1
|
Maier S, Zivicnjak M, Grigull L, Hennermann JB, Aries C, Maecker‐Kolhoff B, Sauer M, Das AM, Beier R. Predictors of growth patterns in children with mucopolysaccharidosis I after haematopoietic stem cell transplantation. JIMD Rep 2022; 63:371-378. [PMID: 35822096 PMCID: PMC9259397 DOI: 10.1002/jmd2.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal-recessive metabolic disorder caused by an enzyme deficiency of lysosomal alpha-l-iduronidase (IDUA). Haematopoietic stem cell transplantation (HSCT) is the therapeutic option of choice in MPS I patients younger than 2.5 years, which has a positive impact on neurocognitive development. However, impaired growth remains a problem. In this monocentric study, 14 patients with MPS I (mean age 1.72 years, range 0.81-3.08) were monitored according to a standardised follow-up program after successful allogeneic HSCT. A detailed anthropometric program was carried out to identify growth patterns and to determine predictors of growth in these children. All patients are alive and in outpatient care (mean follow-up 8.1 years, range 0.1-16.0). Progressively lower standard deviation scores (SDS) were observed for body length (mean SDS -1.61; -4.58 - 3.29), weight (-0.56; -3.19 - 2.95), sitting height (-3.28; -7.37 - 0.26), leg length (-1.64; -3.88 - 1.49) and head circumference (0.91; -2.52 - 6.09). Already at the age of 24 months, significant disproportions were detected being associated with increasing deterioration in growth for age. Younger age at HSCT, lower counts for haemoglobin and platelets, lower potassium, higher donor-derived chimerism, higher counts for leukocytes and recruitment of a matched unrelated donor (MUD) positively correlated with body length (p ≤ 0.05). In conclusion, this study characterised predictors and aspects of growth patterns in children with MPS I after HSCT, underlining that early HSCT of MUD is essential for slowing body disproportion.
Collapse
Affiliation(s)
- Stefanie Maier
- Department of Paediatric Haematology and OncologyHannover Medical SchoolHannoverGermany
| | - Miroslav Zivicnjak
- Department of Paediatric KidneyLiver and Metabolic Diseases at Hannover Medical SchoolHannoverGermany
| | - Lorenz Grigull
- Rare Disease Centre, Bonn University Medical CentreBonnGermany
| | - Julia B. Hennermann
- Villa Metabolica, Department of Paediatric and Adolescent MedicineUniversity Medical Centre MainzGermany
| | - Charlotte Aries
- Department of PaediatricsHamburg‐Eppendorf University Medical CentreHamburgGermany
| | | | - Martin Sauer
- Department of Paediatric Haematology and OncologyHannover Medical SchoolHannoverGermany
| | - Anibh M. Das
- Department of Paediatric KidneyLiver and Metabolic Diseases at Hannover Medical SchoolHannoverGermany
| | - Rita Beier
- Department of Paediatric Haematology and OncologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
2
|
Hayashi RJ. Considerations in Preparative Regimen Selection to Minimize Rejection in Pediatric Hematopoietic Transplantation in Non-Malignant Diseases. Front Immunol 2020; 11:567423. [PMID: 33193340 PMCID: PMC7604384 DOI: 10.3389/fimmu.2020.567423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
The variables that influence the selection of a preparative regimen for a pediatric hematopoietic stem cell transplant procedure encompasses many issues. When one considers this procedure for non-malignant diseases, components in a preparative regimen that were historically developed to reduce malignant tumor burden may be unnecessary. The primary goal of the procedure in this instance becomes engraftment with the establishment of normal hematopoiesis and a normal immune system. Overcoming rejection becomes the primary priority, but pursuit of this goal cannot neglect organ toxicity, or post-transplant morbidity such as graft-versus-host disease or life threatening infections. With the improvements in supportive care, newborn screening techniques for early disease detection, and the expansion of viable donor sources, we have reached a stage where hematopoietic stem cell transplantation can be considered for virtually any patient with a hematopoietic based disease. Advancing preparative regiments that minimize rejection and transplant related toxicity will thus dictate to what extent this medical technology is fully utilized. This mini-review will provide an overview of the origins of conditioning regimens for transplantation and how agents and techniques have evolved to make hematopoietic stem cell transplantation a viable option for children with non-malignant diseases of the hematopoietic system. We will summarize the current state of this facet of the transplant procedure and describe the considerations that come into play in selecting a particular preparative regimen. Decisions within this realm must tailor the treatment to the primary disease condition to ideally achieve an optimal outcome. Finally, we will project forward where advances are needed to overcome the persistent engraftment obstacles that currently limit the utilization of transplantation for haematopoietically based diseases in children.
Collapse
Affiliation(s)
- Robert J Hayashi
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Köhn AF, Grigull L, du Moulin M, Kabisch S, Ammer L, Rudolph C, Muschol NM. Hematopoietic stem cell transplantation in mucopolysaccharidosis type IIIA: A case description and comparison with a genotype-matched control group. Mol Genet Metab Rep 2020; 23:100578. [PMID: 32226768 PMCID: PMC7093801 DOI: 10.1016/j.ymgmr.2020.100578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/24/2020] [Accepted: 03/07/2020] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type IIIA (MPS IIIA, Sanfilippo A syndrome) is a chronic progressive neurodegenerative storage disorder caused by a deficiency of lysosomal sulfamidase. The clinical hallmarks are sleep disturbances, behavioral abnormalities and loss of cognitive, speech and motor abilities. Affected children show developmental slowing from the second year of life, dementia occurs by the age of 5 years followed by death in the second decade of life. Only a few studies concerning HSCT in MPS IIIA have been published and do not document a clear benefit of treatment. METHODS The present study summarizes the clinical outcome of a girl with MPS IIIA who received HSCT at the age of 2.5 years. Her clinical course was compared with the natural history of six untreated MPS IIIA patients carrying the same mutations (p.R74C and p. R245H) in the SGSH-gene. RESULTS Eight years after successful HSCT, the patient showed a global developmental delay. However, cognitive abilities continued to develop, albeit very slowly. There was no sign of regression. She could talk in short sentences, had good motor abilities and performed basic daily living activities by herself. She did not present with sleeping problems, but behavioral abnormalities were profound. In contrast, the six untreated patients with identical mutations in the SGSH-gene showed the typical progressive course of disease with early and continuous loss of abilities. CONCLUSIONS The present data suggest a beneficial effect of HSCT performed at an early stage of MPS IIIA on cognitive skills, motor function and quality of life.
Collapse
Key Words
- AEq, age-equivalent score
- ATG, antithymocyte globulin
- Avg., Average
- DQ, developmental quotient
- FPSS, four point scoring system
- GAG, Glykosaminoglycans
- HSCT
- HSCT, hematopoietic stem cell transplantation
- ICLD, International Center for Lysosomal Disorders
- MPS IH, mucopolysaccharidosis type I (Hurler syndrome)
- MPS IIIA
- MPS IIIA, mucopolysaccharidosis type IIIA
- MPS IIIB, mucopolysaccharidosis type IIIB
- Mucopolysaccharidosis type III
- Natural history
- SGSH, N-sulfoglucosamine sulfohydrolase
- Sanfilippo syndrome
- Stem cell transplantation
- TDS, total disability score
- UCBT, umbilical cord blood-derived hematopoietic stem cell transplantation
- VABS-II, Vineland Adaptive Behavior Scales
- y, years
Collapse
Affiliation(s)
- Anja F. Köhn
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lorenz Grigull
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marcel du Moulin
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sarah Kabisch
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Luise Ammer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Cornelia Rudolph
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Nicole M. Muschol
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Wittke TC, Schmidtke J, Grigull L. Rare diseases and sports: A pilot project to improve physical activity in patients with mucopolysaccharidosis. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jörg Schmidtke
- Institute of Human Genetics; Hannover Medical School; Hannover Germany
| | - Lorenz Grigull
- Department of Pediatric Hematology and Oncology; Hannover Medical School; Hannover Germany
| |
Collapse
|
5
|
Siddiqi F, Wolfe JH. Stem Cell Therapy for the Central Nervous System in Lysosomal Storage Diseases. Hum Gene Ther 2016; 27:749-757. [PMID: 27420186 DOI: 10.1089/hum.2016.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological diseases with genetic etiologies result in the loss or dysfunction of neural cells throughout the CNS. At present, few treatment options exist for the majority of neurogenetic diseases. Stem cell transplantation (SCT) into the CNS has the potential to be an effective treatment modality because progenitor cells may replace lost cells in the diseased brain, provide multiple trophic factors, or deliver missing proteins. This review focuses on the use of SCT in lysosomal storage diseases (LSDs), a large group of monogenic disorders with prominent CNS disease. In most patients the CNS disease results in intellectual disability that is refractory to current standard-of-care treatment. A large amount of preclinical work on brain-directed SCT has been performed in rodent LSD models. Cell types that have been used for direct delivery into the CNS include neural stem cells, embryonic and induced pluripotent stem cells, and mesenchymal stem cells. Hematopoietic stem cells have been an effective therapy for the CNS in a few LSDs and may be augmented by overexpression of the missing gene. Current barriers and potential strategies to improve SCT for translation into effective patient therapies are discussed.
Collapse
Affiliation(s)
- Faez Siddiqi
- 1 Research Institute of Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John H Wolfe
- 1 Research Institute of Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,2 Department of Pediatrics, Perelman School of Medicine and W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Lum S, Jones S, Ghosh A, Bigger B, Wynn R. Hematopoietic stem cell transplant for the mucopolysaccharidoses. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1147948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
TCRαβ CD19 depletion in allogeneic haematopoietic stem cell transplantation performed for Hurler syndrome. Bone Marrow Transplant 2015; 51:438-9. [PMID: 26551775 DOI: 10.1038/bmt.2015.258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Schwinger W, Sovinz P, Benesch M, Lackner H, Seidel M, Strenger V, Sperl D, Raicht A, Brunner-Krainz M, Paschke E, Plecko B, Urban C. Unrelated CD3/CD19-depleted peripheral stem cell transplantation for Hurler syndrome. Pediatr Hematol Oncol 2014; 31:723-30. [PMID: 25116402 DOI: 10.3109/08880018.2014.939794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For patients with mucopolysaccharidosis type IH (MPS1-H; Hurler syndrome), early allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice. One boy and one girl aged 20.5 and 22 months, respectively, with MPS1-H received a conditioning regimen consisting of thiotepa, fludarabine, treosulfan, and ATG. Grafts were peripheral blood stem cells from unrelated donors (10/12 and 11/11 matched), that were manipulated by CD3/CD19 depletion and contained 20.3 and 28.2 × 10(6) CD34+ cells/kg body weight, respectively. Both patients achieved stable hematopoietic engraftment and stable donor chimerism. Neither acute or chronic graft-versus-host disease (GVHD) nor other severe transplant-related complications occurred. At a follow-up of 48 and 37 months, both patients are alive and well with normal levels of α-L-iduronidase and have made major neurodevelopmental progress. Treosulfan-based conditioning offers the advantage of reduced toxicity; the use of unrelated CD3/CD19-depleted peripheral stem cell grafts allows transfusion of high CD34+ cell numbers together with a "tailored" number of CD3+ cells as well as engraftment facilitating cells in order to achieve rapid hematopoietic engraftment while reducing the risk of graft rejection and GVHD. This regimen might be an additional option when unrelated donor HSCT is considered for a patient with MPS1-H.
Collapse
Affiliation(s)
- Wolfgang Schwinger
- 1Division of Pediatric Hematology/Oncology, University Children's Hospital, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res 2014; 1573:92-107. [PMID: 24858930 DOI: 10.1016/j.brainres.2014.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, A213, Jupiter, FL 33458, USA.
| | - Iryna A Isakova
- Division of Clinical Laboratory Diagnostics, Biology Department, National Dnepropetrovsk University, Dnepropetrovsk, Ukraine
| |
Collapse
|
10
|
Huang L, Lizak P, Aweeka F, Long-Boyle J. Determination of intracellular fludarabine triphosphate in human peripheral blood mononuclear cells by LC-MS/MS. J Pharm Biomed Anal 2013; 86:198-203. [PMID: 24013121 DOI: 10.1016/j.jpba.2013.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/15/2013] [Accepted: 08/05/2013] [Indexed: 12/01/2022]
Abstract
Fludarabine is a nucleoside analog routinely used in conditioning regimens of pediatric allogeneic stem cell transplantation to promote stem cell engraftment. In children, it remains a challenge to accurately and precisely quantify the active intracellular triphosphate species of fludarabine in vivo, primarily due to limitations on blood volume and inadequate assay sensitivity. Here we report a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of fludarabine triphosphate in human peripheral blood mononuclear cells (PBMC). PBMC (∼5 million cells) were collected and lysed in 1mL 70% methanol containing 1.2mM tris buffer (pH 7.4). The lysate (80μL) was mixed with internal standard (2-chloro-adenosine triphosphate, 150ng/mL, 20μL) and injected onto an API5000 LC-MS/MS system. Separation was achieved on a hypercarb column (100mm×2.1mm, 3μm) eluted with 100mM ammonium acetate (pH 9.8) and acetonitrile in a gradient mode at a flow rate of 0.4mL/min. Multiple reactions monitoring (MRM) and electrospray ionization in negative mode (ESI(-)) were used for detection. The ion pairs 524.0/158.6 for the drug and 540.0/158.8 for the IS were selected for quantification and 524.0/425.7 used for confirmation. Retention time was 3.0 and 3.4min for fludarabine triphosphate and the IS, respectively. The concentration range for the calibration curve was 1.52-76nM. Our method is simple, fast, and has been successfully applied in a clinical dose-concentration study in children to quantify intracellular fludarabine in low volume clinical samples. The median concentration was 1.03 and 3.19pmole/million PBMC at trough and peak time points, respectively. Fludarabine triphosphate is degraded in water within hours but relatively stable in 70% methanol-tris (1.2mM, pH 7.4). One limitation is that the hypercarb column takes a longer time to equilibrate than conventional reverse phase columns, and peaks become broad and distorted if the column is not washed and stored properly.
Collapse
Affiliation(s)
- Liusheng Huang
- Drug Research Unit, Department of Clinical Pharmacy, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
11
|
|
12
|
Abstract
CONTEXT Airway management in children suffering from mucopolysaccharidosis 1 (Hurler syndrome) remains challenging despite advances in both treatment and airway management techniques. OBJECTIVES Forty-one anaesthetic charts following ten children over a 6-year period (2004-2010) were reviewed with emphasis on airway problems. RESULTS All children had early stem cell transplantation at the age of 2 years or earlier. Mean (SD) age was 5 (4.3) years. Mask ventilation was difficult in five of 41 (12%) anaesthetics or in three of ten children. There were 29 intubations. Direct laryngoscopy was described as difficult (Cormack and Lehane ≥3) on 11 occasions in five of ten children. There were three of 26 (12%) failed intubations with direct laryngoscopy. These situations were resolved by a fibre-optic procedure, by laryngeal mask airway (LMA) insertion or by use of a videolaryngoscope. A laryngeal mask airway was used 11 times to avoid invasive airway management and once when direct laryngoscopy was impossible. CONCLUSION The airway management of children with mucopolysaccharidosis 1 remains critical, despite advances in both treatment and airway management techniques. Problems did not seem to increase as children grew older. We assume that technical improvements such as standardised use of the laryngeal mask airway or attached tube channel videolaryngoscopes as well as a stem cell transplantation treatment of the disease helped the management of older children with mucopolysaccharidosis 1.
Collapse
|
13
|
Gómez-Barrena E, Rosset P, Müller I, Giordano R, Bunu C, Layrolle P, Konttinen YT, Luyten FP. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J Cell Mol Med 2011; 15:1266-86. [PMID: 21251219 PMCID: PMC4373328 DOI: 10.1111/j.1582-4934.2011.01265.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine seeks to repair or replace damaged tissues or organs, with the goal to fully restore structure and function without the formation of scar tissue. Cell based therapies are promising new therapeutic approaches in regenerative medicine. By using mesenchymal stem cells, good results have been reported for bone engineering in a number of clinical studies, most of them investigator initiated trials with limited scope with respect to controls and outcome. With the implementation of a new regulatory framework for advanced therapeutic medicinal products, the stage is set to improve both the characterization of the cells and combination products, and pave the way for improved controlled and well-designed clinical trials. The incorporation of more personalized medicine approaches, including the use of biomarkers to identify the proper patients and the responders to treatment, will be contributing to progress in the field. Both translational and clinical research will move the boundaries in the field of regenerative medicine, and a coordinated effort will provide the clinical breakthroughs, particularly in the many applications of bone engineering.
Collapse
Affiliation(s)
- Enrique Gómez-Barrena
- Orthopaedic Surgery Service, Hospital Universitario La Paz, Autónoma University of Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Harding CO, Gibson KM. Therapeutic liver repopulation for phenylketonuria. J Inherit Metab Dis 2010; 33:681-7. [PMID: 20495959 DOI: 10.1007/s10545-010-9099-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 01/22/2023]
Abstract
Problems with long-term dietary compliance in phenylketonuria (PKU) necessitate the development of alternative treatment approaches. Therapeutic liver repopulation with phenylalanine hydroxylase (PAH)-expressing cells following hepatocyte or haematopoietic stem cell transplantation has been investigated as a possible novel treatment approach for PKU. Successful therapeutic liver repopulation requires both a stimulus for liver regeneration at the time of cell transplantation and a selective growth advantage for the PAH+ donor cells. Unfortunately, wild-type PAH+ hepatocytes do not enjoy any growth advantage over PAH- cells. Successful correction of hyperphenylalaninemia following therapeutic liver repopulation has been accomplished only in an animal model that yields a selective advantage for the donor cells. Haematopoietic stem cell (HSC)-mediated therapeutic liver repopulation has not been reported in any hyperphenylalaninemic system, and the success of HSC-mediated liver repopulation for PKU may be limited by the slow kinetics of this approach. If therapeutic liver repopulation is to be employed successfully in humans with PKU, an effective method of providing a selective growth advantage for the donor cells must be developed. If this can be achieved, liver repopulation with 10-20% wild-type hepatocytes will likely completely normalize Phe clearance in individuals with PKU.
Collapse
Affiliation(s)
- Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail code L103, Portland, OR 97239, USA.
| | | |
Collapse
|
15
|
|