1
|
Zhao Y, Su H, Shen X, Du J, Zhang X, Zhao Y. The immunological function of CD52 and its targeting in organ transplantation. Inflamm Res 2017; 66:571-578. [PMID: 28283679 DOI: 10.1007/s00011-017-1032-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION CD52 (Campath-1 antigen), a glycoprotein of 12 amino acids anchored to glycosylphosphatidylinositol, is widely expressed on the cell surface of immune cells, such as mature lymphocytes, natural killer cells (NK), eosinophils, neutrophils, monocytes/macrophages, and dendritic cells (DCs). The anti-CD52 mAb, alemtuzumab, was used widely in clinics for the treatment of patients such as organ transplantation. In the present manuscript, we will briefly summarize the immunological function of CD52 and discuss the application of anti-CD52 mAb in transplantation settings. FINDINGS We reviewed studies published until July 2016 to explore the role of CD52 in immune cell function and its implication in organ transplantation. We showed that ligation of cell surface CD52 molecules may offer costimulatory signals for T-cell activation and proliferation. However, soluble CD52 molecules will interact with the inhibitory sialic acid-binding immunoglobulin-like lectin 10 (Siglec10) to significantly inhibit T cell proliferation and activation. Although the physiological and pathological significances of CD52 molecules are still poorly understood, the anti-CD52 mAb, alemtuzumab, was used widely for the treatment of patients with chronic lymphocytic leukemia, autoimmune diseases as well as cell and organ transplantation in clinics. CONCLUSION Studies clearly showed that CD52 can modulate T-cell activation either by its intracellular signal pathways or by the interaction of soluble CD52 and Siglec-10 expressing on T cells. However, the regulatory functions of CD52 on other immune cell subpopulations in organ transplantation require to be studied in the near future.
Collapse
Affiliation(s)
- Yang Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Su
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Shen
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Junfeng Du
- Department of General Surgery, PLA Army General Hospital, Dongsishitiao Namencang 5, Dongcheng District, Beijing, 100007, China.
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China.
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Khandelwal P, Emoto C, Fukuda T, Vinks AA, Neumeier L, Dandoy CE, El-Bietar J, Chandra S, Davies SM, Bleesing JJ, Jordan MB, Mehta PA, Jodele S, Grimley MS, Kumar A, Myers KC, Marsh RA. A Prospective Study of Alemtuzumab as a Second-Line Agent for Steroid-Refractory Acute Graft-versus-Host Disease in Pediatric and Young Adult Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:2220-2225. [PMID: 27664325 DOI: 10.1016/j.bbmt.2016.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 02/01/2023]
Abstract
We describe a single-center prospective study of alemtuzumab as a second-line agent for steroid-refractory (SR) acute graft-versus-host disease (aGVHD) in pediatric and young adult allogeneic hematopoietic stem cell transplant recipients. Alemtuzumab was administered for grades II to IV aGVHD if patients did not improve within 5 days or worsened within 48 hours after corticosteroids. Interim analyses of alemtuzumab levels and response were performed after every 5 patients enrolled, resulting in 3 dosing cohorts, as follows: (1) .2 mg/kg alemtuzumab subcutaneously on days 1 to 5 (maximum of 31 mg over 5 days) and .2 mg/kg/dose (not exceeding 10 mg/dose) on days 15, 22, and 29; (2) .2 mg/kg alemtuzumab subcutaneously on days 1 to 5 (maximum of 43 mg over 5 days) and .2 mg/kg/dose on day 7, 10, 15, 22, and 29; and (3) .2 mg/kg subcutaneously on days 1 to 5 and .2 mg/kg/dose on day 7, 10, 15, and 22. Alemtuzumab levels were assessed before starting alemtuzumab and at days 1, 3, 6, 10, and 14 and weekly until day 99, where day 1 was the day of first alemtuzumab dose. Fifteen patients (median age, 10 years; range, 1.4 to 27) received alemtuzumab for grades II (6%), III (74%), and IV (20%) SR-aGVHD. The overall response rate was 67%, with complete response (CR) in 40%, partial response (PR) in 27%, and no response in 33%. The median day 6 alemtuzumab level was 2.79 µg/mL (interquartile range, 1.34 to 4.89) in patients with CR compared with .62 µg/mL (interquartile range, .25 to 1.45) in patients with PR + no response (P < .05). Ninety percent (n = 9) of patients with a CR or PR reduced corticosteroid doses within 8 weeks from first alemtuzumab dose. Side effects included fever (26%) and transient thrombocytopenia (53%). Asymptomatic viremias occurred in all patients but invasive viral disease occurred in 2 patients. One patient developed Epstein-Barr virus-post-transplantation lymphoproliferative disorder. Eighty percent (n = 12) of patients were alive at 6 months, of whom 53% (n = 8) were free of GVHD whereas 13% (n = 2) developed chronic GVHD. Alemtuzumab is an effective second-line agent for children and young adults with SR-aGVHD. Higher alemtuzumab levels are associated with CR. A real-time dose adjusted alemtuzumab study is needed to further optimize the dose of alemtuzumab in aGVHD.
Collapse
Affiliation(s)
- Pooja Khandelwal
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Chie Emoto
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tsuyoshi Fukuda
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alexander A Vinks
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Neumeier
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Javier El-Bietar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jacob J Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael S Grimley
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Experimental Hematology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|