1
|
Kole GE, Hasirci V, Yucel D. Development of a Tri-Layered Vascular Construct and In Vitro Evaluation of Endothelization. Macromol Biosci 2024; 24:e2300369. [PMID: 38134246 DOI: 10.1002/mabi.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Advances in the development of vascular substitutes for small-sized arteries are ongoing because the present grafts do not entirely meet the requirements of native equivalents and are suboptimal in clinical performance. This study aims to develop a tri-layered vascular construct mimicking natural tissue using polyester blends and to investigate its endothelization through in vitro studies as a potential small-caliber vascular graft. The innermost layer is obtained by dip coating as a tubular porous film with a lumen diameter of 3 mm and a pore size of ≤8 µm. Circumferentially aligned electrospun fiber (diameter 100-800 nm) with a deviation angle of 15° are deposited over the porous film forming the intermediate layer. The random electrospun fibers (diameter 100-1100 nm) deviating at different angles are wrapped as the outermost layer. The mechanical properties of the tri-layered vascular construct are determined to be 44.80 ± 14.80 MPa for Young's modulus and 4.25 ± 0.75 MPa for ultimate tensile strength. MTS and cell behavior studies show that the isolated human umbilical cord vein endothelial cells proliferate and line the lumen of the vascular substitute. The vascular construct developed, with its biomimetic architecture, mechanical features, size, and endothelization, can be tested with in vivo studies.
Collapse
Affiliation(s)
- Gozde E Kole
- Graduate School of Health Sciences, Department of Medical Biotechnology, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- ACU Biomaterials A &R Center, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
| | - Vasif Hasirci
- ACU Biomaterials A &R Center, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Graduate School of Natural and Applied Sciences, Department of Biomaterials, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Middle East Technical University, BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
| | - Deniz Yucel
- Graduate School of Health Sciences, Department of Medical Biotechnology, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- ACU Biomaterials A &R Center, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- Graduate School of Natural and Applied Sciences, Department of Biomaterials, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
- School of Medicine, Department of Histology and Embryology, Acıbadem Mehmet Ali Aydınlar University (ACU), Istanbul, 34752, Turkey
| |
Collapse
|
2
|
Ketabat F, Maris T, Duan X, Yazdanpanah Z, Kelly ME, Badea I, Chen X. Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1161804. [PMID: 37304145 PMCID: PMC10248470 DOI: 10.3389/fbioe.2023.1161804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Titouan Maris
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique des arts et métiers (ICAM)- Site de Toulouse, Toulouse, France
| | - Xiaoman Duan
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Liu Z, Bian Y, Wu G, Fu C. Application of stem cells combined with biomaterial in the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1077028. [PMID: 36507272 PMCID: PMC9732431 DOI: 10.3389/fbioe.2022.1077028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
As the world population is aging, intervertebral disc degeneration (IDD) is becoming a global health issue of increasing concern. A variety of disc degeneration diseases (DDDs) have been proven to be associated with IDD, and these illnesses have significant adverse effects on both individuals and society. The application of stem cells in regenerative medicine, such as blood and circulation, has been demonstrated by numerous studies. Similarly, stem cells have made exciting progress in the treatment of IDD. However, due to complex anatomical structures and functional requirements, traditional stem cell injection makes it difficult to meet people's expectations. With the continuous development of tissue engineering and biomaterials, stem cell combined with biomaterials has far more prospects than before. This review aims to objectively and comprehensively summarize the development of stem cells combined with contemporary biomaterials and the difficulties that need to be overcome.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Yuya Bian
- Jilin Institute of Scientific and Technical Information, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| |
Collapse
|
4
|
Raymond-Hayling H, Lu Y, Kadler KE, Shearer T. A fibre tracking algorithm for volumetric microstructural data - application to tendons. Acta Biomater 2022. [DOI: 10.1016/j.actbio.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Han F, Yu Q, Chu G, Li J, Zhu Z, Tu Z, Liu C, Zhang W, Zhao R, Mao H, Han F, Li B. Multifunctional Nanofibrous Scaffolds with Angle-Ply Microstructure and Co-Delivery Capacity Promote Partial Repair and Total Replacement of Intervertebral Disc. Adv Healthc Mater 2022; 11:e2200895. [PMID: 35834429 DOI: 10.1002/adhm.202200895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Indexed: 01/27/2023]
Abstract
There is an urgent clinical need for the treatment of annulus fibrosus (AF) impairment caused by intervertebral disc (IVD) degeneration or surgical injury. Although repairing injured AF through tissue engineering is promising, the approach is limited by the complicated angle-ply microstructure, inflammatory microenvironment, poor self-repairing ability of AF cells and deficient matrix production. In this study, electrospinning technology is used to construct aligned core-shell nanofibrous scaffolds loaded with transforming growth factor-β3 (TGFβ3) and ibuprofen (IBU), respectively. The results confirm that the rapid IBU release improves the inflammatory microenvironment, while sustained TGFβ3 release enhances nascent extracellular matrix (ECM) formation. Biomaterials for clinical applications must repair local AF defects during herniectomy and enable AF regeneration during disc replacement, so a box defect model and total IVD replacement model in rat tail are constructed. The dual-drug delivering electrospun scaffolds are assembled into angle-ply structure to form a highly biomimetic AF that is implanted into the box defect or used to replace the disc. In two animal models, it is found that biomimetic scaffolds with good anti-inflammatory ability enhance ECM formation and maintain the mechanical properties of IVD. Findings from this study demonstrate that the multifunctional nanofibrous scaffolds provide inspirations for IVD repair.
Collapse
Affiliation(s)
- Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qifan Yu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jiaying Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhuang Zhu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhengdong Tu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Changjiang Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Weidong Zhang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Runze Zhao
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315000, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310000, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
6
|
Ge YW, Chu M, Zhu ZY, Ke QF, Guo YP, Zhang CQ, Jia WT. Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis. Mater Today Bio 2022; 16:100439. [PMID: 36245833 PMCID: PMC9557728 DOI: 10.1016/j.mtbio.2022.100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yu-Wei Ge
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Zi-Yang Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Corresponding author.
| | - Wei-Tao Jia
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| |
Collapse
|
7
|
Munawar MA, Schubert DW. Thermal-Induced Percolation Phenomena and Elasticity of Highly Oriented Electrospun Conductive Nanofibrous Biocomposites for Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158451. [PMID: 35955588 PMCID: PMC9369359 DOI: 10.3390/ijms23158451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Highly oriented electrospun conductive nanofibrous biocomposites (CNBs) of polylactic acid (PLA) and polyaniline (PANi) are fabricated using electrospinning. At the percolation threshold (φc), the growth of continuous paths between PANi particles leads to a steep increase in the electrical conductivity of fibers, and the McLachlan equation is fitted to identify φc. Annealing generates additional conductive channels, which lead to higher conductivity for dynamic percolation. For the first time, dynamic percolation is investigated for revealing time-temperature superposition in oriented conductive nanofibrous biocomposites. The crystallinity (χc) displays a linear dependence on annealing temperature within the confined fiber of CNBs. The increase in crystallinity due to annealing also increases the Young’s modulus E of CNBs. The present study outlines a reliable approach to determining the conductivity and elasticity of nanofibers that are highly desirable for a wide range of biological tissue applications.
Collapse
Affiliation(s)
- Muhammad A. Munawar
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| | - Dirk W. Schubert
- Institute of Polymer Materials, Department of Material Science, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- KeyLab Advanced Fiber Technology, Bavarian Polymer Institute, Dr.-Mack-Strasse 77, 90762 Fürth, Germany
- Correspondence: (M.A.M.); (D.W.S.)
| |
Collapse
|
8
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
9
|
Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications. Ann Biomed Eng 2022; 50:1073-1089. [PMID: 35622208 DOI: 10.1007/s10439-022-02984-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 01/05/2023]
Abstract
Repair and replacement solutions for congenitally diseased heart valves capable of post-surgery growth and adaptation have remained elusive. Tissue engineered heart valves (TEHVs) offer a potential biological solution that addresses the drawbacks of existing valve replacements. Typically, TEHVs are made from thin, fibrous biomaterials that either become cell populated in vitro or in situ. Often, TEHV designs poorly mimic the anisotropic mechanical properties of healthy native valves leading to inadequate biomechanical function. Mechanical conditioning of engineered tissues with anisotropic strain application can induce extracellular matrix remodelling to alter the anisotropic mechanical properties of a construct, but implementation has been limited to small-scale set-ups. To address this limitation for TEHV applications, we designed and built a mechanobioreactor capable of modulating biaxial strain anisotropy applied to large, thin, biomaterial sheets in vitro. The bioreactor can independently control two orthogonal stretch axes to modulate applied strain anisotropy on biomaterial sheets from 13 × 13 mm2 to 70 × 40 mm2. A design of experiments was performed using experimentally validated finite element (FE) models and demonstrated that biaxial strain was applied uniformly over a larger percentage of the cell seeded area for larger sheets (13 × 13 mm2: 58% of sheet area vs. 52 × 31 mm2: 86% of sheet area). Furthermore, bioreactor prototypes demonstrated that over 70% of the cell seeding area remained uniformly strained under different prescribed protocols: equibiaxial amplitudes between 5 to 40%, cyclic frequencies between 0.1 to 2.5 Hz and anisotropic strain ratios between 0:1 (constrained uniaxial) to 2:1. Lastly, proof-of-concept experiments were conducted where we applied equibiaxial (εx = εy = 8.75%) and anisotropic (εx = 12.5%, εy = 5%) strain protocols to cell-seeded, electrospun scaffolds. Cell nuclei and F-actin aligned to the vector-sum strain direction of each prescribed protocol (nuclei alignment: equibiaxial: 43.2° ± 1.8°, anisotropic: 17.5° ± 1.7°; p < 0.001). The abilities of this bioreactor to prescribe different strain amplitude, frequency and strain anisotropy protocols to cell-seeded scaffolds will enable future studies into the effects of anisotropic loading protocols on mechanically conditioned TEHVs and other engineered planar connective tissues.
Collapse
|
10
|
Impact of Microenvironmental Changes during Degeneration on Intervertebral Disc Progenitor Cells: A Comparison with Mesenchymal Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9040148. [PMID: 35447707 PMCID: PMC9025850 DOI: 10.3390/bioengineering9040148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc (IVD) degeneration occurs with natural ageing and is linked to low back pain, a common disease. As an avascular tissue, the microenvironment inside the IVD is harsh. During degeneration, the condition becomes even more compromised, presenting a significant challenge to the survival and function of the resident cells, as well as to any regeneration attempts using cell implantation. Mesenchymal stem cells (MSCs) have been proposed as a candidate stem cell tool for IVD regeneration. Recently, endogenous IVD progenitor cells have been identified inside the IVD, highlighting their potential for self-repair. IVD progenitor cells have properties similar to MSCs, with minor differences in potency and surface marker expression. Currently, it is unclear how IVD progenitor cells react to microenvironmental factors and in what ways they possibly behave differently to MSCs. Here, we first summarized the microenvironmental factors presented in the IVD and their changes during degeneration. Then, we analyzed the available studies on the responses of IVD progenitor cells and MSCs to these factors, and made comparisons between these two types of cells, when possible, in an attempt to achieve a clear understanding of the characteristics of IVD progenitor cells when compared to MSCs; as well as, to provide possible clues to cell fate after implantation, which may facilitate future manipulation and design of IVD regeneration studies.
Collapse
|
11
|
Alsmairat O, Barakat N. Characterizing the Effect of Adding Boron Nitride Nanotubes on the Mechanical Properties of Electrospun Polymer Nanocomposite Microfibers Mesh. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1634. [PMID: 35268874 PMCID: PMC8911170 DOI: 10.3390/ma15051634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Electrospun fibrous meshes have a variety of applications such as filtration, drug delivery, energy storage, and engineered tissues due to their high surface area to mass ratio. Therefore, understanding the mechanical properties of these continuously evolving meshes is critical to expand and improve their performance. In this study, the effect of adding Boron Nitride Nanotube (BNNT) to Polymethylmethacrylate (PMMA) composite meshes on the mechanical properties of the polymer is studied. Electrospinning is used to fabricate microfiber meshes of PMMA and BNNT-PMMA. The fabricated meshes are tested experimentally with a uniaxial tensile tester. In addition, a theoretical model is introduced to investigate the effect of the number of fibers and the diameter of fiber inside the mesh on Young's Modulus and Tensile Strength of the PMMA mesh. By adding 0.5% BNNT to the PMMA, Young's Modulus and Tensile Strength of the PMMA mesh improved by 62.4% and 9.3%, respectively. Furthermore, simulated results show enhanced mesh properties when increasing the number of fibers and the single fiber diameter inside the mesh. The findings of this study help in understanding the mechanical properties of the nanocomposite electrospun meshes which expands and improves its utilization in different applications.
Collapse
Affiliation(s)
- Ohood Alsmairat
- Department of Mechanical Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA;
| | | |
Collapse
|
12
|
Wang H, Wang D, Luo B, Wang D, Jia H, Peng P, Shang Q, Mao J, Gao C, Peng Y, Gan L, Du J, Luo Z, Yang L. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: A novel strategy for disc reconstruction. Bioact Mater 2022; 14:350-363. [PMID: 35386822 PMCID: PMC8964821 DOI: 10.1016/j.bioactmat.2022.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The key pathological change during IVDD is dysfunction of the annulus fibrosus (AF). However, due to the lack of an in-depth understanding of AF biology, the methods to reconstruct the AF are very limited. In this study, the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction. The results first identify a new population of AF cells, fibrochondrocyte-like AF cells, which synthesize both collagen I and collagen II and are potential functional cells for AF reconstruction. According to the dual features of the AF extracellular matrix, a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced. To obtain the ability to stimulate differentiation, the composite hydrogels were combined with a fibrochondrocyte-inducing supplement. Finally, reconstruction of the AF defects, by the novel AF stem cell-loaded composite hydrogel, could be observed, its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups. In summary, this study decodes the AF cell atlas, based on which a novel strategy for AF reconstruction is proposed. There are 10 populations of cells in the annulus fibrosus (AF), as decoded by single cell RNA sequencing. Lineage tracing shows the route of migration and differentiation of annulus fibrosus-derived stem cells (AFSCs). A new population of AF cells, fibrochondrocyte-like AF cells, was identified. Both the fibrinoid and chondroid matrices of AF are reconstructed by the novel AFSCs-loaded composite hydrogel.
Collapse
|
13
|
Peng Y, Li J, Lin H, Tian S, Liu S, Pu F, Zhao L, Ma K, Qing X, Shao Z. Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: a narrative review. BIOMATERIALS TRANSLATIONAL 2021; 2:343-360. [PMID: 35837417 PMCID: PMC9255795 DOI: 10.12336/biomatertransl.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
The development of tissue engineering has led to new strategies for mitigating clinical problems; however, the design of the tissue engineering materials remains a challenge. The limited sources and inadequate function, potential risk of microbial or pathogen contamination, and high cost of cell expansion impair the efficacy and limit the application of exogenous cells in tissue engineering. However, endogenous cells in native tissues have been reported to be capable of spontaneous repair of the damaged tissue. These cells exhibit remarkable plasticity, and thus can differentiate or be reprogrammed to alter their phenotype and function after stimulation. After a comprehensive review, we found that the plasticity of these cells plays a major role in establishing the cell source in the mechanism involved in tissue regeneration. Tissue engineering materials that focus on assisting and promoting the natural self-repair function of endogenous cells may break through the limitations of exogenous seed cells and further expand the applications of tissue engineering materials in tissue repair. This review discusses the effects of endogenous cells, especially stem cells, on injured tissue repairing, and highlights the potential utilisation of endogenous repair in orthopaedic biomaterial constructions for bone, cartilage, and intervertebral disc regeneration.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
14
|
Li C, Chen J, Lv Y, Liu Y, Guo Q, Wang J, Wang C, Hu P, Liu Y. Recent Progress in Electrospun Nanofiber-Based Degenerated Intervertebral Disc Repair. ACS Biomater Sci Eng 2021; 8:16-31. [PMID: 34913688 DOI: 10.1021/acsbiomaterials.1c00970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Annulus fibrosus fissure and fibrosis of nucleus pulposus are severe morphological characteristics of intervertebral disc degeneration. Currently, surgery or drugs are used to relieve pain in such cases. Tissue engineering is a new multidisciplinary strategy with great potential for use in joint replacement and organ regeneration. Based on the natural anatomy of intervertebral discs, intervertebral disc scaffolds are fabricated by exploiting the special arrangement of extracellular matrix fibers. Electrospun nanofibers possess clear advantages in repairing degenerated intervertebral discs. This article reviews and summarizes recently developed methods for improving and fabricating electrospun nanofiber annulus fibrosus scaffolds in terms of nanofiber alignment, material selection, loading additives, and the progress made in combining other advanced technologies with electrospun nanofibers. In addition, the improvement in mechanical properties and biocompatibility of nucleus pulposus scaffolds by electrospun nanofiber-reinforced hydrogels is discussed. Finally, complete intervertebral disc scaffolds can be fabricated using the disc-like angle-ply structure and other emerging fabrication methods. Taken together, electrospun nanofiber intervertebral disc scaffolds are promising for clinical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yarong Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yueqi Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quanyi Guo
- Institute of Orthopedics, the Fourth Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Division of Breast Surgery, Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, Jilin 130012, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Li C, Bai Q, Lai Y, Tian J, Li J, Sun X, Zhao Y. Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2021; 9:766087. [PMID: 34746112 PMCID: PMC8569141 DOI: 10.3389/fbioe.2021.766087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Low-back and neck-shoulder pains caused by intervertebral disk degeneration are highly prevalent among middle-aged and elderly people globally. The main therapy method for intervertebral disk degeneration is surgical intervention, including interbody fusion, disk replacement, and diskectomy. However, the stress changes caused by traditional fusion surgery are prone to degeneration of adjacent segments, while non-fusion surgery has problems, such as ossification of artificial intervertebral disks. To overcome these drawbacks, biomaterials that could endogenously regenerate the intervertebral disk and restore the biomechanical function of the intervertebral disk is imperative. Intervertebral disk is a fibrocartilaginous tissue, primarily comprising nucleus pulposus and annulus fibrosus. Nucleus pulposus (NP) contains high water and proteoglycan, and its main function is absorbing compressive forces and dispersing loads from physical activities to other body parts. Annulus fibrosus (AF) is a multilamellar structure that encloses the NP, comprises water and collagen, and supports compressive and shear stress during complex motion. Therefore, different biomaterials and tissue engineering strategies are required for the functional recovery of NP and AF based on their structures and function. Recently, great progress has been achieved on biomaterials for NP and AF made of functional polymers, such as chitosan, collagen, polylactic acid, and polycaprolactone. However, scaffolds regenerating intervertebral disk remain unexplored. Hence, several tissue engineering strategies based on cell transplantation and growth factors have been extensively researched. In this review, we summarized the functional polymers and tissue engineering strategies of NP and AF to endogenously regenerate degenerative intervertebral disk. The perspective and challenges of tissue engineering strategies using functional polymers, cell transplantation, and growth factor for generating degenerative intervertebral disks were also discussed.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiushi Bai
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahao Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Architecture-Promoted Biomechanical Performance-Tuning of Tissue-Engineered Constructs for Biological Intervertebral Disc Replacement. MATERIALS 2021; 14:ma14102692. [PMID: 34065565 PMCID: PMC8160686 DOI: 10.3390/ma14102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
Background: Biological approaches to intervertebral disc (IVD) restoration and/or regeneration have become of increasing interest. However, the IVD comprises a viscoelastic system whose biological replacement remains challenging. The present study sought to design load-sharing two-component model systems of circular, nested, concentric elements reflecting the nucleus pulposus and annulus fibrosus. Specifically, we wanted to investigate the effect of architectural design variations on (1) model system failure loads when testing the individual materials either separately or homogeneously mixed, and (2) also evaluate the potential of modulating other mechanical properties of the model systems. Methods: Two sets of softer and harder biomaterials, 0.5% and 5% agarose vs. 0.5% agarose and gelatin, were used for fabrication. Architectural design variations were realized by varying ring geometries and amounts while keeping the material composition across designs comparable. Results: Variations in the architectural design, such as lamellar width, number, and order, combined with choosing specific biomaterial properties, strongly influenced the biomechanical performance of IVD constructs. Biomechanical characterization revealed that the single most important parameter, in which the model systems vastly exceeded those of the individual materials, was failure load. The model system failure loads were 32.21- and 84.11-fold higher than those of the agarose materials and 55.03- and 2.14-fold higher than those of the agarose and gelatin materials used for system fabrication. The compressive strength, dynamic stiffness, and viscoelasticity of the model systems were always in the range of the individual materials. Conclusions: Relevant architecture-promoted biomechanical performance-tuning of tissue-engineered constructs for biological IVD replacement can be realized by slight modifications in the design of constructs while preserving the materials’ compositions. Minimal variations in the architectural design can be used to precisely control structure–function relations for IVD constructs rather than choosing different materials. These fundamental findings have important implications for efficient tissue-engineering of IVDs and other load-bearing tissues, as potential implants need to withstand high in situ loads.
Collapse
|
18
|
Palomares D, Ammann KR, Saldana Perez JJ, Gomez A, Barreda A, Russell-Cheung A, Martin A, Tran PL, Hossainy S, Slepian RC, Hossainy SF, Slepian MJ. Patterned Electrospinning: A Method of Generating Defined Fibrous Constructs Influencing Cell Adhesion and Retention. ACS APPLIED BIO MATERIALS 2021; 4:4084-4093. [DOI: 10.1021/acsabm.0c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Palomares
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Kaitlyn R. Ammann
- Department of Medicine, University of Arizona, Tucson, Arizona 85721-0072, United States
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Javier J. Saldana Perez
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Alexan Gomez
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Adriana Barreda
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Andrew Russell-Cheung
- Department of Biological & Biomedical Sciences, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Adriana Martin
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Phat Le Tran
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Sahir Hossainy
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Rebecca C. Slepian
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Syed F.A. Hossainy
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Marvin J. Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
- Department of Medicine, University of Arizona, Tucson, Arizona 85721-0072, United States
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| |
Collapse
|
19
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
20
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
21
|
Zhou P, Wei B, Guan J, Chen Y, Zhu Y, Ye Y, Meng Y, Guan J, Mao Y. Mechanical Stimulation and Diameter of Fiber Scaffolds Affect the Differentiation of Rabbit Annulus Fibrous Stem Cells. Tissue Eng Regen Med 2021; 18:49-60. [PMID: 33145743 PMCID: PMC7862471 DOI: 10.1007/s13770-020-00305-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Degeneration of the annulus fibrosus (AF), an important structure of the intervertebral disc, is one of the main causes of degenerative disc disease. Fabrication of scaffolds replicating the stratified microstructure of the AF is critical for the successful regeneration of AF. METHODS In this study, we cultured rabbit AF-derived stem cells (AFSCs) using fabricated electrospun fibrous poly-L-lactic acid scaffolds with different diameters. We applied cyclic tensile strain (CTS) on the scaffolds to regulate the differentiation of AFSCs into specific cell types that resided at the inner, middle, and outer zones of the AF. RESULTS We found that the morphologies of AFSCs on the smaller-fiber-diameter scaffolds were nearly round, whereas spindle-like cells morphologies were observed on large-diameter scaffolds. CTS enhanced these phenomena and made the cells slender. The expression levels of collagen-I in cells increased as a function of the fiber diameter, whereas collagen-II and aggrecan exhibited opposite trends. Moreover, the application of CTS upregulated the gene expressions of collagen-I, collagen-II, and aggrecan. CONCLUSION Overlaying the scaffolds with different CTS-stimulated cells could eventually lead to engineered AF tissues with hierarchical structures that approximated the native AF tissue. Thus, the proposed methodologies could be potentially applied for AF regeneration.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Bangguo Wei
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Yu Chen
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
- School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
- Department of Plastic Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yansong Zhu
- School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Yuchen Ye
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Yue Meng
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Jianzhong Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
22
|
PC12 cells proliferation and morphological aspects: Inquiry into raffinose-grafted graphene oxide in silk fibroin-based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111810. [DOI: 10.1016/j.msec.2020.111810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
|
23
|
De Pieri A, Byerley AM, Musumeci CR, Salemizadehparizi F, Vanderhorst MA, Wuertz‐Kozak K. Electrospinning and 3D bioprinting for intervertebral disc tissue engineering. JOR Spine 2020; 3:e1117. [PMID: 33392454 PMCID: PMC7770193 DOI: 10.1002/jsp2.1117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain and represents a massive socioeconomic burden. Current conservative and surgical treatments fail to restore native tissue architecture and functionality. Tissue engineering strategies, especially those based on 3D bioprinting and electrospinning, have emerged as possible alternatives by producing cell-seeded scaffolds that replicate the structure of the IVD extracellular matrix. In this review, we provide an overview of recent advancements and limitations of 3D bioprinting and electrospinning for the treatment of IVD degeneration, focusing on future areas of research that may contribute to their clinical translation.
Collapse
Affiliation(s)
- Andrea De Pieri
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | - Ann M. Byerley
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | - Catherine R. Musumeci
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | | | - Maya A. Vanderhorst
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
| | - Karin Wuertz‐Kozak
- Department of Biomedical EngineeringRochester Institute of Technology (RIT)RochesterNew YorkUSA
- Schön Clinic Munich Harlaching, Spine CenterAcademic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU)MunichGermany
| |
Collapse
|
24
|
Tien ND, Maurya AK, Fortunato G, Rottmar M, Zboray R, Erni R, Dommann A, Rossi RM, Neels A, Sadeghpour A. Responsive Nanofibers with Embedded Hierarchical Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11787-11797. [PMID: 32936649 DOI: 10.1021/acs.langmuir.0c01487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We introduce the design and study of a hybrid electrospun membrane with a dedicated nanoscale structural hierarchy for controlled functions in the biomedical domain. The hybrid system comprises submicrometer-sized internally self-assembled lipid nanoparticles (ISAsomes or mesosomes) embedded into the electrospun membrane with a nanofibrous polymer network. The internal structure of ISAsomes, studied by small-angle X-ray scattering (SAXS) and electron microscopy, demonstrated a spontaneous response to variations in the environmental conditions as they undergo a bicontinuous inverse cubic phase (cubosomes) in solution to a crystalline lamellar phase in the polymer membrane; nevertheless, this phase reorganization is reversible. As revealed by in situ SAXS measurements, if the membrane was put in contact with aqueous media, the cubic phase reappeared and submicrometer-sized cubosomes were released upon dissolution of the nanofibers. Furthermore, the hybrid membranes exhibited a specific anisotropic feature and morphological response under an external strain. While nanofibers were aligned under external strain in the microscale, the semicrystalline domains from the polymer phase were positioned perpendicular to the lamellae of the lipid phase in the nanoscale. The fabricated membranes and their spontaneous responses offer new strategies for the development of structure-controlled functions in electrospun nanofibers for biomedical applications, such as drug delivery or controlled interactions with biointerfaces.
Collapse
Affiliation(s)
- Nguyen D Tien
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Anjani K Maurya
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Alex Dommann
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg 79085, Switzerland
| | - Amin Sadeghpour
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| |
Collapse
|
25
|
Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater 2020; 112:75-86. [PMID: 32505802 DOI: 10.1016/j.actbio.2020.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Bone injuries are common and new strategies are desired for achieving ideal bone regeneration for bone defect repair. Scaffolds with bone-mimicking characteristics may provide an appropriate microenvironment to promote bone regeneration. Meanwhile, mechanical stimulation effectively regulates a wide range of cellular behaviors such as cell proliferation and differentiation. In this study, biomimetic multi-layer cell-collagen constructs with angle-ply structural feature were prepared by assembling micropatterned collagen membranes on which aligned MC3T3-E1 cells were cultured. The anisotropic microgrooved collagen membranes effectively guided the alignment of cells and promoted the osteogenic differentiation of them. To further promote cell differentiation and extracellular matrix production, the multi-layer cell-collagen constructs were cultured under mechanical conditioning through cyclic stretching. It was found that the constructs with both cell alignment and mechanical conditioning resulted in better osteogenic potential than those with cell alignment or mechanical conditioning alone. Upon implantation into the critical-sized calvarial defects of mice, the constructs with both cell alignment and mechanical conditioning achieved best new bone formation efficacy. Together, findings from this study reveal that synergized use of microstructural and mechanical cues may provide an effective new approach toward bone regeneration. STATEMENT OF SIGNIFICANCE: Biomimicking is an effective strategy to promote bone regeneration for repairing bone defects. Although numerous studies which micro-structurally mimicked native bone using various scaffolds, far less studies have paid attention to the mechanical environment of bone. In this study, angle-ply collagen membrane-supported cell sheets were prepared and pre-conditioned using mechanical loading prior to implantation at bone defects. The constructs with cell alignment and subjected to mechanical conditioning resulted in better osteogenic differentiation of cells in vitro and new bone formation in vivo than those with cell alignment or mechanical conditioning alone. Therefore, recapitulation of both microstructural and mechanical features of native bone may result in a synergistic effect and provides an effective approach toward bone regeneration.
Collapse
|
26
|
Eekhoff JD, Lake SP. Three-dimensional computation of fibre orientation, diameter and branching in segmented image stacks of fibrous networks. J R Soc Interface 2020; 17:20200371. [PMID: 32752994 PMCID: PMC7482563 DOI: 10.1098/rsif.2020.0371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Fibre topography of the extracellular matrix governs local mechanical properties and cellular behaviour including migration and gene expression. While quantifying properties of the fibrous network provides valuable data that could be used across a breadth of biomedical disciplines, most available techniques are limited to two dimensions and, therefore, do not fully capture the architecture of three-dimensional (3D) tissue. The currently available 3D techniques have limited accuracy and applicability and many are restricted to a specific imaging modality. To address this need, we developed a novel fibre analysis algorithm capable of determining fibre orientation, fibre diameter and fibre branching on a voxel-wise basis in image stacks with distinct fibre populations. The accuracy of the technique is demonstrated on computer-generated phantom image stacks spanning a range of features and complexities, as well as on two-photon microscopy image stacks of elastic fibres in bovine tendon and dermis. Additionally, we propose a measure of axial spherical variance which can be used to define the degree of fibre alignment in a distribution of 3D orientations. This method provides a useful tool to quantify orientation distributions and variance on image stacks with distinguishable fibres or fibre-like structures.
Collapse
Affiliation(s)
- Jeremy D. Eekhoff
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63110, USA
| | - Spencer P. Lake
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO 63110, USA
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
27
|
Chuah YJ, Tan JR, Wu Y, Lim CS, Hee HT, Kang Y, Wang DA. Scaffold-Free tissue engineering with aligned bone marrow stromal cell sheets to recapitulate the microstructural and biochemical composition of annulus fibrosus. Acta Biomater 2020; 107:129-137. [PMID: 32105832 DOI: 10.1016/j.actbio.2020.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Current tissue engineering strategies through scaffold-based approaches fail to recapitulate the complex three-dimensional microarchitecture and biochemical composition of the native Annulus Fibrosus tissue. Considering limited access to healthy annulus fibrosus cells from patients, this study explored the potential of bone marrow stromal cells (BMSC) to fabricate a scaffold-free multilamellar annulus fibrosus-like tissue by integrating micropatterning technologies into multi-layered BMSC engineering. BMSC sheet with cells and collagen fibres aligned at ~30° with respect to their longitudinal dimension were developed on a microgroove-patterned PDMS substrate. Two sheets were then stacked together in alternating directions to form an angle-ply bilayer tissue, which was rolled up, sliced to form a multi-lamellar angle-ply tissue and cultured in a customized medium. The development of the annulus fibrosus-like tissue was further characterized by histological, gene expression and microscopic and mechanical analysis. We demonstrated that the engineered annulus fibrosus-like tissue with aligned BMSC sheet showed parallel collagen fibrils, biochemical composition and microstructures that resemble the native disk. Furthermore, aligned cell sheet showed enhanced expression of annulus fibrosus associated extracellular matrix markers and higher mechanical strength than that of the non-aligned cell sheet. The present study provides a new strategy in annulus fibrosus tissue engineering methodology to develop a scaffold-free annulus fibrosus-like tissue that resembles the microarchitecture and biochemical attributes of a native tissue. This can potentially lead to a promising avenue for advancing BMSC-mediated annulus fibrosus regeneration towards future clinical applications.
Collapse
|
28
|
Chu G, Zhang W, Zhou P, Yuan Z, Zhu C, Wang H, Li J, Zhou F, Yang Q, Yang H, Li B. Substrate Topography Regulates Differentiation of Annulus Fibrosus-Derived Stem Cells via CAV1-YAP-Mediated Mechanotransduction. ACS Biomater Sci Eng 2020; 7:862-871. [PMID: 33715372 DOI: 10.1021/acsbiomaterials.9b01823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regeneration of annulus fibrosus (AF) through tissue engineering techniques shows promise as a treatment for patients with degenerative disc disease (DDD). Yet, it remains challenging because of the intrinsic heterogeneity of AF tissue and shortage of in-depth knowledge of its structure-function correlation. In the current study, we fabricated fibrous poly(ether carbonate urethane)urea (PECUU) scaffolds with various fiber sizes to mimic the microstructural feature of native AF and aimed to regulate the differentiation of AF-derived stem cells (AFSCs) by controlling the topographical cues of the scaffold. We found that the morphology of AFSCs varied significantly on scaffolds with various fiber sizes. Meanwhile, the expression of the phenotypic marker genes of outer AF was up-regulated on scaffolds with large fibers. Meanwhile, enhanced expression of the phenotypic marker genes of inner AF was seen on scaffolds with small fibers. Such topography-dependent gene expression in AFSCs approximated the biochemical profile of AF tissue in various zones. Moreover, cell spreading and nucleus translocation of Yes-associated protein (YAP) were facilitated with increased fiber size. Formation and maturation of focal adhesions of AFSCs were also promoted. We also found that Caveolin-1 (CAV1) positively modulated the mechano-responses of YAP in response to substrate topography. In conclusion, depending on the activation of the CAV1-YAP mechanotransduction axis, tuning the fiber size of scaffolds can effectively induce changes in cell shape, adhesions, and extracellular matrix expression. This work may therefore provide new insights in the design of novel materials toward AF tissue regeneration.
Collapse
Affiliation(s)
- Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui 233004, China.,Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Feng Zhou
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
29
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
30
|
Zhou P, Chu G, Yuan Z, Wang H, Zhang W, Mao Y, Zhu X, Chen W, Yang H, Li B. Regulation of differentiation of annulus fibrosus-derived stem cells using heterogeneous electrospun fibrous scaffolds. J Orthop Translat 2020; 26:171-180. [PMID: 33437636 PMCID: PMC7773966 DOI: 10.1016/j.jot.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
Background Tissue engineering of the annulus fibrosus (AF) shows promise as a treatment for patients with degenerative disc disease (DDD). However, it remains challenging due to the intrinsic heterogeneity of AF tissue. Fabrication of scaffolds recapitulating the specific cellular, componential, and microstructural features of AF, therefore, is critical to successful AF tissue regeneration. Methods Poly-L-lactic acid (PLLA) fibrous scaffolds with various fiber diameters and orientation were prepared to mimic the microstructural characteristics of AF tissue using electrospinning technique. AF-derived stem cells (AFSCs) were cultured on the PLLA fibrous scaffolds for 7 days. Results The morphology of AFSCs significantly varied when cultured on the scaffolds with various fiber diameters and orientation. AFSCs were nearly round on scaffolds with small fibers. However, they became spindle-shaped on scaffolds with large fibers. Meanwhile, upregulated expression of collagen-I gene happened in cells cultured on scaffolds with large fibers, while enhanced expression of collagen-II and aggrecan genes was seen on scaffolds with small fibers. The production of related proteins also showed similar trends. Further, culturing AFSCs on a heterogeneous scaffold by overlaying membranes with different fiber sizes led to the formation of a hierarchical structure approximating native AF tissue. Conclusion Findings from this study demonstrate that fibrous scaffolds with different fiber sizes effectively promoted the differentiation of AFSCs into specific cells similar to the types of cells at various AF zones. It also provides a valuable reference for regulation of cell differentiation and fabrication of engineered tissues with complex hierarchical structures using the physical cues of scaffolds. The translational potential of this article Effective AF repair is an essential need for treating degenerative disc disease. Tissue engineering is a promising approach to achieving tissue regeneration and restoring normal functions of tissues. By mimicking the key structural features of native AF tissue, including fiber size and alignment, this study deciphered the effect of scaffold materials on the cell differentiation and extracellular matrix deposition, which provides a solid basis for designing new strategies toward more effective AF repair and regeneration.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.,Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Genglei Chu
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhangqin Yuan
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yingji Mao
- Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Xuesong Zhu
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weiguo Chen
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Abstract
Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.
Collapse
|
32
|
Peng Y, Huang D, Liu S, Li J, Qing X, Shao Z. Biomaterials-Induced Stem Cells Specific Differentiation Into Intervertebral Disc Lineage Cells. Front Bioeng Biotechnol 2020; 8:56. [PMID: 32117935 PMCID: PMC7019859 DOI: 10.3389/fbioe.2020.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cell therapy, which promotes stem cells differentiation toward specialized cell types, increases the resident population and production of extracellular matrix, and can be used to achieve intervertebral disc (IVD) repair, has drawn great attention for the development of IVD-regenerating materials. Many materials that have been reported in IVD repair have the ability to promote stem cells differentiation. However, due to the limitations of mechanical properties, immunogenicity and uncontrollable deviations in the induction of stem cells differentiation, there are few materials that can currently be translated into clinical applications. In addition to the favorable mechanical properties and biocompatibility of IVD materials, maintaining stem cells activity in the local niche and increasing the ability of stem cells to differentiate into nucleus pulposus (NP) and annulus fibrosus (AF) cells are the basis for promoting the application of IVD-regenerating materials in clinical practice. The purpose of this review is to summarize IVD-regenerating materials that focus on stem cells strategies, analyze the properties of these materials that affect the differentiation of stem cells into IVD-like cells, and then present the limitations of currently used disc materials in the field of stem cell therapy and future research perspectives.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110218. [DOI: 10.1016/j.msec.2019.110218] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
34
|
Heng W, Bhavsar M, Han Z, Barker JH. Effects of Electrical Stimulation on Stem Cells. Curr Stem Cell Res Ther 2020; 15:441-448. [PMID: 31995020 DOI: 10.2174/1574888x15666200129154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
Recent interest in developing new regenerative medicine- and tissue engineering-based treatments has motivated researchers to develop strategies for manipulating stem cells to optimize outcomes in these potentially, game-changing treatments. Cells communicate with each other, and with their surrounding tissues and organs via electrochemical signals. These signals originate from ions passing back and forth through cell membranes and play a key role in regulating cell function during embryonic development, healing, and regeneration. To study the effects of electrical signals on cell function, investigators have exposed cells to exogenous electrical stimulation and have been able to increase, decrease and entirely block cell proliferation, differentiation, migration, alignment, and adherence to scaffold materials. In this review, we discuss research focused on the use of electrical stimulation to manipulate stem cell function with a focus on its incorporation in tissue engineering-based treatments.
Collapse
Affiliation(s)
- Wang Heng
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Mit Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Zhihua Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| |
Collapse
|
35
|
Noise reduction and quantification of fiber orientations in greyscale images. PLoS One 2020; 15:e0227534. [PMID: 31945084 PMCID: PMC6964846 DOI: 10.1371/journal.pone.0227534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
Quantification of the angular orientation distribution of fibrous tissue structures in scientific images benefits from the Fourier image analysis to obtain quantitative information. Measurement uncertainties represent a major challenge and need to be considered by propagating them in order to determine an adaptive anisotropic Fourier filter. Our adaptive filter method (AF) is based on the maximum relative uncertainty δcut of the power spectrum as well as a weighted radial sum with weighting factor α. We use a Monte-Carlo simulation to obtain realistic greyscale images that include defined variations in fiber thickness, length, and angular dispersion as well as variations in noise. From this simulation the best agreement between predefined and derived angular orientation distribution is found for evaluation parameters δcut = 2.1% and α = 1.5. The resulting cumulative orientation distribution was modeled by a sigmoid function to obtain the mean angle and the fiber dispersion. A comparison to a state-of-the-art band-pass method revealed that the AF method is more suitable for the application on greyscale fiber images, since the error of the fiber dispersion significantly decreased from (33.9 ± 26.5)% to (13.2 ± 12.7)%. Both methods were found to accurately quantify the mean fiber orientation with an error of (1.9 ± 1.5)° and (2.3 ± 2.1)° in case of the AF and the band-pass method, respectively. We demonstrate that the AF method is able to accurately quantify the fiber orientation distribution in in vivo second-harmonic generation images of dermal collagen with a mean fiber orientation error of (6.0 ± 4.0)° and a dispersion error of (9.3 ± 12.1)%.
Collapse
|
36
|
Shin YM, Yang HS, Chun HJ. Directional Cell Migration Guide for Improved Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:131-140. [DOI: 10.1007/978-981-15-3258-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
37
|
Liu C, Jin Z, Ge X, Zhang Y, Xu H. Decellularized Annulus Fibrosus Matrix/Chitosan Hybrid Hydrogels with Basic Fibroblast Growth Factor for Annulus Fibrosus Tissue Engineering. Tissue Eng Part A 2019; 25:1605-1613. [PMID: 30929614 PMCID: PMC6919252 DOI: 10.1089/ten.tea.2018.0297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Low back pain caused by degenerative disc disease affects many people worldwide and brings huge economical burden. Thus, attentions have focused on annulus fibrosus (AF) tissue engineering for treatment of intervertebral disc degeneration. To engineer a functional replacement for the AF, it is important to fabricate scaffolds that mimic the structural and mechanical properties of native tissue. AF-derived stem cells are promising seed cells for AF tissue engineering due to their tissue specificity. In the present study, decellularized AF matrix (DAFM)/chitosan hybrid hydrogels were fabricated using genipin as a crosslinker. AF stem cells were cultured on hydrogel scaffolds with or without basic fibroblast growth factor (bFGF), and cell proliferation, morphology, gene expression, and AF tissue synthesis were examined. Overall, more collagen-I, collagen-II, and aggrecan were secreted by AF stem cells grown on hydrogels with bFGF compared to those without. These results support the application of DAFM/chitosan hybrid hydrogels as an appropriate candidate for AF tissue engineering. Furthermore, incorporation of bFGF into hydrogels promoted AF-related tissue synthesis.
Collapse
Affiliation(s)
- Chen Liu
- Department of Orthopaedics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhongxing Jin
- Department of Orthopaedics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xin Ge
- Department of Orthopaedics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yu Zhang
- Department of Orthopaedics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongguang Xu
- Department of Orthopaedics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
38
|
Page M, Baer K, Schon B, Mekhileri N, Woodfield T, Puttlitz C. Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part I: Experimental evaluation. J Mech Behav Biomed Mater 2019; 98:317-326. [DOI: 10.1016/j.jmbbm.2019.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022]
|
39
|
Fotticchia A, Demirci E, Lenardi C, Liu Y. Cellular Response to Cyclic Compression of Tissue Engineered Intervertebral Disk Constructs Composed of Electrospun Polycaprolactone. J Biomech Eng 2019; 140:2673010. [PMID: 29450477 DOI: 10.1115/1.4039307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is lack of investigation capturing the complex mechanical interaction of tissue-engineered intervertebral disk (IVD) constructs in physiologically relevant environmental conditions. In this study, mechanical characterization of anisotropic electrospinning (ES) substrates made of polycaprolactone (PCL) was carried out in wet and dry conditions and viability of human bone marrow derived mesenchymal stem cells (hMSCs) seeded within double layers of ES PCL were also studied. Cyclic compression of IVD-like constructs composed of an agarose core confined by ES PCL double layers was implemented using a bioreactor and the cellular response to the mechanical stimulation was evaluated. Tensile tests showed decrease of elastic modulus of ES PCL as the angle of stretching increased, and at 60 deg stretching angle in wet, the maximum ultimate tensile strength (UTS) was observed. Based on the configuration of IVD-like constructs, the calculated circumferential stress experienced by the ES PCL double layers was 40 times of the vertical compressive stress. Confined compression of IVD-like constructs at 5% and 10% displacement dramatically reduced cell viability, particularly at 10%, although cell presence in small and isolated area can still be observed after mechanical conditioning. Hence, material mechanical properties of tissue-engineered scaffolds, composed of fibril structure of polymer with low melting point, are affected by the testing condition. Circumferential stress induced by axial compressive stimulation, conveyed to the ES PCL double layer wrapped around an agarose core, can affect the viability of cells seeded at the interface, depending on the mechanical configuration and magnitude of the load.
Collapse
Affiliation(s)
- Andrea Fotticchia
- Mechanical, Electrical, and Manufacturing Engineering Department, Loughborough University, Loughborough LE11 3TU, UK e-mail:
| | - Emrah Demirci
- Mechanical, Electrical, and Manufacturing Engineering Department, Loughborough University, Loughborough LE11 3TU, UK e-mail:
| | - Cristina Lenardi
- Fondazione Filarete and CIMaINa, Dipartimento di Fisica, Universita' di Milano, Via Celoria 16, Milano 20133, Italy e-mail:
| | - Yang Liu
- Mechanical, Electrical, and Manufacturing Engineering Department, Loughborough University, Loughborough LE11 3TU, UK e-mail:
| |
Collapse
|
40
|
Pereira Rodrigues IC, Tamborlin L, Rodrigues AA, Jardini AL, Ducati Luchessi A, Maciel Filho R, Najar Lopes ÉS, Pellizzer Gabriel L. Polyurethane fibrous membranes tailored by rotary jet spinning for tissue engineering applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.48455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Leticia Tamborlin
- School of Applied SciencesUniversity of Campinas Limeira São Paulo Brazil
- Institute of BiosciencesSão Paulo State University Rio Claro São Paulo Brazil
| | | | - André Luiz Jardini
- National Institute of Biofabrication Campinas São Paulo Brazil
- School of Chemical EngineeringUniversity of Campinas Campinas São Paulo Brazil
| | - Augusto Ducati Luchessi
- School of Applied SciencesUniversity of Campinas Limeira São Paulo Brazil
- Institute of BiosciencesSão Paulo State University Rio Claro São Paulo Brazil
| | - Rubens Maciel Filho
- National Institute of Biofabrication Campinas São Paulo Brazil
- School of Chemical EngineeringUniversity of Campinas Campinas São Paulo Brazil
| | | | | |
Collapse
|
41
|
Chu G, Yuan Z, Zhu C, Zhou P, Wang H, Zhang W, Cai Y, Zhu X, Yang H, Li B. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomater 2019; 92:254-264. [PMID: 31078765 DOI: 10.1016/j.actbio.2019.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
Abstract
Annulus fibrosus (AF) tissue engineering has attracted increasing attention as a promising therapy for degenerative disc disease (DDD). However, regeneration of AF still faces many challenges due to the tremendous complexity of this tissue and lack of in-depth understanding of the structure-function relationship at cellular level within AF is highly required. In light of the fact that AF is composed of various types of cells and has gradient mechanical, topographical and biochemical features along the radial direction. In this study, we aimed to achieve directed differentiation of AF-derived stem cells (AFSCs) by mimicking the mechanical and topographical features of native AF tissue. AFSCs were cultured on four types of electrospun poly(ether carbonate urethane)urea (PECUU) scaffolds with various stiffness and fiber size (soft, small size; stiff, small size; soft, large size and stiff, large size). The results show that with constant fiber size, the expression level of the outer AF (oAF) phenotypic marker genes in AFSCs increased with the scaffold stiffness, while that of inner AF (iAF) phenotypic marker genes showed an opposite trend. When scaffold stiffness was fixed, the expression of oAF phenotypic marker genes in AFSCs increased with fiber size. While the expression of iAF phenotypic marker genes decreased. Such substrate stiffness- and topography-dependent changes of AFSCs was in accordance with the genetic and biochemical distribution of AF tissue from the inner to outer regions. Further, we found that the Yes-associated protein (YAP) was translocated to the nucleus in AFSCs cultured with increasing stiffness and fiber size of scaffolds, yet it remained mostly phosphorylated and cytosolic in cells on soft scaffolds with small fiber size. Inhibition of YAP down-regulated the expression of tendon/ligament-related genes, whereas expression of the cartilage-related genes was upregulated. The results illustrate that matrix stiffness is a potent regulator of AFSC differentiation. Moreover, we reveal that fiber size of scaffolds induced changes in cell adhesions and determined cell shape, spreading area, and extracellular matrix expression. In all, both mechanical property and topography features of scaffolds regulate AFSC differentiation, possibly through a YAP-dependent mechanotransduction mechanism. STATEMENT OF SIGNIFICANCE: Physical cues such as mechanical properties, topographical and geometrical features were shown to profoundly impact the growth and differentiation of cultured stem cells. Previously, we have found that the differentiation of annulus fibrosus-derived stem cells (AFSCs) could be regulated by the stiffness of scaffold. In this study, we fabricated four types of poly(ether carbonate urethane)urea (PECUU) scaffolds with controlled stiffness and fiber size to explore the potential of induced differentiation of AFSCs. We found that AFSCs are able to present different gene expression patterns simply as a result of the stiffness and fiber size of scaffold material. This work has, for the first time, demonstrated that larger-sized and higher-stiffness substrates increase the amount of vinculin assembly and activate YAP signaling in pre-differentiated AFSCs. The present study affords an in-depth comprehension of materiobiology, and be helpful for explain the mechanism of YAP mechanosensing in AF in response to biophysical effects of materials.
Collapse
Affiliation(s)
- Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Cai
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Maurya AK, Weidenbacher L, Spano F, Fortunato G, Rossi RM, Frenz M, Dommann A, Neels A, Sadeghpour A. Structural insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach. NANOSCALE 2019; 11:7176-7187. [PMID: 30919869 DOI: 10.1039/c9nr00446g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A dedicated nanofiber design for applications in the biomedical domain is based on the understanding of nanofiber structures. The structure of electrospun nanofibers strongly influences their properties and functionalities. In polymeric nanofibers X-ray scattering and diffraction methods, i.e. SAXS and WAXD, are capable of decoding their structural insights from about 100 nm down to the Angström scale. Here, we present a comprehensive X-ray scattering and diffraction based study and introduce new data analysis approaches to unveil detailed structural features in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDFhfp) nanofiber membranes. Particular emphasis was placed on anisotropic morphologies being developed during the nanofiber fabrication process. Global analysis was performed on SAXS data to derive the nanofibrillar structure of repeating lamella crystalline domains with average dimensions of 12.5 nm thickness and 7.8 nm spacing along with associated tie-molecules. The varying surface roughness of the nanofiber was evaluated by extracting the Porod exponent in parallel and perpendicular direction to the nanofiber axis, which was further validated by Atomic Force Microscopy. Additionally, the presence of a mixture of the monoclinic alpha and the orthorhombic beta PVDFhfp phases both exhibiting about 6% larger unit cells compared to the corresponding pure PVDF phases was derived from WAXD. The current study shows a generic approach in detailed understanding of internal structures and surface morphology for nanofibers. This forms the basis for targeted structure and morphology steering and the respective controlling during the fabrication process with the aim to engineer nanofibers for different biomedical applications with specific requirements.
Collapse
Affiliation(s)
- Anjani K Maurya
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics, St. Gallen, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shamsah AH, Cartmell SH, Richardson SM, Bosworth LA. Mimicking the Annulus Fibrosus Using Electrospun Polyester Blended Scaffolds. NANOMATERIALS 2019; 9:nano9040537. [PMID: 30987168 PMCID: PMC6523918 DOI: 10.3390/nano9040537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 11/16/2022]
Abstract
Treatments to alleviate chronic lower back pain, caused by intervertebral disc herniation as a consequence of degenerate annulus fibrosus (AF) tissue, fail to provide long-term relief and do not restore tissue structure or function. This study aims to mimic the architecture and mechanical environment of AF tissue using electrospun fiber scaffolds made from synthetic biopolymers-poly(ε-caprolactone) (PCL) and poly(L-lactic) acid (PLLA). Pure polymer and their blends (PCL%:PLLA%; 80:20, 50:50, and 20:80) are studied and material properties-fiber diameter, alignment, % crystallinity, tensile strength, and water contact angle-characterized. Tensile properties of fibers angled at 0°, 30°, and 60° (single layer scaffolds), and ±0°, ±30°, and ±60° (bilayer scaffolds) yield significant differences, with PCL being significantly stiffer with the addition of PLLA, and bilayer scaffolds considerably stronger. Findings suggest PCL:PLLA 50:50 fibers are similar to human AF properties. Furthermore, in vitro culture of AF cells on 50:50 fibers demonstrates attachment and proliferation over seven days. The optimal polymer composition for production of scaffolds that closely mimic AF tissue both structurally, mechanically, and which also support and guide favorable cell phenotype is identified. This study takes a step closer towards successful AF tissue engineering and a long-term treatment for sufferers of chronic back pain.
Collapse
Affiliation(s)
- Alyah H Shamsah
- School of Materials, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Sarah H Cartmell
- School of Materials, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Stephen M Richardson
- School of Biology, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Lucy A Bosworth
- School of Materials, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, 6 West Derby Street, University of Liverpool, Liverpool L7 8TX, UK.
| |
Collapse
|
44
|
Gluais M, Clouet J, Fusellier M, Decante C, Moraru C, Dutilleul M, Veziers J, Lesoeur J, Dumas D, Abadie J, Hamel A, Bord E, Chew SY, Guicheux J, Le Visage C. In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials 2019; 205:81-93. [PMID: 30909111 DOI: 10.1016/j.biomaterials.2019.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
Annulus fibrosus (AF) impairment is associated with reherniation, discogenic pain, and disc degeneration after surgical partial discectomy. Due to a limited intrinsic healing capacity, defects in the AF persist over time and it is hence necessary to adopt an appropriate strategy to close and repair the damaged AF. In this study, a cell-free biodegradable scaffold made of polycaprolactone (PCL), electrospun, aligned microfibers exhibited high levels of cell colonization, alignment, and AF-like extracellular matrix deposition when evaluated in an explant culture model. The biomimetic multilayer fibrous scaffold was then assessed in an ovine model of AF impairment. After 4 weeks, no dislocation of the implants was detected, and only one sample out of six showed a partial delamination. Histological and immunohistochemical analyses revealed integration of the implant with the surrounding tissue as well as homogeneously aligned collagen fiber organization within each lamella compared to the disorganized and scarcer fibrous tissue in a randomly organized control fibrous scaffold. In conclusion, this biomimetic electrospun implant exhibited promising properties in terms of AF defect closure, with AF-like neotissue formation that fully integrated with the surrounding ovine tissue.
Collapse
Affiliation(s)
- Maude Gluais
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes, F-44307, France
| | - Cyrille Decante
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Chirurgie Infantile, PHU5, Nantes, F-44093, France
| | - Constantin Moraru
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Maeva Dutilleul
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France
| | - Joëlle Veziers
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France
| | - Dominique Dumas
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS - Université de Lorraine, Vandœuvre-lès-Nancy, F54505, France; UMS2008 IBSLor - CNRS-UL-INSERM Plateforme d'Imagerie et de Biophysique Cellulaire PTIBC-IBISA, Vandœuvre-lès-Nancy, F54505, France
| | - Jérôme Abadie
- Animal Cancers as Models for Research in Comparative Oncology (AMaROC), ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes, F-44307, France
| | - Antoine Hamel
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Chirurgie Infantile, PHU5, Nantes, F-44093, France
| | - Eric Bord
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France.
| |
Collapse
|
45
|
Huang J, Tu T, Wang W, Gao Z, Zhou G, Zhang W, Wu X, Liu W. Aligned topography mediated cell elongation reverses pathological phenotype of
in vitro
cultured keloid fibroblasts. J Biomed Mater Res A 2019; 107:1366-1378. [DOI: 10.1002/jbm.a.36650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of ChinaShanghai Jiao Tong University School of Medicine Shanghai People's Republic of China
| |
Collapse
|
46
|
Leal CV, Santos Almeida R, Dávila JL, Domingues JA, Hausen MA, Duek EAR, d’Ávila MA. Characterization and
in vitro
evaluation of electrospun aligned‐fiber membranes of poly(
L
‐co‐
D
,
L
‐lactic acid). J Appl Polym Sci 2019. [DOI: 10.1002/app.47657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Claudenete Vieira Leal
- Department of Manufacturing and Materials EngineeringSchool of Mechanical Engineering, University of Campinas (UNICAMP) Campinas CEP 13083‐860 Brazil
| | - Rosemeire Santos Almeida
- Department of Manufacturing and Materials EngineeringSchool of Mechanical Engineering, University of Campinas (UNICAMP) Campinas CEP 13083‐860 Brazil
- Faculty of Technology Arthur de Azevedo (FATEC‐Mogi Mirim) Mogi Mirim CEP 13801‐005 Brazil
- Faculty of Technology (FATEC‐Mauá) Mauá CEP 09390‐120 Brazil
| | - José Luis Dávila
- Department of Manufacturing and Materials EngineeringSchool of Mechanical Engineering, University of Campinas (UNICAMP) Campinas CEP 13083‐860 Brazil
| | - Juliana Almeida Domingues
- Department of Cellular and Structural BiologyInstitute of Biology, University of Campinas (UNICAMP) Campinas CEP 13083‐862 Brazil
| | - Moema A. Hausen
- Faculty of Medical SciencesPontifical Catholic University of São Paulo (PUC‐SP) Sorocaba CEP 18030‐095 Brazil
| | - Eliana A. Rezende Duek
- Department of Manufacturing and Materials EngineeringSchool of Mechanical Engineering, University of Campinas (UNICAMP) Campinas CEP 13083‐860 Brazil
- Faculty of Medical SciencesPontifical Catholic University of São Paulo (PUC‐SP) Sorocaba CEP 18030‐095 Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials EngineeringSchool of Mechanical Engineering, University of Campinas (UNICAMP) Campinas CEP 13083‐860 Brazil
| |
Collapse
|
47
|
Ahmed HH, Aglan HA, Mabrouk M, Abd-Rabou AA, Beherei HH. Enhanced mesenchymal stem cell proliferation through complexation of selenium/titanium nanocomposites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:24. [PMID: 30747346 DOI: 10.1007/s10856-019-6224-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
The main target of this work was to explore the proliferative impact of selenium dioxide nanoparticles (SeO2) and selenium dioxide/titanium dioxide nanocomposites (Se/Ti (I), (II) and (III)) on mesenchymal stem cells (MSCs). For this purpose, SeO2 and Se/Ti (I), (II) and (III) were prepared by facile one step method and characterized by transmission electron microscopy (TEM), Zetasizer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) along with energy-dispersive X-ray spectrometry (EDX) with reference to SeO2 nanoparticles. Also, MSCs were isolated from rat bone marrow (BM-MSCs) and adipose tissue (ADSCs), propagated and characterized by flow cytometry. Thereafter, the proliferative effect of the fabricated nanomaterials was investigated by MTT assay. The TEM and DLS results, revealed that the average particle size of the suggested nanomaterials was in nanoscale. XRD pattern showed well crystalline structure for SeO2 nanoparticles and Se/Ti (I), (II) and (III) nanocomposites; the decreasing of the crystalline phase was observed by increasing the wt% of TiO2. The designed nanomaterials showed proliferative effects on MSCs with the most prominent effect exerted by 2 µg/ml of Se/Ti (III) and 5 µg/ml of Se/Ti (II) for ADSCs and 20 µg/ml of Se/Ti (II) and 10 µg/ml of Se/Ti (III) for BM-MSCs. Therefore, these newly designed nanomaterials have a promising influence on MSCs proliferation and they are recommended to be utilized in the filed of tissue engineering.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, National Research Centre, Giza, Egypt.
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hadeer A Aglan
- Hormones Department, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| | - Ahmed A Abd-Rabou
- Hormones Department, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| |
Collapse
|
48
|
Jansen K, Castilho M, Aarts S, Kaminski MM, Lienkamp SS, Pichler R, Malda J, Vermonden T, Jansen J, Masereeuw R. Fabrication of Kidney Proximal Tubule Grafts Using Biofunctionalized Electrospun Polymer Scaffolds. Macromol Biosci 2019; 19:e1800412. [PMID: 30548802 PMCID: PMC7116029 DOI: 10.1002/mabi.201800412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of end-stage renal disease and persistent shortage of donor organs call for alternative therapies for kidney patients. Dialysis remains an inferior treatment as clearance of large and protein-bound waste products depends on active tubular secretion. Biofabricated tissues could make a valuable contribution, but kidneys are highly intricate and multifunctional organs. Depending on the therapeutic objective, suitable cell sources and scaffolds must be selected. This study provides a proof-of-concept for stand-alone kidney tubule grafts with suitable mechanical properties for future implantation purposes. Porous tubular nanofiber scaffolds are fabricated by electrospinning 12%, 16%, and 20% poly-ε-caprolactone (PCL) v/w (chloroform and dimethylformamide, 1:3) around 0.7 mm needle templates. The resulting scaffolds consist of 92%, 69%, and 54% nanofibers compared to microfibers, respectively. After biofunctionalization with L-3,4-dihydroxyphenylalanine and collagen IV, 10 × 106 proximal tubule cells per mL are injected and cultured until experimental readout. A human-derived cell model can bridge all fiber-to-fiber distances to form a monolayer, whereas small-sized murine cells form monolayers on dense nanofiber meshes only. Fabricated constructs remain viable for at least 3 weeks and maintain functionality as shown by inhibitor-sensitive transport activity, which suggests clearance capacity for both negatively and positively charged solutes.
Collapse
Affiliation(s)
- Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Sanne Aarts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
| | - Michael M Kaminski
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Soeren S Lienkamp
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Roman Pichler
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
- Department of Equine Sciences, Room G05228, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100,, 3584, CX Utrecht, The Netherlands
| | - Tina Vermonden
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Jitske Jansen
- Department of Pathology and Pediatric Nephrology, RIMLS, RIHS, Radboud University Medical Center, P.O. Box 9101, 6500, HB Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| |
Collapse
|
49
|
Biological Performance of Electrospun Polymer Fibres. MATERIALS 2019; 12:ma12030363. [PMID: 30682805 PMCID: PMC6384992 DOI: 10.3390/ma12030363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
The evaluation of biological responses to polymeric scaffolds are important, given that the ideal scaffold should be biocompatible, biodegradable, promote cell adhesion and aid cell proliferation. The primary goal of this research was to measure the biological responses of cells against various polymeric and collagen electrospun scaffolds (polycaprolactone (PCL) and polylactic acid (PLA) polymers: PCL⁻drug, PCL⁻collagen⁻drug, PLA⁻drug and PLA⁻collagen⁻drug); cell proliferation was measured with a cell adhesion assay and cell viability using 5-bromo-2'-deoxyuridine (BrdU) and resazurin assays. The results demonstrated that there is a distinct lack of growth of cells against any irgasan (IRG) loaded scaffolds and far greater adhesion of cells against levofloxacin (LEVO) loaded scaffolds. Fourteen-day studies revealed a significant increase in cell growth after a 7-day period. The addition of collagen in the formulations did not promote greater cell adhesion. Cell viability studies revealed the levels of IRG used in scaffolds were toxic to cells, with the concentration used 475 times higher than the EC50 value for IRG. It was concluded that the negatively charged carboxylic acid group found in LEVO is attracting positively charged fibronectin, which in turn is attracting the cell to adhere to the adsorbed proteins on the surface of the scaffold. Overall, the biological studies examined in this paper are valuable as preliminary data for potential further studies into more complex aspects of cell behaviour with polymeric scaffolds.
Collapse
|
50
|
Frost BA, Camarero-Espinosa S, Foster EJ. Materials for the Spine: Anatomy, Problems, and Solutions. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E253. [PMID: 30646556 PMCID: PMC6356370 DOI: 10.3390/ma12020253] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
Abstract
Disc degeneration affects 12% to 35% of a given population, based on genetics, age, gender, and other environmental factors, and usually occurs in the lumbar spine due to heavier loads and more strenuous motions. Degeneration of the extracellular matrix (ECM) within reduces mechanical integrity, shock absorption, and swelling capabilities of the intervertebral disc. When severe enough, the disc can bulge and eventually herniate, leading to pressure build up on the spinal cord. This can cause immense lower back pain in individuals, leading to total medical costs exceeding $100 billion. Current treatment options include both invasive and noninvasive methods, with spinal fusion surgery and total disc replacement (TDR) being the most common invasive procedures. Although these treatments cause pain relief for the majority of patients, multiple challenges arise for each. Therefore, newer tissue engineering methods are being researched to solve the ever-growing problem. This review spans the anatomy of the spine, with an emphasis on the functions and biological aspects of the intervertebral discs, as well as the problems, associated solutions, and future research in the field.
Collapse
Affiliation(s)
- Brody A Frost
- Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Sandra Camarero-Espinosa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | - E Johan Foster
- Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|