1
|
Zhou T, Zeng C, Xi Q, Yang Z. SNX10 gene mutation in infantile malignant osteopetrosis: A case report and literature review. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:108-112. [PMID: 33678645 PMCID: PMC10878291 DOI: 10.11817/j.issn.1672-7347.2021.190322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/03/2022]
Abstract
A case of SNX10 gene mutation in a patient with infantile malignant osteopetrosis (IMO) was admitted to Department of Pediatrics, Third Xiangya Hospital, Central South University. The patient had the symptom of anemia, hepatosplenomegaly and growth retardation. The X-ray examination suggested extensive increase of bone density throughout the body, which was clinically diagnosed as IMO. The homozygous mutation of SNX10 gene c.61C>T was found via gene sequencing. We reviewed the relevant literatures and found that anemia, visual and hearing impairment, hepatosplenomegaly are the main clinical symptoms of IMO, SNX10 gene mutation is a rare cause of IMO, and hematopoietic stem cell transplantation is an effective treatment.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Caixia Zeng
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiong Xi
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
2
|
Sultana F, Morse LR, Picotto G, Liu W, Jha PK, Odgren PR, Battaglino RA. Snx10 and PIKfyve are required for lysosome formation in osteoclasts. J Cell Biochem 2019; 121:2927-2937. [PMID: 31692073 DOI: 10.1002/jcb.29534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Bone resorption and organelle homeostasis in osteoclasts require specialized intracellular trafficking. Sorting nexin 10 (Snx10) is a member of the sorting nexin family of proteins that plays crucial roles in cargo sorting in the endosomal pathway by its binding to phosphoinositide(3)phosphate (PI3P) localized in early endosomes. We and others have shown previously that the gene encoding sorting Snx10 is required for osteoclast morphogenesis and function, as osteoclasts from humans and mice lacking functional Snx10 are dysfunctional. To better understand the role and mechanisms by which Snx10 regulates vesicular transport, the aim of the present work was to study PIKfyve, another PI3P-binding protein, which phosphorylates PI3P to PI(3,5)P2. PI(3,5)P2 is known to be required for endosome/lysosome maturation, and the inhibition of PIKfyve causes endosome enlargement. Overexpression of Snx10 also induces accumulation of early endosomes suggesting that both Snx10 and PIKfyve are required for normal endosome/lysosome transition. Apilimod is a small molecule with specific, nanomolar inhibitory activity on PIKfyve but only in the presence of key osteoclast factors CLCN7, OSTM1, and Snx10. This observation suggests that apilimod's inhibitory effects are mediated by endosome/lysosome disruption. Here we show that both Snx10 and PIKfyve colocalize to early endosomes in osteoclasts and coimmunoprecipitate in vesicle fractions. Treatment with 10 nM apilimod or genetic deletion of PIKfyve in cells resulted in the accumulation of early endosomes, and in the inhibition of osteoclast differentiation, lysosome formation, and secretion of TRAP from differentiated osteoclasts. Snx10 and PIKfyve also colocalized in gastric zymogenic cells, another cell type impacted by Snx10 mutations. Apilimod-specific inhibition of PIKfyve required Snx10 expression, as it did not inhibit lysosome biogenesis in Snx10-deficient osteoclasts. These findings suggest that Snx10 and PIKfyve are involved in the regulation of endosome/lysosome homeostasis via the synthesis of PI(3,5)P2 and may point to a new strategy to prevent bone loss.
Collapse
Affiliation(s)
- Farhath Sultana
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Gabriela Picotto
- Cátedra de Bioquímica y Biología Molecular, Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Weimin Liu
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO
| | - Prakash K Jha
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Paul R Odgren
- Departments of Cell Biology and Radiology (retired), University of Massachusetts Medical School, Worcester, MA
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
3
|
Battaglino RA, Jha P, Sultana F, Liu W, Morse LR. FKBP12: A partner of Snx10 required for vesicular trafficking in osteoclasts. J Cell Biochem 2019; 120:13321-13329. [PMID: 30887568 DOI: 10.1002/jcb.28606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
Osteoclasts employ highly specialized intracellular trafficking controls for bone resorption and organelle homeostasis. The sorting nexin Snx10 is a (Phosphatidylinositol 3-phosphate) PI3P-binding protein, which localizes to osteoclast early endosomes. Osteoclasts from humans and mice lacking functional Snx10 are severely dysfunctional. They show marked impairments in endocytosis, extracellular acidification, ruffled border formation, and bone resorption, suggesting that Snx10 regulates membrane trafficking. To better understand how SNx10 regulates vesicular formation and trafficking in osteoclasts, we set out on a search for Snx10 partners. We performed a yeast two-hybrid screening and identified FKBP12. FKBP12 is expressed in receptor activator of nuclear factor kB ligand-stimulated RAW264.7 monocytes, coimmunoprecipitates with Snx10, and colocalizes with Snx10 in osteoclasts. We also found that FKBP12, Snx10, and early endosome antigen 1 (EEA1) are present in the same subcellular fractions obtained by centrifugation in sucrose gradients, which confirms localization of FKBP12 to early endosomes. Taken together, these results indicate that Snx10 and FKBP12 are partners and suggest that Snx10 and FKBP12 are involved in the regulation of endosome/lysosome homeostasis via the synthesis. These findings may suggest novel therapeutic approaches to control bone loss by targeting essential steps in osteoclast membrane trafficking.
Collapse
Affiliation(s)
- Ricardo A Battaglino
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado
| | - Prakash Jha
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado
| | - Farhath Sultana
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado
| | - Weimin Liu
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado
| | - Leslie R Morse
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Regional Spinal Injury System, Craig Rehabilitation Hospital, Englewood, Colorado
| |
Collapse
|
4
|
Amirfiroozy A, Hamidieh AA, Golchehre Z, Rezamand A, Yahyaei M, Beiranvandi F, Amirfiroozy S, Keramatipour M. A Novel Mutation in SNX10 Gene Causes Malignant Infantile Osteopetrosis. Avicenna J Med Biotechnol 2017; 9:205-208. [PMID: 29090071 PMCID: PMC5650739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Osteopetrosis is a group of genetically heterogonous diseases and the main feature of that is increased bone density due to osteoclast's abnormality. It has three clinical forms based on inheritance pattern, severity and age of onset: the dominant benign form (ADO), the intermediate form (IRO) and the recessive severe form (ARO). One of the recently discovered genes for ARO form is SNX10 that accounts for 4% of affected persons by this type. METHODS In this paper, a 15 years old girl affected by osteopetrosis has been analyzed for detecting causal mutation in known osteopetrosis genes. To get it done, amplified exons of the genes were sequenced and then were analyzed. RESULTS Direct sequencing of SNX10 gene showed a homozygous c.43delG variant in the patient. Both healthy parents were heterozygous for this variant. In silico analysis revealed that this novel variant can be considered as the cause of disease in the patient. CONCLUSION In this paper, a girl affected by osteopetrosis with a novel deletion in SNX10 gene was reported.
Collapse
Affiliation(s)
- Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir A. Hamidieh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azim Rezamand
- Children’s Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahin Yahyaei
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Beiranvandi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Keramatipour, M.D., Ph.D., Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran, Tel: +98 21 8895 3005, Fax: +98 21 8801 4418, E-mail:
| |
Collapse
|
5
|
Xu T, Xu J, Ye Y, Wang Q, Shu X, Pei D, Liu J. Structure of human SNX10 reveals insights into its role in human autosomal recessive osteopetrosis. Proteins 2014; 82:3483-9. [DOI: 10.1002/prot.24689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Yinghua Ye
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Qi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|