1
|
Li Y, Duan H, Yi J, Wang G, Cheng W, Feng L, Liu J. Kv4.2 phosphorylation by PKA drives Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization. Am J Physiol Cell Physiol 2022; 323:C190-C201. [PMID: 35508186 DOI: 10.1152/ajpcell.00307.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic regulation of the Kv4.2 transient outward potassium current is critical for the acute electrical and contractile response of the myocardium under physiological and pathological conditions. Previous studies have suggested that KChIP2, the key auxiliary subunit of Kv4 channels, is required for the sympathetic regulation of Kv4.2 current densities. Of interest, Kv4.2 and KChIP2, and key components mediating acute sympathetic signaling transduction are present in lipid rafts, which are profoundly involved in regulation of Ito densities in rat ventricular myocytes. However, little is known about the mechanisms of Kv4.2-raft association and its connection with acute sympathetic regulation. With the aid of high-resolution fluorescent microscope, we demonstrate that KChIP2 assists Kv4.2 localization in lipid rafts in HEK293 cells. Moreover, PKA-mediated Kv4.2 phosphorylation, the downstream signaling event of acute sympathetic stimulation, induced dissociation between Kv4.2 and KChIP2, resulting in Kv4.2 shifting out of lipid rafts in KChIP2-expressed HEK293.The mutation that mimics Kv4.2 phosphorylation by PKA similarly disrupted Kv4.2 interaction with KChIP2 and also decreased the surface stability of Kv4.2. The attenuated Kv4.2-KChIP2 interaction was also observed in native neonatal rat ventricular myocytes (NRVMs) upon acute adrenergic stimulation with phenylephrine (PE). Furthermore, PE accelerated internalization of Kv4.2 in native NRVMs, but disruption of lipid rafts dampens this reaction. In conclusion, KChIP2 contributes to targeting Kv4.2 to lipid rafts. Acute adrenergic stimulation induces Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization, reinforcing the critical role of Kv4.2-lipid raft association in the essential physiological response of Ito to acute sympathetic regulation.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Haixia Duan
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Gang Wang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Wanwen Cheng
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Jie Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Hu Z, Liu J, Zhou L, Tian X, Abbott GW. AKT and ERK1/2 activation via remote ischemic preconditioning prevents Kcne2-dependent sudden cardiac death. Physiol Rep 2020; 7:e13957. [PMID: 30737904 PMCID: PMC6368489 DOI: 10.14814/phy2.13957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
Sudden cardiac death (SCD) is the leading global cause of mortality. SCD often arises from cardiac ischemia reperfusion (IR) injury, pathologic sequence variants within ion channel genes, or a combination of the two. Alternative approaches are needed to prevent or ameliorate ventricular arrhythmias linked to SCD. Here, we investigated the efficacy of remote ischemic preconditioning (RIPC) of the limb versus the liver in reducing ventricular arrhythmias in a mouse model of SCD. Mice lacking the Kcne2 gene, which encodes a potassium channel β subunit associated with acquired Long QT syndrome were exposed to IR injury via coronary ligation. This resulted in ventricular arrhythmias in all mice (15/15) and SCD in 5/15 mice during reperfusion. Strikingly, prior RIPC (limb or liver) greatly reduced the incidence and severity of all ventricular arrhythmias and completely prevented SCD. Biochemical and pharmacological analysis demonstrated that RIPC cardioprotection required ERK1/2 and/or AKT phosphorylation. A lack of alteration in GSK‐3β phosphorylation suggested against conventional reperfusion injury salvage kinase (RISK) signaling pathway protection. If replicated in human studies, limb RIPC could represent a noninvasive, nonpharmacological approach to limit dangerous ventricular arrhythmias associated with ischemia and/or channelopathy‐linked SCD.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Leng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Tian
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
3
|
Peraza DA, Cercós P, Miaja P, Merinero YG, Lagartera L, Socuéllamos PG, Izquierdo García C, Sánchez SA, López-Hurtado A, Martín-Martínez M, Olivos-Oré LA, Naranjo JR, Artalejo AR, Gutiérrez-Rodríguez M, Valenzuela C. Identification of IQM-266, a Novel DREAM Ligand That Modulates K V4 Currents. Front Mol Neurosci 2019; 12:11. [PMID: 30787866 PMCID: PMC6373780 DOI: 10.3389/fnmol.2019.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
Downstream Regulatory Element Antagonist Modulator (DREAM)/KChIP3/calsenilin is a neuronal calcium sensor (NCS) with multiple functions, including the regulation of A-type outward potassium currents (I A). This effect is mediated by the interaction between DREAM and KV4 potassium channels and it has been shown that small molecules that bind to DREAM modify channel function. A-type outward potassium current (I A) is responsible of the fast repolarization of neuron action potentials and frequency of firing. Using surface plasmon resonance (SPR) assays and electrophysiological recordings of KV4.3/DREAM channels, we have identified IQM-266 as a DREAM ligand. IQM-266 inhibited the KV4.3/DREAM current in a concentration-, voltage-, and time-dependent-manner. By decreasing the peak current and slowing the inactivation kinetics, IQM-266 led to an increase in the transmembrane charge ( Q K V 4.3 / DREAM ) at a certain range of concentrations. The slowing of the recovery process and the increase of the inactivation from the closed-state inactivation degree are consistent with a preferential binding of IQM-266 to a pre-activated closed state of KV4.3/DREAM channels. Finally, in rat dorsal root ganglion neurons, IQM-266 inhibited the peak amplitude and slowed the inactivation of I A. Overall, the results presented here identify IQM-266 as a new chemical tool that might allow a better understanding of DREAM physiological role as well as modulation of neuronal I A in pathological processes.
Collapse
Affiliation(s)
- Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Cercós
- Instituto de Química Médica (IQM), IQM-CSIC, Madrid, Spain
| | - Pablo Miaja
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Yaiza G Merinero
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - Sara A Sánchez
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Alejandro López-Hurtado
- Centro Nacional de Biotecnología (CNB), CNB-CSIC, Madrid, Spain.,Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis A Olivos-Oré
- Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | - José R Naranjo
- Centro Nacional de Biotecnología (CNB), CNB-CSIC, Madrid, Spain.,Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio R Artalejo
- Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Lainez S, Doray A, Hancox JC, Cannell MB. Regulation of Kv4.3 and hERG potassium channels by KChIP2 isoforms and DPP6 and response to the dual K + channel activator NS3623. Biochem Pharmacol 2018; 150:120-130. [PMID: 29378180 PMCID: PMC5906734 DOI: 10.1016/j.bcp.2018.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Abstract
Transient outward potassium current (Ito) contributes to early repolarization of many mammalian cardiac action potentials, including human, whilst the rapid delayed rectifier K+ current (IKr) contributes to later repolarization. Fast Ito channels can be produced from the Shal family KCNDE gene product Kv4.3s, although accessory subunits including KChIP2.x and DPP6 are also needed to produce a near physiological Ito. In this study, the effect of KChIP2.1 & KChIP2.2 (also known as KChIP2b and KChIP2c respectively), alone or in conjunction with the accessory subunit DPP6, on both Kv4.3 and hERG were evaluated. A dual Ito and IKr activator, NS3623, has been recently proposed to be beneficial in heart failure and the action of NS3623 on the two channels was also investigated. Whole-cell patch-clamp experiments were performed at 33 ± 1 °C on HEK293 cells expressing Kv4.3 or hERG in the absence or presence of these accessory subunits. Kv4.3 current magnitude was augmented by co-expression with either KChIP2.2 or KChIP2.1 and KChIP2/DPP6 with KChIP2.1 producing a greater effect than KChIP2.2. Adding DPP6 removed the difference in Kv4.3 augmentation between KChIP2.1 and KChIP2.2. The inactivation rate and recovery from inactivation were also altered by KChIP2 isoform co-expression. In contrast, hERG (Kv11.1) current was not altered by co-expression with KChIP2.1, KChIP2.2 or DPP6. NS3623 increased Kv4.3 amplitude to a similar extent with and without accessory subunit co-expression, however KChIP2 isoforms modulated the compound’s effect on inactivation time course. The agonist effect of NS3623 on hERG channels was not affected by KChIP2.1, KChIP2.2 or DPP6 co-expression.
Collapse
Affiliation(s)
- Sergio Lainez
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Adélaïde Doray
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
5
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Kirsch GE, Obejero-Paz CA, Bruening-Wright A. Functional Characterization of Human Stem Cell-Derived Cardiomyocytes. ACTA ACUST UNITED AC 2016; 64:11.12.1-26. [PMID: 25152802 DOI: 10.1002/0471141755.ph1112s64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac toxicity is a leading contributor to late-stage attrition in the drug discovery process and to withdrawal of approved from the market. In vitro assays that enable earlier and more accurate testing for cardiac risk provide early stage predictive indicators that aid in mitigating risk. Human cardiomyocytes, the most relevant subjects for early stage testing, are severely limited in supply. But human stem cell-derived cardiomyocytes (SC-hCM) are readily available from commercial sources and are increasingly used in academic research, drug discovery and safety pharmacology. As a result, SC-hCM electrophysiology has become a valuable tool to assess cardiac risk associated with drugs. This unit describes techniques for recording individual currents carried by sodium, calcium and potassium ions, as well as single cell action potentials, and impedance recordings from contracting syncytia of thousands of interconnected cells.
Collapse
|
7
|
Flecainide-induced prolongation of ventricular repolarization contributes to the proarrhythmic profile of action. Int J Cardiol 2015; 197:81-2. [DOI: 10.1016/j.ijcard.2015.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/18/2015] [Indexed: 11/20/2022]
|
8
|
Ma SF, Luo Y, Ding YJ, Chen Y, Pu SX, Wu HJ, Wang ZF, Tao BB, Wang WW, Zhu YC. Hydrogen Sulfide Targets the Cys320/Cys529 Motif in Kv4.2 to Inhibit the Ito Potassium Channels in Cardiomyocytes and Regularizes Fatal Arrhythmia in Myocardial Infarction. Antioxid Redox Signal 2015; 23:129-47. [PMID: 25756524 PMCID: PMC4492614 DOI: 10.1089/ars.2014.6094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. RESULTS H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. INNOVATION AND CONCLUSION H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation.
Collapse
Affiliation(s)
- Shan-Feng Ma
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China .,2 Department of Physiology, Bengbu Medical College , Bengbu, China
| | - Yan Luo
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Ying-Jiong Ding
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Ying Chen
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Shi-Xin Pu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Hang-Jing Wu
- 3 Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Zhong-Feng Wang
- 3 Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Bei-Bei Tao
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Wen-Wei Wang
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China
| | - Yi-Chun Zhu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College , Shanghai, China
| |
Collapse
|
9
|
Crump SM, Abbott GW. Arrhythmogenic KCNE gene variants: current knowledge and future challenges. Front Genet 2014; 5:3. [PMID: 24478792 PMCID: PMC3900874 DOI: 10.3389/fgene.2014.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/04/2014] [Indexed: 11/13/2022] Open
Abstract
There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances.
Collapse
Affiliation(s)
- Shawn M Crump
- Bioelectricity Laboratory, Department of Pharmacology, Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology, Department of Physiology and Biophysics, School of Medicine, University of California Irvine, CA, USA
| |
Collapse
|
10
|
Swale DR, Kharade SV, Denton JS. Cardiac and renal inward rectifier potassium channel pharmacology: emerging tools for integrative physiology and therapeutics. Curr Opin Pharmacol 2013; 15:7-15. [PMID: 24721648 DOI: 10.1016/j.coph.2013.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023]
Abstract
Inward rectifier potassium (Kir) channels play fundamental roles in cardiac and renal function and may represent unexploited drug targets for cardiovascular diseases. However, the limited pharmacology of Kir channels has slowed progress toward exploring their integrative physiology and therapeutic potential. Here, we review recent progress toward developing the small-molecule pharmacology for Kir2.x, Kir4.1, and Kir7.1 and discuss common mechanistic themes that may help guide future Kir channel-directed drug discovery efforts.
Collapse
Affiliation(s)
- Daniel R Swale
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Sujay V Kharade
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
11
|
|
12
|
Cerrone M, Noorman M, Lin X, Chkourko H, Liang FX, van der Nagel R, Hund T, Birchmeier W, Mohler P, van Veen TA, van Rijen HV, Delmar M. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc Res 2012; 95:460-8. [PMID: 22764151 DOI: 10.1093/cvr/cvs218] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS The shRNA-mediated loss of expression of the desmosomal protein plakophilin-2 leads to sodium current (I(Na)) dysfunction. Whether pkp2 gene haploinsufficiency leads to I(Na) deficit in vivo remains undefined. Mutations in pkp2 are detected in arrhythmogenic right ventricular cardiomyopathy (ARVC). Ventricular fibrillation and sudden death often occur in the 'concealed phase' of the disease, prior to overt structural damage. The mechanisms responsible for these arrhythmias remain poorly understood. We sought to characterize the morphology, histology, and ultrastructural features of PKP2-heterozygous-null (PKP2-Hz) murine hearts and explore the relation between PKP2 abundance, I(Na) function, and cardiac electrical synchrony. METHODS AND RESULTS Hearts of PKP2-Hz mice were characterized by multiple methods. We observed ultrastructural but not histological or gross anatomical differences in PKP2-Hz hearts compared with wild-type (WT) littermates. Yet, in myocytes, decreased amplitude and a shift in gating and kinetics of I(Na) were observed. To further unmask I(Na) deficiency, we exposed myocytes, Langendorff-perfused hearts, and anaesthetized animals to a pharmacological challenge (flecainide). In PKP2-Hz hearts, the extent of flecainide-induced I(Na) block, impaired ventricular conduction, and altered electrocardiographic parameters were larger than controls. Flecainide provoked ventricular arrhythmias and death in PKP2-Hz animals, but not in the WT. CONCLUSIONS PKP2 haploinsufficiency leads to I(Na) deficit in murine hearts. Our data support the notion of a cross-talk between desmosome and sodium channel complex. They also suggest that I(Na) dysfunction may contribute to generation and/or maintenance of arrhythmias in PKP2-deficient hearts. Whether pharmacological challenges could help unveil arrhythmia risk in patients with mutations or variants in PKP2 remains undefined.
Collapse
Affiliation(s)
- Marina Cerrone
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome. Expert Rev Mol Med 2011; 13:e38. [DOI: 10.1017/s1462399411002092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The single-pass transmembrane protein KCNE2 or MIRP1 was once thought to be the missing accessory protein that combined with hERG to fully recapitulate the cardiac repolarising current IKr. As a result of this role, it was an easy next step to associate mutations in KCNE2 to long QT syndrome, in which there is delayed repolarisation of the heart. Since that time however, KCNE2 has been shown to modify the behaviour of several other channels and currents, and its role in the heart and in the aetiology of long QT syndrome has become less clear. In this article, we review the known interactions of the KCNE2 protein and the resulting functional effects, and the effects of mutations in KCNE2 and their clinical role.
Collapse
|
14
|
Kanyshkova T, Broicher T, Meuth SG, Pape HC, Budde T. A-type K+ currents in intralaminar thalamocortical relay neurons. Pflugers Arch 2011; 461:545-56. [PMID: 21437601 DOI: 10.1007/s00424-011-0953-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
Abstract
Transient A-type K+ currents (I(A)) are known to influence the firing pattern of a number of thalamic cell types, but have not been investigated in intralaminar thalamocortical (TC) relay neurons yet. We therefore combined whole-cell patch-clamp techniques, PCR analysis, and immunohistochemistry to investigate the voltage-dependent and pharmacological properties of I(A) and to determine its molecular basis in TC neurons from the centrolateral, paracentral, and centromedial thalamic nuclei. I(A) revealed half-maximal (V (h)) activation and inactivation at about -17 and -67 mV, respectively. At a concentration of 5-10 mM 4-aminopyridine (4-AP) completely blocked I(A). Furthermore, I(A) was nearly unaffected by two sea anemone toxins (blood depressing substances 1 and 2, BDS1 and BDS2; 6-8% block at a concentration of 1 μM) but strongly sensitive to the K(V)4 channel blocker Heteropoda venatoria toxin 2 (HpTx2; about 45% block at a concentration of 5 μM). PCR screening revealed the expression of K(V)4.1-4.3, with strongest expression for K(V)4.2 and weak expression for K(V)4.1. Accordingly K(V)4.1 was not detected in immunohistochemical staining. Furthermore, K(V)4.2 and K(V)4.3 revealed mainly dendritic and somatic staining, respectively. Together with current clamp recordings, these findings point to a scenario where the fast transient I(A) in intralaminar TC neurons has a depolarized threshold at potentials negative to -50 mV, is substantially generated by K(V)4.2 and K(V)4.3 channels, allows prominent burst firing at hyperpolarized potentials, prevents the generation of high-threshold potentials, generates a delayed onset of firing at more depolarized potentials, and allows fast tonic firing.
Collapse
Affiliation(s)
- Tatyana Kanyshkova
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, 48149, Münster, Germany
| | | | | | | | | |
Collapse
|
15
|
Open channel block of the fast transient outward K+ current by primaquine and chloroquine in rat left ventricular cardiomyocytes. Eur J Pharmacol 2010; 647:13-20. [PMID: 20807529 DOI: 10.1016/j.ejphar.2010.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 07/02/2010] [Accepted: 08/12/2010] [Indexed: 12/25/2022]
Abstract
Anti-malarial drugs may have severe adverse cardiac effects as a result of their ion channel blocking properties. Here we investigate the effect of the aminoquinolines primaquine and chloroquine on the fast transient outward K(+) current (I(to)) of single epicardial myocytes isolated from the left ventricular free wall of female Wistar rats. The ruptured-patch whole-cell configuration of the patch-clamp technique was used to investigate I(to). At +60 mV, primaquine blocked I(to) amplitude (defined as the current inactivating during a test pulse of 600 ms duration) with an IC(50) of 118±8 μM. I(to) charge was blocked with an IC(50) of 33±2 μM (n=42), indicating open channel block. Chloroquine blocked I(to) amplitude with an IC(50) of 4.6±0.9 mM, while the IC(50) for I(to) charge was 439±63 μM (n=23). The kinetic analysis of the onset of block revealed K(d) values of 52±8 μM (n=18) and 520±60μM (n=11) for primaquine and chloroquine, respectively. Both drugs significantly accelerated the apparent inactivation time constant of I(to). Steady-state inactivation of I(to) was not altered by 30 μM primaquine. In contrast, I(to) recovery from inactivation was prolonged with the appearance of an additional long time constant without a change of the short time constant. Exposure to 1mM chloroquine resulted in a right shift of steady-state inactivation, whereas recovery from inactivation was only mildly affected. Both substances exhibited considerable use dependence. In X. laevis oocytes heterologously expressing hKv4.2+hKChIP2b channels the block by the aminoquinolines was voltage dependent. We conclude that primaquine and chloroquine are open-channel blockers of I(to).
Collapse
|
16
|
Lundby A, Jespersen T, Schmitt N, Grunnet M, Olesen SP, Cordeiro JM, Calloe K. Effect of the I(to) activator NS5806 on cloned K(V)4 channels depends on the accessory protein KChIP2. Br J Pharmacol 2010; 160:2028-44. [PMID: 20649599 PMCID: PMC2958647 DOI: 10.1111/j.1476-5381.2010.00859.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 02/09/2010] [Accepted: 03/22/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The compound NS5806 increases the transient outward current (I(to)) in canine ventricular cardiomyocytes and slows current decay. In human and canine ventricle, I(to) is thought to be mediated by K(V)4.3 and various ancillary proteins, yet, the exact subunit composition of I(to) channels is still debated. Here we characterize the effect of NS5806 on heterologously expressed putative I(to) channel subunits and other potassium channels. EXPERIMENTAL APPROACH Cloned K(V)4 channels were co-expressed with KChIP2, DPP6, DPP10, KCNE2, KCNE3 and K(V)1.4 in Xenopus laevis oocytes or CHO-K1 cells. KEY RESULTS NS5806 increased K(V)4.3/KChIP2 peak current amplitudes with an EC(50) of 5.3 +/- 1.5microM and significantly slowed current decay. KCNE2, KCNE3, DPP6 and DPP10 modulated K(V)4.3 currents and the response to NS5806, but current decay was slowed only in complexes containing KChIP2. The effect of NS5806 on K(V)4.2 was similar to that on K(V)4.3, and current decay was only slowed in presence of KChIP2. However, for K(V)4.1, the slowing of current decay by NS5806 was independent of KChIP2. K(V)1.4 was strongly inhibited by 10 microM NS5806 and K(V)1.5 was inhibited to a smaller extent. Effects of NS5806 on kinetics of currents generated by K(V)4.3/KChIP2/DPP6 with K(V)1.4 in oocytes could reproduce those on cardiac I(to) in canine ventricular myocytes. K(V)7.1, K(V)11.1 and K(ir)2 currents were unaffected by NS5806. CONCLUSION AND IMPLICATIONS NS5806 modulated K(V)4 channel gating depending on the presence of KChIP2, suggesting that NS5806 can potentially be used to address the molecular composition as well as the physiological role of cardiac I(to).
Collapse
Affiliation(s)
- A Lundby
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Xu CQ, Hong Y, Zhang JL, Liu Y, Zhao M, Cao YX, Lu YJ, Yang BF, Shan HL. Propranolol regulates cardiac transient outward potassium channel in rat myocardium via cAMP/PKA after short-term but not after long-term ischemia. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:63-71. [PMID: 20499050 DOI: 10.1007/s00210-010-0520-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 04/25/2010] [Indexed: 10/19/2022]
Abstract
It was recently suggested that the antiarrhythmic effect of propranolol, a ss-adrenoceptor antagonist, on ischemic myocardium includes restoration of I(K1) current and Cx43 conductance; however, little is known whether effects on the transient outward current I(to) contribute. A model of myocardial infarction (MI) by ligating the left anterior descending coronary artery was established. Propranolol was given 1 h or daily for 3 months, whole-cell patch-clamp techniques were used to measure I(to). Kv4.2 and PKA levels were analyzed by Western blot and cAMP level was determined by radioimmunoassay. The results showed that propranolol decreased the incidence of arrhythmias induced by acute ischemia and mortality in 3 month MI rats. Propranolol restored the diminished I(to) density and Kv4.2 protein in MI hearts. In addition, neonatal cardiomyocyte pretreatment with propranolol or administrated after hypoxia can resume I(to) density. cAMP/PKA was enhanced in acute MI, the reason of decreased Kv4.2 expression. Treatment with propranolol prevented the increased cAMP/PKA in 1 h MI, whereas propranolol had little effect on decreased cAMP/PKA in 3 months MI. This study demonstrated that both short- and long-term propranolol administrations protect cardiomyocytes against arrhythmias and mortality caused by cardiac ischemia; the involvement of cAMP/PKA signal pathway in the regulation of propranolol on I(to) acted differently along with the ischemic progression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu T, Lv P, Kim HJ, Yamoah EN, Nuttall AL. Effect of salicylate on KCNQ4 of the guinea pig outer hair cell. J Neurophysiol 2010; 103:1969-77. [PMID: 20147414 DOI: 10.1152/jn.01057.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salicylate causes a moderate hearing loss and tinnitus in humans at high-dose levels. Salicylate-induced hearing loss has been attributed to impaired sound amplification by outer hair cells (OHCs) through its direct action on the OHC motility sensor and/or motor. However, there is a disparity of salicylate concentrations between the clinical and animal studies, i.e., extremely high extracellular concentrations of salicylate (from 1 to 10 mM) is required to produce a significant reduction of electromotility in animal studies. Such concentrations are above the clinical/physiological range for humans. Here, we showed that clinical/physiological concentration range of salicylate caused concentration-dependent and reversible reductions in I(K,n) (KCNQ4) and subsequent depolarization of OHCs. Salicylate reduced the maximal tail current of the activation curve of I(K,n) without altering the voltage-sensitivity (V(half)). The salicylate-induced reduction of I(K,n) was almost completely blocked by linopirdine (0.1 mM) and BaCl₂ (10 mM). Consistent with the finding in OHCs, salicylate significantly reduced KCNQ4-mediated current expressed in Chinese hamster ovarian (CHO) cells by comparable amplitude to OHCs without significantly shifting V(half). Nonstationary fluctuation analysis shows that salicylate significantly reduced the estimated single-channel current amplitude and numbers. Intracellular Ca²+ elevation resulting from cytoplasmic acidosis also contributes to the current reduction of I(K,n) (KCNQ4) of OHCs. These results indicate a different model for the salicylate-induced hearing loss through the reduction of KCNQ4 and subsequent depolarization of OHCs, which reduces the driving force for transduction current and electromotility. The major mechanism underlying the reduction of I(K,n) (KCNQ4) is the direct blocking action of salicylate on KCNQ4.
Collapse
Affiliation(s)
- T Wu
- Oregon Hearing Research Ctr., NRC04, Oregon Health and Science Univ., Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
19
|
Wu J, Shimizu W, Ding WG, Ohno S, Toyoda F, Itoh H, Zang WJ, Miyamoto Y, Kamakura S, Matsuura H, Nademanee K, Brugada J, Brugada P, Brugada R, Vatta M, Towbin JA, Antzelevitch C, Horie M. KCNE2 modulation of Kv4.3 current and its potential role in fatal rhythm disorders. Heart Rhythm 2009; 7:199-205. [PMID: 20042375 DOI: 10.1016/j.hrthm.2009.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/07/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND The transient outward current I(to) is of critical importance in regulating myocardial electrical properties during the very early phase of the action potential. The auxiliary beta subunit KCNE2 recently was shown to modulate I(to). OBJECTIVE The purpose of this study was to examine the contributions of KCNE2 and its two published variants (M54T, I57T) to I(to). METHODS The functional interaction between Kv4.3 (alpha subunit of human I(to)) and wild-type (WT), M54T, and I57T KCNE2, expressed in a heterologous cell line, was studied using patch-clamp techniques. RESULTS Compared to expression of Kv4.3 alone, co-expression of WT KCNE2 significantly reduced peak current density, slowed the rate of inactivation, and caused a positive shift of voltage dependence of steady-state inactivation curve. These modifications rendered Kv4.3 channels more similar to native cardiac I(to). Both M54T and I57T variants significantly increased I(to) current density and slowed the inactivation rate compared with WT KCNE2. Moreover, both variants accelerated the recovery from inactivation. CONCLUSION The study results suggest that KCNE2 plays a critical role in the normal function of the native I(to) channel complex in human heart and that M54T and I57T variants lead to a gain of function of I(to), which may contribute to generating potential arrhythmogeneity and pathogenesis for inherited fatal rhythm disorders.
Collapse
Affiliation(s)
- Jie Wu
- Pharmacology Department, Medical School of Xi'an Jiaotong University. Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Endocannabinoids and cannabinoid analogues block human cardiac Kv4.3 channels in a receptor-independent manner. J Mol Cell Cardiol 2009; 48:201-10. [PMID: 19616555 DOI: 10.1016/j.yjmcc.2009.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Endocannabinoids are amides and esters of long chain fatty acids that can modulate ion channels through both receptor-dependent and receptor-independent effects. Nowadays, their effects on cardiac K(+) channels are unknown even when they can be synthesized within the heart. We have analyzed the direct effects of endocannabinoids, such as anandamide (AEA), 2-arachidonoylglycerol (2-AG), the endogenous lipid lysophosphatidylinositol, and cannabinoid analogues such as palmitoylethanolamide (PEA), and oleoylethanolamide, as well as the fatty acids from which they are endogenously synthesized, on human cardiac Kv4.3 channels, which generate the transient outward K(+) current (I(to1)). Currents were recorded in Chinese hamster ovary cells, which do not express cannabinoid receptors, by using the whole-cell patch-clamp. All these compounds inhibited I(Kv4.3) in a concentration-dependent manner, AEA and 2-AG being the most potent (IC(50) approximately 0.3-0.4 microM), while PEA was the least potent. The potency of block increased as the complexity and the number of C atoms in the fatty acyl chain increased. The effects were not mediated by modifications in the lipid order and microviscosity of the membrane and were independent of the presence of MiRP2 or DPP6 subunits in the channel complex. Indeed, effects produced by AEA were reproduced in human atrial I(to1) recorded in isolated myocytes. Moreover, AEA effects were exclusively apparent when it was applied to the external surface of the cell membrane. These results indicate that at low micromolar concentrations the endocannabinoids AEA and 2-AG directly block human cardiac Kv4.3 channels, which represent a novel molecular target for these compounds.
Collapse
|
21
|
Radicke S, Cotella D, Sblattero D, Ravens U, Santoro C, Wettwer E. The transmembrane beta-subunits KCNE1, KCNE2, and DPP6 modify pharmacological effects of the antiarrhythmic agent tedisamil on the transient outward current Ito. Naunyn Schmiedebergs Arch Pharmacol 2009; 379:617-26. [PMID: 19153714 DOI: 10.1007/s00210-008-0389-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
Abstract
Accessory beta-subunits modulate the pharmacology of ion channel blockers. The aim was to investigate differences in effects of the antiarrhythmic agent and open-channel blocker tedisamil on transient outward current I(to) (Kv4.3) when coexpressed with beta-subunits potassium voltage-gated channel, Isk-related family, member 1 (KCNE1), potassium voltage-gated channel, Isk-related family, member 2 (KCNE2), or dipeptidyl-aminopeptidase-like protein 6 (DPP6) which modulate I(to) kinetics. Tedisamil inhibited I(to) with IC(50) values of 16 microM for Kv4.3+KChIP2, 11 microM in the presence of KCNE1, and 14 microM for KCNE2. Values were higher in the presence of DPP6 or DPP6+KCNE2 (35 and 26 microM). K(d) values of tedisamil binding and rate constants were not affected by KCNE or DPP6. I(to) kinetics were accelerated by KCNE and DPP6, inactivation to a larger extent with DPP6. Tedisamil did not affect activation time course but apparently accelerated inactivation in all channel subunit combinations tested. Deletion of the intracellular domain of KCNE2 or DPP6 resulted in slowing of kinetics and increased tedisamil sensitivity (IC(50) 4 and 7 microM). It is concluded that apparent effects of DPP6 and deletion mutants (KCNE2 and DPP6) are due to the acceleration or slowing effects of the beta-subunits on I(to) kinetics.
Collapse
Affiliation(s)
- Susanne Radicke
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | | | | | | | | | | |
Collapse
|