMC7947456 DOI: 10.21037/tau-20-1495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a type of kidney cancer, and one of the most common malignant tumors. Many studies have shown that certain microRNAs (miRNAs) play an important role in the occurrence and development of ccRCC. Nevertheless, the prognosis of ccRCC patients is very rarely based on these “immuno-miRs”. Our aim was thus to determine the relationship between immune-related miRNA signatures and ccRCC. Methods We downloaded the miRNA expression data from 521 KIRC and 71 normal tissues in The Cancer Genome Atlas (TCGA). We used “limma” package and univariate Cox regression analysis to identify differentially expressed miRNAs (DEMs) that related to overall survival (OS). We applied lasso and multivariate Cox regression analyses to construct a prognostic model based on immuno-miRs. We evaluated the performance of model by using the Kaplan-Meier method. Furthermore, Cox regression analysis was used to determine independent prognostic signatures in ccRCC. Results A total of 59 significant immuno-miRs were identified. We use univariate Cox regression analysis to acquire 18 immune-related miRNAs which were markedly related to OS of ccRCC patients in the training set. We then constructed the 9-immune-related-miRNA prognostic model (miR-21, miR-342, miR-149, miR-130b, miR-223, miR-365a, miR-9-1, and miR-146b) by using lasso and multivariate Cox regression. Further analysis suggested that the immune-related prognostic model could be an independent prognostic indicator for patients with ccRCC. The prognostic performance of the 9-immune-related-miRNA prognostic model was further validated successfully in the testing set. Conclusions We established a novel immune-based prognostic model of ccRCC based on potential prognostic immune-related miRNAs. Our results indicated that the 9-miRNA signature could be a practical and reliable prognostic tool for ccRCC.
Collapse
Affiliation(s)
- Yuhe Guo
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianbin Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junbin Zheng
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Jiali Fang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guanghui Pan
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Chen
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Liu Y, Liu Y, Hu J, He Z, Liu L, Ma Y, Wen D. Heterogeneous miRNA-mRNA Regulatory Networks of Visceral and Subcutaneous Adipose Tissue in the Relationship Between Obesity and Renal Clear Cell Carcinoma. Front Endocrinol (Lausanne) 2021; 12:713357. [PMID: 34621242 PMCID: PMC8490801 DOI: 10.3389/fendo.2021.713357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urologic cancer. Associations of both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with ccRCC have been reported, and underlying mechanisms of VAT perhaps distinguished from SAT, considering their different structures and functions. We performed this study to disclose different miRNA-mRNA networks of obesity-related ccRCC in VAT and SAT using datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA); and find out different RNAs correlated with the prognosis of ccRCC in VAT and SAT. METHODS We screened out different expressed (DE) mRNAs and miRNAs of obesity, in both VAT and SAT from GEO datasets, and constructed miRNA-mRNA networks of obesity-related ccRCC. To evaluate the sensitivity and specificity of RNAs in networks of obesity-related ccRCC in both VAT and SAT, Receiver Operating Characteristic (ROC) analyses were conducted using TCGA datasets. Spearman correlation analyses were then performed to find out RNA pairs with inverse correlations. We also performed Cox regression analyses to estimate the association of all DE RNAs of obesity with the overall survival. RESULTS 136 and 185 DE mRNAs of obesity in VAT and SAT were found out. Combined with selected DE miRNAs, miRNA-mRNA networks of obesity-related ccRCC were constructed. By performing ROC analyses, RNAs with same trend as shown in networks and statistically significant ORs were selected to be paired. Three pairs were finally remained in Spearman correlation analyses, including hsa-miR-182&ATP2B2, hsa-miR-532&CDH2 in VAT, and hsa-miR-425&TFAP2B in SAT. Multivariable Cox regression analyses showed that several RNAs with statistically significant adjusted HRs remained consistent trends as shown in DE analyses of obesity. Risk score analyses using selected RNAs showed that the overall survival time of patients in the low-risk group was significantly longer than that in the high-risk group regardless of risk score models. CONCLUSIONS We found out different miRNA-mRNA regulatory networks of obesity-related ccRCC for both VAT and SAT; and several DE RNAs of obesity-related ccRCC were found to remain consistent performance in terms of ccRCC prognosis. Our findings could provide valuable evidence on the targeted therapy of obesity-related ccRCC.
Collapse
Affiliation(s)
- Yuyan Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Zhenwei He
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
- *Correspondence: Deliang Wen,
| |
Collapse
|
14
|
Ye M, Dong S, Hou H, Zhang T, Shen M. Oncogenic Role of Long Noncoding RNAMALAT1 in Thyroid Cancer Progression through Regulation of the miR-204/IGF2BP2/m6A-MYC Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1-12. [PMID: 33312756 PMCID: PMC7711188 DOI: 10.1016/j.omtn.2020.09.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
Accumulating studies highlight the role of long noncoding RNAs (lncRNAs)/microRNAs (miRNAs)/messenger RNAs (mRNAs) as important regulatory networks in various human cancers, including thyroid cancer (TC). This study aimed to investigate a novel regulatory network dependent on lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in relation to TC development. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were initially employed to detect the expression of MALAT1, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), and myelocytomatosis (MYC) in TC cells. Interactions among MALAT1, miR-204, and IGF2BP2 were then identified in vitro. The biological processes of proliferation, migration, invasion, and apoptosis were evaluated in vitro via gain- and loss-of-function experiments, followed by in vivo validation using xenograft mice. Our data indicated that MALAT1 and IGF2BP2 were highly expressed, while miR-204 was poorly expressed in TC. IGF2BP2 was verified as a target of miR-204. MALAT1 was found to upregulate IGF2BP2 and enhance MYC expression via m6A modification recognition by competitively binding to miR-204, conferring a stimulatory effect on proliferation, migration, and invasion of TC cells, which was accompanied by weakened tumor growth and cell apoptosis. Altogether, the central findings of our study suggest that MALAT1 contributes to TC progression through the upregulation of IGF2BP2 by binding to miR-204.
Collapse
Affiliation(s)
- Mao Ye
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Shu Dong
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang 200245, P.R. China
| | - Haitao Hou
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P.R. China.,Department of Breast and Thyroid Surgery, Tengzhou Central People's Hospital, Tengzhou 277500, P.R. China
| | - Tao Zhang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P.R. China.,Department of General Surgery, Taizhou Traditional Chinese Medicine Hospital, Taizhou 318000, P.R. China
| | - Minghai Shen
- Department of General Surgery, Xixi Hospital of Hangzhou, Hangzhou 310023, P.R. China
| |
Collapse
|
15
|
Ramanathan K, Padmanabhan G. MiRNAs as potential biomarker of kidney diseases: A review. Cell Biochem Funct 2020; 38:990-1005. [PMID: 32500596 DOI: 10.1002/cbf.3555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/15/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 22 nucleotides short, non-coding and tissue-specific single-stranded RNA which modulates target gene expression. Presently, shreds of evidence confirmed that miRNAs play a key role in kidney pathophysiology. The objectives of the present review are to summarize new research data towards the latest developments in the potential use of miRNAs as a diagnostic biomarker for kidney diseases. This holistic information will update the existing knowledge of kidney disease biomarkers. "miRNA profile for Diabetic Kidney disease, Acute kidney injury, Renal fibrosis, hemodialysis, transplants, FSGS, IgAN, etc." are the search keywords which have been used in this review. The search outcome gave an exciting insightful perception of miRNAs competence as a biomarker. Also it is observed that various samples as plasma, urine and biopsies were used for profiling the miRNA expression. The miRNAs were not only used for diagnostic biomarkers but also for therapeutic targets. Each kidney disease showed different miRNAs expression profile and few miRNAs quite common with some kidney diseases. miRNAs are simple and efficient diagnostic biomarkers for kidney diseases.
Collapse
Affiliation(s)
- Kumaresan Ramanathan
- Department of Medical Biochemistry, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University (Ayder Campus), Mekelle, Ethiopia
| | | |
Collapse
|
16
|
Khalili N, Nouri-Vaskeh M, Hasanpour Segherlou Z, Baghbanzadeh A, Halimi M, Rezaee H, Baradaran B. Diagnostic, prognostic, and therapeutic significance of miR-139-5p in cancers. Life Sci 2020; 256:117865. [PMID: 32502540 DOI: 10.1016/j.lfs.2020.117865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
miRNAs are a group of non-coding RNAs that have regulatory functions in post-transcriptional gene expression. These molecules play a fundamental role in cellular processes, for instance cell proliferation, apoptosis, migration, and invasion. Scientific investigations have previously established that miRNAs can either promote or suppress tumor development by mediating different signaling pathways. miR-139-5p, located on chromosome 11q13.4, has been examined extensively in cancers. Studies have demonstrated that miR-139-5p might be an attractive cancer biomarker. Herein, we will review how miR-139-5p acts in cancer diagnosis, prognosis, and therapy, as well as elucidating its major target genes and associated signaling pathways.
Collapse
Affiliation(s)
- Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Rezaee
- Infectious Diseases and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Huang G, Lai Y, Pan X, Zhou L, Quan J, Zhao L, Li Z, Lin C, Wang J, Li H, Yuan H, Yang Y, Lai Y, Ni L. Tumor suppressor miR-33b-5p regulates cellular function and acts a prognostic biomarker in RCC. Am J Transl Res 2020; 12:3346-3360. [PMID: 32774704 PMCID: PMC7407706 DOI: pmid/32774704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a renal parenchyma neoplasm with a 30% recurrence rate even when treated properly. MicroRNAs are noncoding small RNAs that are involved in cellular communication and may participate in cancer development. This study aimed to explore the relationship between miR-33b-5p expression and RCC progression and prognosis. METHOD RT-qPCR, CCK-8 assay, wound scratch assay, transwell assay and flow cytometry assay were used to evaluate the expression and function of miR-33b-5p in RCC. Additionally, RCC samples and survival data from The Cancer Genome Atlas were used to analyze the prognostic functions of miR-33b-5p. RESULTS miR-33b-5p expression in RCC tissues and cell lines (786-O, ACHN) were found to be significantly downregulated, compared with normal tissues and cell lines (P<0.001). The miR-33b-5p mimic transfected cells showed a slower proliferation rate (P<0.01), while its invasion ability decreased by 38.16% (786-O, P<0.001) and 49.19% (ACHN, P<0.05), compared with the negative control (NC). The migration ability of both RCC lines were found to be as follows: miR-33b-5p inhibitor > NC or NC inhibitor > miR-33b-5p mimic. Additionally, TCGA and RCC samples reveal that low miR-33b-5p expression is related to poor survival outcomes (univariate analysis, P=0.029; multivariate analysis, P=0.024; Kaplan-Meier survival curves, P=0.014). Target genes prediction suggests that miR-33b-5p performs its tumor-suppressive effects and prognostic role through targeting TBX15, SLC12A5, and PTGFRN. CONCLUSIONS miR-33b-5p may function as a tumor-suppressive regulator and prognostic biomarker in RCC.
Collapse
Affiliation(s)
- Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Yulin Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Department of Urology, People’s Hospital of LonghuaShenzhen, Guangdong 518109, P. R. China
| | - Xiang Pan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Jing Quan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Zuwei Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Canbin Lin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Haichao Yuan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yu Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Liangchao Ni
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| |
Collapse
|
18
|
Integrating multi-platform genomic datasets for kidney renal clear cell carcinoma subtyping using stacked denoising autoencoders. Sci Rep 2019; 9:16668. [PMID: 31723226 PMCID: PMC6853929 DOI: 10.1038/s41598-019-53048-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is highly heterogeneous and is the most lethal cancer of all urologic cancers. We developed an unsupervised deep learning method, stacked denoising autoencoders (SdA), by integrating multi-platform genomic data for subtyping ccRCC with the goal of assisting diagnosis, personalized treatments and prognosis. We successfully found two subtypes of ccRCC using five genomics datasets for Kidney Renal Clear Cell Carcinoma (KIRC) from The Cancer Genome Atlas (TCGA). Correlation analysis between the last reconstructed input and the original input data showed that all the five types of genomic data positively contribute to the identification of the subtypes. The first subtype of patients had significantly lower survival probability, higher grade on neoplasm histology and higher stage on pathology than the other subtype of patients. Furthermore, we identified a set of genes, proteins and miRNAs that were differential expressed (DE) between the two subtypes. The function annotation of the DE genes from pathway analysis matches the clinical features. Importantly, we applied the model learned from KIRC as a pre-trained model to two independent datasets from TCGA, Lung Adenocarcinoma (LUAD) dataset and Low Grade Glioma (LGG), and the model stratified the LUAD and LGG patients into clinical associated subtypes. The successful application of our method to independent groups of patients supports that the SdA method and the model learned from KIRC are effective on subtyping cancer patients and most likely can be used on other similar tasks. We supplied the source code and the models to assist similar studies at https://github.com/tjgu/cancer_subtyping.
Collapse
|
19
|
Lai J, Chen B, Zhang G, Wang Y, Mok H, Wen L, Pan Z, Su F, Liao N. Identification of a novel microRNA recurrence-related signature and risk stratification system in breast cancer. Aging (Albany NY) 2019; 11:7525-7536. [PMID: 31548433 PMCID: PMC6781975 DOI: 10.18632/aging.102268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
Abstract
Increasing evidence has revealed that microRNAs (miRNAs) play vital roles in breast cancer (BC) prognosis. Thus, we aimed to identify recurrence-related miRNAs and establish accurate risk stratification system in BC patients. A total of 381 differentially expressed miRNAs were confirmed by analyzing 1044 BC tissues and 102 adjacent normal samples from The Cancer Genome Atlas (TCGA). Then, based on the association between each miRNAs and disease-free survival (DFS), we identified miRNA recurrence-related signature to construct a novel prognostic nomogram using Cox regression model. Target genes of the four miRNAs were analyzed via Gene Ontology and KEGG pathway analyses. Time-dependent receiver operating characteristic analysis indicated that a combination of the miRNA signature and tumor-node-metastasis (TNM) stage had better predictive performance than that of TNM stage (0.710 vs 0.616, P<0.0001). Furthermore, risk stratification analysis suggested that the miRNA-based model could significantly classify patients into the high- and low-risk groups in the two cohorts (all P<0.0001), and was independent of other clinical features. Functional enrichment analysis demonstrated that the 46 target genes mainly enrichment in important cell biological processes, protein binding and cancer-related pathways. The miRNA-based prognostic model may facilitate individualized treatment decisions for BC patients.
Collapse
Affiliation(s)
- Jianguo Lai
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yulei Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Zhu Y, Yin X, Li J, Zhang L. Overexpression of microRNA-204-5p alleviates renal ischemia-reperfusion injury in mice through blockage of Fas/FasL pathway. Exp Cell Res 2019; 381:208-214. [PMID: 31009621 DOI: 10.1016/j.yexcr.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
The multiple roles of microRNA-204-5p (miR-204-5p) in numerous types of cancer have been reported, but its function in renal ischemia-reperfusion injury (RIRI) remains unclear. In this study, we aim to explore whether miR-204-5p was implicated in the RIRI in mice via regulating the Fas/Fas ligand (FasL) pathway. Firstly, the Gene Expression Omnibus (GEO) database was used to screen RIRI-related differentially expressed genes (DEGs). Then, RIRI mouse model was established, and the role of miR-204-5p and FasL in RIRI was explored by ectopic expression, depletion and reporter assay experiments. The blood urea nitrogen (BUN) and serum creatinine (Scr) levels in serum, as well as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in renal tissues of mice were also measured. Afterwards, the regulatory role of miR-204-5p on Fas/FasL pathway in RIRI was investigated. Renal tissues from RIRI mice showed lower miR-204-5p expression and higher Fas and FasL expression. FasL was identified as a direct target gene of miR-204-5p. In addition, the increased levels of BUN, Scr and MDA, as well as decreased levels of SOD and GSH-Px in RIRI mice were reversed by elevation of miR-204-5p and blockage of the Fas/FasL pathway. Taken together, this study demonstrated that increased miR-204-5p might suppress RIRI in mice through suppressing Fas/FasL pathway by targeting FasL.
Collapse
Affiliation(s)
- Yunfeng Zhu
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Xiaohui Yin
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Junxu Li
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Lei Zhang
- Department of Kidney Medicine, Linyi City People's Hospital, No. 27, Eastern Section of Jiefang Road, Linyi, 276000, PR China.
| |
Collapse
|
21
|
Lai J, Wang H, Pan Z, Su F. A novel six-microRNA-based model to improve prognosis prediction of breast cancer. Aging (Albany NY) 2019; 11:649-662. [PMID: 30696800 PMCID: PMC6366967 DOI: 10.18632/aging.101767] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
Abstract
Current tumor-node-metastasis (TNM) stage is unable to accurately predict the overall survival (OS) in breast cancer (BC) patients. This study aimed to construct a microRNA (miRNA)-based model to improve survival prediction of BC. We confirmed 99 differentially expressed miRNAs (DEMs) in 1044 BC samples compared to 102 adjacent normal breast tissues from The Cancer Genome Atlas (TCGA) database. Prognostic DEMs were used to establish a miRNA-based nomogram via Cox regression model. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) were executed to analyze target genes of miRNAs. A six-miRNA signature was screened to effectively distinguish high-risk patients in the primary and validation cohort (all P<0.001). Furthermore, we established a novel prognostic model incorporating the six-miRNA signature and clinical risk factors to predict 5-year OS of BC. Time-dependent receiver operating characteristic analysis suggested that the predictive accuracy of the six-miRNA-based nomogram was distinctly higher than that of TNM stage (0.758 vs 0.650, P<0.001). GO and KEGG pathway analyses showed that the 39 target genes mainly enrichment in protein binding, cytoplasm and MAPK signaling pathway. Our six-miRNA-based model is a reliable prognostic tool for survival prediction and provides information for individualized treatment decisions in BC patients.
Collapse
Affiliation(s)
- Jianguo Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongli Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Zhang J, Ye Y, Chang DW, Lin SH, Huang M, Tannir NM, Matin S, Karam JA, Wood CG, Chen ZN, Wu X. Global and Targeted miRNA Expression Profiling in Clear Cell Renal Cell Carcinoma Tissues Potentially Links miR-155-5p and miR-210-3p to both Tumorigenesis and Recurrence. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2487-2496. [PMID: 30201497 PMCID: PMC6207099 DOI: 10.1016/j.ajpath.2018.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
About 30% of patients undergoing nephrectomy for renal cell carcinoma (RCC) experience disease recurrence. We profiled miRNAs dysregulated in clear-cell (cc) RCC tumor tissues and predictive of recurrence. The expression levels of 800 miRNAs were assessed in paired tumor and normal tissues from a discovery cohort of 18 ccRCC patients. miRNAs found to be differentially expressed were examined in a validation set of 205 patients, using real-time quantitative PCR. Tumor-normal data from 64 patients in The Cancer Genome Atlas were used for external validation. Twenty-eight miRNAs were consistently dysregulated in tumor tissues. On dichotomized analysis, patients with high levels of miR-155-5p and miR-210-3p displayed an increased risk for ccRCC recurrence (hazard ratio, 2.64; 95% CI, 1.49 to 4.70; P = 0.0009; and hazard ratio, 1.80; 95% CI, 1.04 to 3.12; P = 0.036, respectively) and a shorter median recurrence-free survival time than did patients with low levels [P < 0.01 (log rank test)]. A risk score was generated based on the expression levels of miR-155-5p and miR-210-3p, and the trend test was significant (P = 0.005). On pathway analysis, target genes regulated by miR-155-5p and miR-210-3p were mainly enriched in inflammation-related pathways. We identified and validated multiple miRNAs dysregulated in ccRCC tissues; miR-155-5p and miR-210-3p were predictive of ccRCC recurrence, pointing to potential utility as biomarkers and underlying biological mechanisms.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surena Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi-Nan Chen
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China; Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, China
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
23
|
Wang L, Wei WQ, Wu ZY, Wang GC. MicroRNA-590-5p regulates cell viability, apoptosis, migration and invasion of renal cell carcinoma cell lines through targeting ARHGAP24. MOLECULAR BIOSYSTEMS 2018; 13:2564-2573. [PMID: 29019371 DOI: 10.1039/c7mb00406k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Renal cell carcinoma (RCC) is the leading cause of death in renal malignancies. MicroRNA-590-5p (miR-590-5p) is of great importance in the processes of many cancers regarding regulation of cancer cell invasion and proliferation. In our study, alternation of miR-590-5p expression in RCC cell lines through transfection with pre-miR-590-5p (up-regulation) or anti-miR-590-5p (down-regulation) was performed. Apoptosis and viability of RCC cell lines were measured by flow cytometry and CCK-8 analysis, respectively. Cell invasion and migration were estimated by Transwell assay. The association of miR-590-5p with ARHGAP24 expression was evaluated using luciferase assays, real-time PCR and western blot assay. The expressions of apoptosis and migration-related protein were also measured by western blotting. We found that pre-miR-590-5p transfection in Caki-2 and 786-O cells showed significant increases in cell viability, invasion and migration, which were accompanied by decreased cell apoptosis, while anti-miR-590-5p transfection obviously inhibited the cell viability, migration and invasion of Caki-2 and 786-O cells as well as induced apoptosis, compared with the negative control group. Furthermore, bioinformatics combined with luciferase reporter assays indicated that ARHGAP24 is directly targeted by miR-590-5p. ARHGAP24 overexpression in 786-O and Caki-2 cells phenocopied the effects of anti-miR-590-5p transfection along with enhanced expression of active Caspase-3 and Bax/Bcl-2 ratio as well as decreased expression of MMP-2 and MMP-9. These findings suggested that miR-590-5p/ARHGAP24 seems to function as a potentially beneficial target for RCC treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223200, China
| | | | | | | |
Collapse
|
24
|
Palkina N, Komina A, Aksenenko M, Moshev A, Savchenko A, Ruksha T. miR-204-5p and miR-3065-5p exert antitumor effects on melanoma cells. Oncol Lett 2018; 15:8269-8280. [PMID: 29844810 PMCID: PMC5958817 DOI: 10.3892/ol.2018.8443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR)-204-5p was previously identified to be downregulated in melanoma compared with melanocytic nevi. This observation prompted a functional study on miR-204-5p and the newly-identified miR-3065-5p, two miRNAs suggested to be tumor-suppressive oncomiRs. Application of miR-204-5p mimics or inhibitors resulted in a decrease or increase, respectively, in melanoma cell proliferation and colony formation. miR-204-5p mimics hindered invasion, whereas miR-204-5p inhibitors stimulated cancer cell migration. Modulation of miR-3065-5p led to a decrease in melanoma cell proliferation, altered cell cycle distribution and increased expression levels of its target genes HIPK1 and ITGA1, possibly due to functional modifications identified in these cells. miR-204-5p and miR-3065-5p demonstrated antitumor capacities that may need to be taken into account in the development of melanoma treatment approaches.
Collapse
Affiliation(s)
- Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anna Komina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maria Aksenenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anton Moshev
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Andrei Savchenko
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review summarizes recent data supporting the concept that urinary microRNAs are a useful new class of biomarker. They may improve capacity to stratify patients with chronic kidney disease according to risk of progression, and may also inform about response to therapy. RECENT FINDINGS MicroRNAs are present, stable and readily quantifiable in tissues and body fluids, including urine, and have widespread importance as regulators in the kidney. Urinary microRNAs are typically released from the nephron or downstream structures, and their abundance may reflect altered microRNA expression in the kidney, or release into the lumen by the cells comprising the different regions of the nephron. As a consequence, abundance of specific microRNAs in the urine may change in various pathological states. Large-scale studies are now needed, to test the capacity of specific microRNAs to inform about risk and response to therapy. SUMMARY Urinary microRNAs appear useful sentinels for pathological processes occurring in the kidney and may enable a 'personalized medicine' approach to the management and stratification of renal disease.
Collapse
|
26
|
Strauss P, Marti HP, Beisland C, Scherer A, Lysne V, Leh S, Flatberg A, Koch E, Beisvag V, Landolt L, Skogstrand T, Eikrem Ø. Expanding the Utilization of Formalin-Fixed, Paraffin-Embedded Archives: Feasibility of miR-Seq for Disease Exploration and Biomarker Development from Biopsies with Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2018. [PMID: 29534467 PMCID: PMC5877664 DOI: 10.3390/ijms19030803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Novel predictive tools for clear cell renal cell carcinoma (ccRCC) are urgently needed. MicroRNAs (miRNAs) have been increasingly investigated for their predictive value, and formalin-fixed paraffin-embedded biopsy archives may potentially be a valuable source of miRNA sequencing material, as they remain an underused resource. Core biopsies of both cancerous and adjacent normal tissues were obtained from patients (n = 12) undergoing nephrectomy. After small RNA-seq, several analyses were performed, including classifier evaluation, obesity-related inquiries, survival analysis using publicly available datasets, comparisons to the current literature and ingenuity pathway analyses. In a comparison of tumour vs. normal, 182 miRNAs were found with significant differential expression; miR-155 was of particular interest as it classified all ccRCC samples correctly and correlated well with tumour size (R² = 0.83); miR-155 also predicted poor survival with hazard ratios of 2.58 and 1.81 in two different TCGA (The Cancer Genome Atlas) datasets in a univariate model. However, in a multivariate Cox regression analysis including age, sex, cancer stage and histological grade, miR-155 was not a statistically significant survival predictor. In conclusion, formalin-fixed paraffin-embedded biopsy tissues are a viable source of miRNA-sequencing material. Our results further support a role for miR-155 as a promising cancer classifier and potentially as a therapeutic target in ccRCC that merits further investigation.
Collapse
Affiliation(s)
- Philipp Strauss
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Urology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andreas Scherer
- Spheromics, 81100 Kontiolahti, Finland;
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00100 Helsinki, Finland
| | - Vegard Lysne
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.F.); (V.B.)
| | - Even Koch
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Vidar Beisvag
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.F.); (V.B.)
| | - Lea Landolt
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Trude Skogstrand
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Biomedicine, University of Bergen, 5021 Bergen, Norway;
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: ; Tel.: +47-4544-6008
| |
Collapse
|
27
|
Zhu Y, Zhang HL, Wang QY, Chen MJ, Liu LB. Overexpression of microRNA-612 Restrains the Growth, Invasion, and Tumorigenesis of Melanoma Cells by Targeting Espin. Mol Cells 2018; 41:119-126. [PMID: 29385671 PMCID: PMC5824021 DOI: 10.14348/molcells.2018.2235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/18/2017] [Accepted: 11/24/2017] [Indexed: 01/04/2023] Open
Abstract
microRNA (miR)-612 shows anticancer activity in several types of cancers, yet its function in melanoma is still unclear. This study was undertaken to investigate the expression of miR-612 and its biological relevance in melanoma cell growth, invasion, and tumorigenesis. The expression and prognostic significance of miR-612 in melanoma were examined. The effects of miR-612 overexpression on cell proliferation, colony formation, tumorigenesis, and invasion were determined. Rescue experiments were conducted to identify the functional target gene(s) of miR-612. miR-612 was significantly downregulated in melanoma tissues compared to adjacent normal tissues. Low miR-612 expression was significantly associated with melanoma thickness, lymph node metastasis, and shorter overall, and disease-free survival of patients. Overexpression of miR-612 significantly decreased cell proliferation, colony formation, and invasion of SK-MEL-28 and A375 melanoma cells. In vivo tumorigenic studies confirmed that miR-612 overexpression retarded the growth of A375 xenograft tumors, which was coupled with a decline in the percentage of Ki-67-positive proliferating cells. Mechanistically, miR-612 targeted Espin in melanoma cells. Overexpression of Espin counteracted the suppressive effects of miR-612 on melanoma cell proliferation, invasion, and tumorigenesis. A significant inverse correlation (r = -0.376, P = 0.018) was observed between miR-612 and Espin protein expression in melanoma tissues. In addition, overexpression of miR-612 and knockdown of Espin significantly increased the sensitivity of melanoma cells to doxorubicin. Collectively, miR-612 suppresses the aggressive phenotype of melanoma cells through downregulation of Espin. Delivery of miR-612 may represent a novel therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Hao-liang Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Qi-ying Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Min-jing Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Lin-bo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| |
Collapse
|
28
|
Han Z, Zhang Y, Sun Y, Chen J, Chang C, Wang X, Yeh S. ERβ-Mediated Alteration of circATP2B1 and miR-204-3p Signaling Promotes Invasion of Clear Cell Renal Cell Carcinoma. Cancer Res 2018; 78:2550-2563. [PMID: 29490945 DOI: 10.1158/0008-5472.can-17-1575] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 12/14/2017] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
Early studies have indicated that estrogen receptor beta (ERβ) can influence the progression of clear cell renal cell carcinoma (ccRCC). Here, we report the mechanistic details of ERβ-mediated progression of ccRCC. ERβ increased ccRCC cell invasion via suppression of circular RNA ATP2B1 (circATP2B1) expression by binding directly to the 5' promoter region of its host gene ATPase plasma membrane Ca2+ transporting 1 (ATP2B1). ERβ-suppressed circATP2B1 then led to reduced miR-204-3p, which increased fibronectin 1 (FN1) expression and enhanced ccRCC cell invasion. Targeting ERβ with shRNA suppressed ccRCC metastasis in a murine model of RCC; adding circATP2B1 shRNA partly reversed this effect. Consistent with these experimental results, ccRCC patient survival data from The Cancer Genome Atlas indicated that a patient with higher ERβ and FN1 expression had worse overall survival and a patient with higher miR-204-3p expression had significantly better overall survival. Together, these results suggest that ERβ promotes ccRCC cell invasion by altering the ERβ/circATP2B1/miR-204-3p/FN1 axis and that therapeutic targeting of this newly identified pathway may better prevent ccRCC progression.Significance: These results identify an ERβ/circATP2B1/miR-204-3p/FN1 signaling axis in RCC, suggesting ERβ and circular RNA ATP2B1 as prognostic biomarkers for this disease. Cancer Res; 78(10); 2550-63. ©2018 AACR.
Collapse
Affiliation(s)
- Zhenwei Han
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
- George Whipple Lab for Cancer Research, Departments of Urology, Pathology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yong Zhang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Urology, Pathology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Jiaqi Chen
- George Whipple Lab for Cancer Research, Departments of Urology, Pathology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Urology, Pathology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Xiaolu Wang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Urology, Pathology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
29
|
He YH, Chen C, Shi Z. The biological roles and clinical implications of microRNAs in clear cell renal cell carcinoma. J Cell Physiol 2017; 233:4458-4465. [PMID: 29215721 DOI: 10.1002/jcp.26347] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for about 3% of tumors in adults as well as 85% of all primary renal carcinoma. And it is the third most predominant urological carcinoma, but it has the maximum mortality rate. Early diagnosis and proper follow-up of ccRCC patients may improve the prognosis of the illness. Thus, it is imperative to understand the new biomarkers of ccRCC and study new method for the modern therapy of this deadly disease. Furthermore, a large number of microRNAs (miRNAs), small non-coding RNAs, have been relevant to tumor type, stage, or survival and miRNAs might be progressed as the markers of diagnosis or prognosis in ccRCC. A growing body of data also advised the rationality of regarding miRNAs as therapeutic targets for ccRCC treatment. In this review, we tried to summarize biogenesis of miRNAs and their expression profiles, biological roles, and clinical implications in ccRCC.
Collapse
Affiliation(s)
- Ying-Hua He
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Chen Chen
- Department of PIVAS, Binhu Hospital of Hefei City, Hefei, Anhui Province, China
| | - Zheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Hu G. MicroRNA-139: a potential diagnostic and therapeutic target for cancers. Hum Pathol 2017; 70:142-143. [PMID: 28823570 DOI: 10.1016/j.humpath.2017.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Guxiu Hu
- Department of Pharmacy, Binhu Hospital of Hefei City, The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui Province, China.
| |
Collapse
|
31
|
MicroRNAs, promising biomarkers in the diagnosis of Xp11 translocation RCC. Hum Pathol 2017; 68:205-206. [PMID: 28807734 DOI: 10.1016/j.humpath.2017.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 11/22/2022]
|
32
|
Marchionni L, Netto GJ, Hoque MO, Argani P. MicroRNAs, promising biomarkers in the diagnosis of Xp11 translocation RCC-reply. Hum Pathol 2017; 68:206-207. [PMID: 28811253 DOI: 10.1016/j.humpath.2017.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Luigi Marchionni
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA; Center for Computational Genomics, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mohammad O Hoque
- Department of Otolaryngology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
33
|
Liang B, Zhao J, Wang X. A three-microRNA signature as a diagnostic and prognostic marker in clear cell renal cancer: An In Silico analysis. PLoS One 2017; 12:e0180660. [PMID: 28662155 PMCID: PMC5491330 DOI: 10.1371/journal.pone.0180660] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has demonstrated that some specific miRNAs were aberrantly expressed in renal clear cell carcinoma and participated in many biological processes. The aim of this study was to investigate a panel of miRNA signature for diagnosis and prognosis of renal clear cell carcinoma (KIRC). Here, we performed a comprehensive analysis for miRNA expression profiles and corresponding clinical information of 516 KIRC patients from The Cancer Genome Atlas (TCGA). In the study, a total of 63 differentially expressed miRNAs were identified, of which 34 were up-regulated and 29 were down-regulated. We constructed a panel of three-miRNA that were significantly associated with KIRC diagnosis and KIRC patients' prognosis. The three-miRNA signature reached a sensitivity of 98.3% and a specificity of 97.2% in the diagnosis of KIRC. Using the three-miRNA signature, we classified the KIRC patients into high-risk group and low-risk group. The Kaplan- Meier curves showed that KIRC patients with high risk scores had significantly worsen overall survival (OS) and disease free survival (DFS) than KIRC patients with low risk scores. In the univariate and multivariate Cox regression analysis, three-miRNA signature was an independent prognostic factor in OS. In conclusion, the three-miRNA signature could be used as a diagnostic and prognostic biomarker in KIRC, and therefore, may help to provide significant clinical implication for the treatment of KIRC.
Collapse
Affiliation(s)
- Bin Liang
- Department of Bioinformatics, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
- * E-mail:
| | - Jianying Zhao
- Department of Clinical Laboratory, No. 202 Hospital of PLA, Shenyang, China
- Graduate School, Jinzhou Medical University, Jinzhou, China
| | - Xuan Wang
- Graduate School, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Shu X, Purdue MP, Ye Y, Tu H, Wood CG, Tannir NM, Wang Z, Albanes D, Gapstur SM, Stevens VL, Rothman N, Chanock SJ, Wu X. Potential Susceptibility Loci Identified for Renal Cell Carcinoma by Targeting Obesity-Related Genes. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28626070 DOI: 10.1158/1055-9965.epi-17-0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Obesity is an established risk factor for renal cell carcinoma (RCC). Although genome-wide association studies (GWAS) of RCC have identified several susceptibility loci, additional variants might be missed due to the highly conservative selection.Methods: We conducted a multiphase study utilizing three independent genome-wide scans at MD Anderson Cancer Center (MDA RCC GWAS and MDA RCC OncoArray) and National Cancer Institute (NCI RCC GWAS), which consisted of a total of 3,530 cases and 5,714 controls, to investigate genetic variations in obesity-related genes and RCC risk.Results: In the discovery phase, 32,946 SNPs located at ±10 kb of 2,001 obesity-related genes were extracted from MDA RCC GWAS and analyzed using multivariable logistic regression. Proxies (R2 > 0.8) were searched or imputation was performed if SNPs were not directly genotyped in the validation sets. Twenty-one SNPs with P < 0.05 in both MDA RCC GWAS and NCI RCC GWAS were subsequently evaluated in MDA RCC OncoArray. In the overall meta-analysis, significant (P < 0.05) associations with RCC risk were observed for SNP mapping to IL1RAPL2 [rs10521506-G: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10-5], PLIN2 [rs2229536-A: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10-5], SMAD3 [rs4601989-A: ORmeta = 0.86 (0.80-0.93), Pmeta = 2.71 × 10-4], MED13L [rs10850596-A: ORmeta = 1.14 (1.07-1.23), Pmeta = 1.50 × 10-4], and TSC1 [rs3761840-G: ORmeta = 0.90 (0.85-0.97), Pmeta = 2.47 × 10-3]. We did not observe any significant cis-expression quantitative trait loci effect for these SNPs in the TCGA KIRC data.Conclusions: Taken together, we found that genetic variation of obesity-related genes could influence RCC susceptibility.Impact: The five identified loci may provide new insights into disease etiology that reveal importance of obesity-related genes in RCC development. Cancer Epidemiol Biomarkers Prev; 26(9); 1436-42. ©2017 AACR.
Collapse
Affiliation(s)
- Xiang Shu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huakang Tu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Victoria L Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
35
|
Role of Nerve Growth Factor (NGF) and miRNAs in Epithelial Ovarian Cancer. Int J Mol Sci 2017; 18:ijms18030507. [PMID: 28245631 PMCID: PMC5372523 DOI: 10.3390/ijms18030507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is the eighth most common cancer in women worldwide, and epithelial ovarian cancer (EOC) represents 90% of cases. Nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A receptor (TRKA) have been associated with the development of several types of cancer, including EOC; both NGF and TRKA levels are elevated in this pathology. EOC presents high angiogenesis and several molecules have been reported to induce this process. NGF increases angiogenesis through its TRKA receptor on endothelial cells, and by indirectly inducing vascular endothelial growth factor expression. Other molecules controlled by NGF include ciclooxigenase-2, disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) and calreticulin (CRT), proteins involved in crucial processes needed for EOC progression. These molecules could be modified through microRNA regulation, which could be regulated by NGF. MicroRNAs are the widest family of non-coding RNAs; they bind to 3'-UTR of mRNAs to inhibit their translation, to deadenilate or to degraded them. In EOC, a deregulation in microRNA expression has been described, including alterations of miR-200 family, cluster-17-92, and miR-23b, among others. Since the NGF-microRNA relationship in pathologies has not been studied, this review proposes that some microRNAs could be associated with NGF/TRKA activation, modifying protein levels needed for EOC progression.
Collapse
|