1
|
Naffaa MM, Yin HH. A cholinergic signaling pathway underlying cortical circuit activation of quiescent neural stem cells in the lateral ventricle. Sci Signal 2024; 17:eadk8810. [PMID: 39316665 DOI: 10.1126/scisignal.adk8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/18/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) located along the lateral ventricles (LVs) of the mammalian brain continue to self-renew to produce new neurons after birth and into adulthood. Quiescent LV cells, which are situated close to the ependymal cells lining the LVs, are activated by choline acetyltransferase-positive (ChAT+) neurons within the subependymal (subep) region of the SVZ when these neurons are stimulated by projections from the anterior cingulate cortex (ACC). Here, we uncovered a signaling pathway activated by the ACC-subep-ChAT+ circuit responsible for the activation and proliferation of quiescent LV NSCs specifically in the ventral area of the SVZ. This circuit activated muscarinic M3 receptors on quiescent LV NSCs, which subsequently induced signaling mediated by the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). Downstream of IP3R1 activation, which would be expected to increase intracellular Ca2+, Ca2+-/calmodulin-dependent protein kinase II δ and the MAPK10 signaling pathway were stimulated and required for the proliferation of quiescent LV NSCs in the SVZ. These findings reveal the mechanisms that regulate quiescent LV NSCs and underscore the critical role of projections from the ACC in promoting their proliferative activity within the ventral SVZ.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Wu L, Chen J. Type 3 IP3 receptor: Its structure, functions, and related disease implications. Channels (Austin) 2023; 17:2267416. [PMID: 37818548 PMCID: PMC10569359 DOI: 10.1080/19336950.2023.2267416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Cell-fate decisions depend on the precise and strict regulation of multiple signaling molecules and transcription factors, especially intracellular Ca2+ homeostasis and dynamics. Type 3 inositol 1,4,5-triphosphate receptor (IP3R3) is an a tetrameric channel that can mediate the release of Ca2+ from the endoplasmic reticulum (ER) in response to extracellular stimuli. The gating of IP3R3 is regulated not only by ligands but also by other interacting proteins. To date, extensive research conducted on the basic structure of IP3R3, as well as its regulation by ligands and interacting proteins, has provided novel perspectives on its biological functions and pathogenic mechanisms. This review aims to discuss recent advancements in the study of IP3R3 and provides a comprehensive overview of the relevant literature pertaining to its structure, biological functions, and pathogenic mechanisms.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Rönkkö J, Rodriguez Y, Rasila T, Torregrosa-Muñumer R, Pennonen J, Kvist J, Kuuluvainen E, Bosch LVD, Hietakangas V, Bultynck G, Tyynismaa H, Ylikallio E. Human IP 3 receptor triple knockout stem cells remain pluripotent despite altered mitochondrial metabolism. Cell Calcium 2023; 114:102782. [PMID: 37481871 DOI: 10.1016/j.ceca.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER Ca2+-release channels that control a broad set of cellular processes. Animal models lacking IP3Rs in different combinations display severe developmental phenotypes. Given the importance of IP3Rs in human diseases, we investigated their role in human induced pluripotent stem cells (hiPSC) by developing single IP3R and triple IP3R knockouts (TKO). Genome edited TKO-hiPSC lacking all three IP3R isoforms, IP3R1, IP3R2, IP3R3, failed to generate Ca2+ signals in response to agonists activating GPCRs, but retained stemness and pluripotency. Steady state metabolite profiling and flux analysis of TKO-hiPSC indicated distinct alterations in tricarboxylic acid cycle metabolites consistent with a deficiency in their pyruvate utilization via pyruvate dehydrogenase, shifting towards pyruvate carboxylase pathway. These results demonstrate that IP3Rs are not essential for hiPSC identity and pluripotency but regulate mitochondrial metabolism. This set of knockout hiPSC is a valuable resource for investigating IP3Rs in human cell types of interest.
Collapse
Affiliation(s)
- Julius Rönkkö
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Yago Rodriguez
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emilia Kuuluvainen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Ville Hietakangas
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Leuven, 3000, Belgium
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland.
| |
Collapse
|
4
|
Minimal contribution of IP 3R2 in cardiac differentiation and derived ventricular-like myocytes from human embryonic stem cells. Acta Pharmacol Sin 2020; 41:1576-1586. [PMID: 33037404 DOI: 10.1038/s41401-020-00528-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) regulates the intracellular Ca2+ release from endoplasmic reticulum in human embryonic stem cells (hESCs), cardiovascular progenitor cells (CVPCs), and mammalian cardiomyocytes. However, the role of IP3R2 in human cardiac development is unknown and its function in mammalian cardiomyocytes is controversial. hESC-derived cardiomyocytes have unique merits in disease modeling, cell therapy, and drug screening. Therefore, understanding the role of IP3R2 in the generation and function of human cardiomyocytes would be valuable for the application of hESC-derived cardiomyocytes. In the current study, we investigated the role of IP3R2 in the differentiation of hESCs to cardiomyocytes and in the hESC-derived cardiomyocytes. By using IP3R2 knockout (IP3R2KO) hESCs, we showed that IP3R2KO did not affect the self-renewal of hESCs as well as the differentiation ability of hESCs into CVPCs and cardiomyocytes. Furthermore, we demonstrated the ventricular-like myocyte characteristics of hESC-derived cardiomyocytes. Under the α1-adrenergic stimulation by phenylephrine (10 μmol/L), the amplitude and maximum rate of depolarization of action potential (AP) were slightly affected in the IP3R2KO hESC-derived cardiomyocytes at differentiation day 90, whereas the other parameters of APs and the Ca2+ transients did not show significant changes compared with these in the wide-type ones. These results demonstrate that IP3R2 has minimal contribution to the differentiation and function of human cardiomyocytes derived from hESCs, thus provide the new knowledge to the function of IP3R2 in the generation of human cardiac lineage cells and in the early cardiomyocytes.
Collapse
|
5
|
Chu L, Yin H, Gao L, Gao L, Xia Y, Zhang C, Chen Y, Liu T, Huang J, Boheler KR, Zhou Y, Yang HT. Cardiac Na +-Ca 2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. SCIENCE CHINA-LIFE SCIENCES 2020; 64:255-268. [PMID: 32648190 DOI: 10.1007/s11427-019-1706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/22/2020] [Indexed: 10/23/2022]
Abstract
Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.
Collapse
Affiliation(s)
- Liming Chu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Huimin Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Lei Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Li Gao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Chiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingxi Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Jijun Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China.,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Kenneth R Boheler
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology and Laboratory of Development and Diseases, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, China. .,Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| |
Collapse
|
6
|
TATA box-binding protein-related factor 3 drives the mesendoderm specification of human embryonic stem cells by globally interacting with the TATA box of key mesendodermal genes. Stem Cell Res Ther 2020; 11:196. [PMID: 32448362 PMCID: PMC7245780 DOI: 10.1186/s13287-020-01711-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.
Collapse
|
7
|
Hu JL, Liang H, Zhang H, Yang MZ, Sun W, Zhang P, Luo L, Feng JX, Bai H, Liu F, Zhang T, Yang JY, Gao Q, Long Y, Ma XY, Chen Y, Zhong Q, Yu B, Liao S, Wang Y, Zhao Y, Zeng MS, Cao N, Wang J, Chen W, Yang HT, Gao S. FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells. Nucleic Acids Res 2020; 48:2733-2748. [PMID: 32009146 PMCID: PMC7049688 DOI: 10.1093/nar/gkaa049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/11/2023] Open
Abstract
Family with sequence similarity (FAM46) proteins are newly identified metazoan-specific poly(A) polymerases (PAPs). Although predicted as Gld-2-like eukaryotic non-canonical PAPs, the detailed architecture of FAM46 proteins is still unclear. Exact biological functions for most of FAM46 proteins also remain largely unknown. Here, we report the first crystal structure of a FAM46 protein, FAM46B. FAM46B is composed of a prominently larger N-terminal catalytic domain as compared to known eukaryotic PAPs, and a C-terminal helical domain. FAM46B resembles prokaryotic PAP/CCA-adding enzymes in overall folding as well as certain inter-domain connections, which distinguishes FAM46B from other eukaryotic non-canonical PAPs. Biochemical analysis reveals that FAM46B is an active PAP, and prefers adenosine-rich substrate RNAs. FAM46B is uniquely and highly expressed in human pre-implantation embryos and pluripotent stem cells, but sharply down-regulated following differentiation. FAM46B is localized to both cell nucleus and cytosol, and is indispensable for the viability of human embryonic stem cells. Knock-out of FAM46B is lethal. Knock-down of FAM46B induces apoptosis and restricts protein synthesis. The identification of the bacterial-like FAM46B, as a pluripotent stem cell-specific PAP involved in the maintenance of translational efficiency, provides important clues for further functional studies of this PAP in the early embryonic development of high eukaryotes.
Collapse
Affiliation(s)
- Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ming-Zhu Yang
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China.,Laboratory for Functional Genomics and Systems Biology, The Berlin Institute for Medical Systems Biology, 13092 Berlin, Germany
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huajun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Liu
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tianpeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jin-Yu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, The Berlin Institute for Medical Systems Biology, 13092 Berlin, Germany
| | - Yongkang Long
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Nan Cao
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jichang Wang
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
8
|
Bai HJ, Zhang P, Ma L, Liang H, Wei G, Yang HT. SMYD2 Drives Mesendodermal Differentiation of Human Embryonic Stem Cells Through Mediating the Transcriptional Activation of Key Mesendodermal Genes. Stem Cells 2019; 37:1401-1415. [PMID: 31348575 DOI: 10.1002/stem.3068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
Abstract
Histone methyltransferases play a critical role in early human development, whereas their roles and precise mechanisms are less understood. SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase induced during early differentiation of human embryonic stem cells (hESCs), but little is known about its function in undifferentiated hESCs and in their early lineage fate decision as well as underlying mechanisms. Here, we explored the role of SMYD2 in the self-renewal and mesendodermal lineage commitment of hESCs. We demonstrated that the expression of SMYD2 was significantly enhanced during mesendodermal but not neuroectodermal differentiation of hESCs. SMYD2 knockout (SMYD2-/- ) did not affect self-renewal and early neuroectodermal differentiation of hESCs, whereas it blocked the mesendodermal lineage commitment. This phenotype was rescued by reintroduction of SMYD2 into the SMYD2-/- hESCs. Mechanistically, the bindings of SMYD2 at the promoter regions of critical mesendodermal transcription factor genes, namely, brachyury (T), eomesodermin (EOMES), mix paired-like homeobox (MIXL1), and goosecoid homeobox (GSC) were significantly enhanced during mesendodermal differentiation of SMYD2+/+ hESCs but totally suppressed in SMYD2-/- ones. Concomitantly, such a suppression was associated with the remarkable reduction of methylation at histone 3 lysine 4 and lysine 36 but not at histone 4 lysine 20 globally and specifically on the promoter regions of mesendodermal genes, namely, T, EOMES, MIXL1, and GSC. These results reveal that the histone methyltransferase SMYD2 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation, but it promotes the mesendodermal differentiation of hESCs through the epigenetic control of critical genes to mesendodermal lineage commitment. Stem Cells 2019;37:1401-1415.
Collapse
Affiliation(s)
- Hua-Jun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Li Ma
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| |
Collapse
|
9
|
MacDougall MS, Clarke R, Merrill BJ. Intracellular Ca 2+ Homeostasis and Nuclear Export Mediate Exit from Naive Pluripotency. Cell Stem Cell 2019; 25:210-224.e6. [PMID: 31104942 PMCID: PMC6685429 DOI: 10.1016/j.stem.2019.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 04/18/2019] [Indexed: 12/28/2022]
Abstract
Progression through states of pluripotency is required for cells in early mammalian embryos to transition away from heightened self-renewal and toward competency for lineage specification. Here, we use a CRISPR mutagenesis screen in mouse embryonic stem cells (ESCs) to identify unexpected roles for nuclear export and intracellular Ca2+ homeostasis during the exit out of the naive state of pluripotency. Mutation of a plasma membrane Ca2+ pump encoded by Atp2b1 increased intracellular Ca2+ such that it overcame effects of intracellular Ca2+ reduction, which is required for naive exit. Persistent self-renewal of ESCs was supported both in Atp2b1-/-Tcf7l1-/- double-knockout ESCs passaged in defined media alone (no LIF or inhibitors) and in wild-type cells passaged in media containing only calcitonin and a GSK3 inhibitor. These new findings suggest a central role for intracellular Ca2+ in safeguarding naive pluripotency.
Collapse
Affiliation(s)
- Matthew S MacDougall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ryan Clarke
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA; Genome Editing Core, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
10
|
Sohn JO, Seong SY, Kim HJ, Jo YM, Lee KH, Chung MK, Song HJ, Park KS, Lim JM. Alterations in intracellular Ca 2+ levels in human endometrial stromal cells after decidualization. Biochem Biophys Res Commun 2019; 515:318-324. [PMID: 31153638 DOI: 10.1016/j.bbrc.2019.05.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) is an important element for many physiological functions of the uterus, including embryo implantation. Here, we investigated the possible involvement of altered intracellular Ca2+ levels in decidualization in human endometrial stromal cells (hEMSCs). hEMSCs showed high levels of mesenchymal stem cell marker expression (CD73, CD90, and CD105) and did not express markers of hematopoietic progenitor cells (CD31, CD34, CD45, and HLA-DR). Decidualization is a process of ovarian steroid-induced endometrial stromal cell proliferation and differentiation. Several types of ion channels, which are regulated by the ovarian hormones progesterone and estradiol, as well as growth factors, are important for endometrial receptivity and embryo implantation. The combined application of progesterone (1 μM medroxyprogesterone acetate) and cyclic AMP (0.5 mM) for 6 days not only elevated inositol 1,4,5-triphosphate receptor (IP3R)-mediated Ca2+ release and IP3R expression, it also promoted ORAI and STIM expression as well as cyclopiazonic acid-induced Ca2+ release. Finally, intracellular Ca2+ levels and ion channel gene expression influenced hEMSC proliferation. These results suggest that cytosolic Ca2+ dynamics, mediated by specific ion channels, serve as an important step in the decidualization of hEMSCs.
Collapse
Affiliation(s)
- Jie Ohn Sohn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea; Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Seung Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, 25159, South Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Yoon Mi Jo
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Kyoung Hoon Lee
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Mi Kyung Chung
- Seoul Rachel Fertility Center, Seoul, 04146, South Korea
| | - Hyun Jin Song
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Kyoung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, 25159, South Korea.
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea.
| |
Collapse
|
11
|
Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, Yu X, Gao S, Ouyang K, Yang HT. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol 2018; 9:274-288. [PMID: 28419336 DOI: 10.1093/jmcb/mjx014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R-regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced Flk1+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor cell population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Etv2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Etv2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3-Etv2 pathway.
Collapse
Affiliation(s)
- Yi-Jie Wang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jijun Huang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huayuan Tang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong Wang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiujian Yu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
12
|
TRPC3 is required for the survival, pluripotency and neural differentiation of mouse embryonic stem cells (mESCs). SCIENCE CHINA-LIFE SCIENCES 2018; 61:253-265. [PMID: 29392682 DOI: 10.1007/s11427-017-9222-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Transient receptor potential canonical subfamily member 3 (TRPC3) is known to be important for neural development and the formation of neuronal networks. Here, we investigated the role of TRPC3 in undifferentiated mouse embryonic stem cells (mESCs) and during the differentiation of mESCs into neurons. CRISPR/Cas9-mediated knockout (KO) of TRPC3 induced apoptosis and the disruption of mitochondrial membrane potential both in undifferentiated mESCs and in those undergoing neural differentiation. In addition, TRPC3 KO impaired the pluripotency of mESCs. TRPC3 KO also dramatically repressed the neural differentiation of mESCs by inhibiting the expression of markers for neural progenitors, neurons, astrocytes and oligodendrocytes. Taken together, our new data demonstrate an important function of TRPC3 with regards to the survival, pluripotency and neural differentiation of mESCs.
Collapse
|
13
|
Lu J, Kaestle K, Huang J, Liu Q, Zhang P, Gao L, Gardiner J, Thissen H, Yang HT. Interactions of human embryonic stem cell-derived cardiovascular progenitor cells with immobilized extracellular matrix proteins. J Biomed Mater Res A 2017; 105:1094-1104. [PMID: 28085215 DOI: 10.1002/jbm.a.36005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 11/11/2022]
Abstract
Human embryonic stem cell-derived cardiovascular progenitor cells (hESC-CVPCs) hold great promise for cell-based therapies of heart diseases. However, little is known about their niche microenvironment and in particular the required extracellular matrix (ECM) components. Here we screened combinations of surface-immobilized ECM proteins to identify substrates that support the attachment and survival of hESC-CVPCs. Covalent immobilization of ECM proteins laminin (Lm), fibronectin (Fn), collagen I (CI), collagen III (CIII), and collagen IV (CIV) in multiple combinations and concentrations was achieved by reductive amination on transparent acetaldehyde plasma polymer (AAPP) interlayer coatings. We identified that CI, CIII, CIV, and Fn and their combinations were important for hESC-CVPC attachment and survival, while Lm was dispensable. Moreover, for coatings displaying single ECM proteins, CI and CIII performed better than CIV and Fn, while coatings displaying the combined ECM proteins CIII + CIV and Fn + CIII + CIV at 100 µg/mL were comparable to Matrigel in regard to supporting hESC-CVPC attachment and viability. Our results identify ECM proteins required for hESC-CVPCs and demonstrate that coatings displaying multiple immobilized ECM proteins offer a suitable microenvironment for the attachment and survival of hESC-CVPCs. This knowledge contributes to the development of approaches for maintaining hESC-CVPCs and therefore to advances in cardiovascular regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1094-1104, 2017.
Collapse
Affiliation(s)
- Jizhen Lu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Biological Research Building A, 320 Yueyang Road, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Katrin Kaestle
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, 3168, Australia
| | - Jijun Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Biological Research Building A, 320 Yueyang Road, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Qiao Liu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Biological Research Building A, 320 Yueyang Road, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Peng Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Biological Research Building A, 320 Yueyang Road, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Ling Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Biological Research Building A, 320 Yueyang Road, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - James Gardiner
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, 3168, Australia
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Biological Research Building A, 320 Yueyang Road, Shanghai 200031, China.,Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| |
Collapse
|
14
|
Zheng B, Wang J, Tang L, Tan C, Zhao Z, Xiao Y, Ge R, Zhu D. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro. Int J Biol Sci 2017; 13:110-121. [PMID: 28123351 PMCID: PMC5264266 DOI: 10.7150/ijbs.16312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/21/2016] [Indexed: 11/05/2022] Open
Abstract
Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and α-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells.
Collapse
Affiliation(s)
- Bei Zheng
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou 310058, CHINA
| | - Jiadan Wang
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou 310058, CHINA
| | - Leilei Tang
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou 310058, CHINA
| | - Chao Tan
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou 310058, CHINA
| | - Zhe Zhao
- Undergraduate students in Research Training Project at Zhejiang University
| | - Yi Xiao
- Undergraduate students in Research Training Project at Zhejiang University
| | - Renshan Ge
- The Population Council at the Rockefeller University, New York, NY 10021, USA.; Institute of Reproductive Biomedicine, the 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, CHINA
| | - Danyan Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou 310058, CHINA
| |
Collapse
|
15
|
Wei W, Huang W, Yue J. Requirement of IP3 receptor 3 (IP3R3) in nitric oxide induced cardiomyocyte differentiation of mouse embryonic stem cells. Exp Cell Res 2016; 346:9-16. [PMID: 27349290 DOI: 10.1016/j.yexcr.2016.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/29/2023]
Abstract
Nitric oxide (NO) markedly induces cardiomyocyte (CM) differentiation of embryonic stem (ES) cells. Here we examined the role of the Ca(2+) signaling in the NO-induced CM differentiation of mouse ES cells. We found that NO induced intracellular Ca(2+) increases in ES cells in a dose-dependent manner, and application of IP3 pathway antagonists not only significantly inhibited this induced Ca(2+) increase but also abolished NO-induced CM differentiation of ES cells. Subsequently, all 3 types of inositol 1, 4, 5-trisphosphate (IP3) receptors (IP3Rs) in mouse ES cells were individually or triply knocked down. Interestingly, only knockdown of type 3 IP3R (IP3R3) or triple-knockdown of three types of IP3Rs significantly inhibited the NO-induced Ca(2+) increases. Consistently, IP3R3 knockdown blocked the NO-induced CM differentiation of ES cells. CMs derived from IP3R3 knockdown ES cells also showed both structural and functional defects. In summary, our results indicate that the IP3R3-Ca(2+) pathway is required for NO-induced CM differentiation of ES cells.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Biology, South University of Science and Technology of China, Shenzhen 518052, China
| | - Wei Huang
- Department of Biology, South University of Science and Technology of China, Shenzhen 518052, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Tang Y, Hong YZ, Bai HJ, Wu Q, Chen CD, Lang JY, Boheler KR, Yang HT. Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1. Stem Cells 2016; 34:1527-40. [PMID: 26866517 DOI: 10.1002/stem.2333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/06/2016] [Indexed: 12/30/2022]
Abstract
Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (ph8(-/Y) ) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endodermal differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (ph8(+/Y) ) and ph8(-/Y) ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockdown of pmaip1 mimicked the phenotype of ph8(-/Y) by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of ph8(-/Y) ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways. Stem Cells 2016;34:1527-1540.
Collapse
Affiliation(s)
- Yan Tang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Zhen Hong
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Jun Bai
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Wu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jing-Yu Lang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenneth R Boheler
- LKS Faculty of Medicine, Department of Physiology and Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Jockey Club Building for Interdisciplinary Research, University of Hong Kong, Hong Kong, SAR China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) University of Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Park KS, Kim SH, Das A, Yang SN, Jung KH, Kim MK, Berggren PO, Lee Y, Chai JC, Kim HJ, Chai YG. TLR3-/4-Priming Differentially Promotes Ca(2+) Signaling and Cytokine Expression and Ca(2+)-Dependently Augments Cytokine Release in hMSCs. Sci Rep 2016; 6:23103. [PMID: 26980664 PMCID: PMC4793222 DOI: 10.1038/srep23103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
In human mesenchymal stem cells (hMSCs), toll-like receptor 3 (TLR3) and TLR4 act as key players in the tissue repair process by recognizing their ligands and stimulating downstream processes including cytokine release. The mechanisms of TLR3- and TLR4-mediated cytokine releases from hMSCs remain uncertain. Here, we show that exposure to the TLR3 agonist polyinosinic-polycytidylic acid (poly(I:C)) or incubation with the TLR4 agonist lipopolysaccharide (LPS) increased the mRNA expression levels of TLR3, TLR4 and cytokines in hMSCs. Poly(I:C) exposure rather than LPS incubation not only elevated inositol 1,4,5-triphosphate receptor (IP3R) expression and IP3R-mediated Ca(2+) release, but also promoted Orai and STIM expression as well as store-operated Ca(2+) entry into hMSCs. In addition, we also observed that 21 Ca(2+) signaling genes were significantly up-regulated in response to TLR3 priming of hMSCs by RNA sequencing analysis. Both poly(I:C) and LPS exposure enhanced cytokine release from hMSCs. The enhanced cytokine release vanished upon siRNA knockdown and chelation of intracellular Ca(2+). These data demonstrate that TLR3- and TLR4-priming differentially enhance Ca(2+) signaling and cytokine expression, and Ca(2+) -dependently potentiates cytokine release in hMSCs.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Sun Hwa Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Amitabh Das
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - Kyoung Hwa Jung
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Mi Kyung Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - YoungSeek Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Jin Choul Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Korea
| |
Collapse
|
18
|
Hao B, Webb SE, Miller AL, Yue J. The role of Ca(2+) signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 2016; 59:67-74. [PMID: 26973143 DOI: 10.1016/j.ceca.2016.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways. Intracellular Ca(2+) signaling is involved in several of these pathways. It is known to be precisely controlled by different Ca(2+) channels and pumps, which play an important role in a variety of cellular activities, including proliferation, differentiation and apoptosis. Here, we provide a review of the recent work conducted to investigate the function of Ca(2+) signaling in the self-renewal and the neural differentiation of ESCs. Specifically, we describe the role of intracellular Ca(2+) mobilization mediated by RyRs (ryanodine receptors); by cADPR (cyclic adenosine 5'-diphosphate ribose) and CD38 (cluster of differentiation 38/cADPR hydrolase); and by NAADP (nicotinic acid adenine dinucleotide phosphate) and TPC2 (two pore channel 2). We also discuss the Ca(2+) influx mediated by SOCs (store-operated Ca(2+) channels), TRPCs (transient receptor potential cation channels) and LTCC (L-type Ca(2+) channels) in the pluripotent ESCs as well as in neural differentiation of ESCs. Moreover, we describe the integration of Ca(2+) signaling in the other signaling pathways that are known to regulate the fate of ESCs.
Collapse
Affiliation(s)
- Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
19
|
Expression profiles of histone lysine demethylases during cardiomyocyte differentiation of mouse embryonic stem cells. Acta Pharmacol Sin 2014; 35:899-906. [PMID: 24989252 DOI: 10.1038/aps.2014.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/27/2014] [Indexed: 12/15/2022]
Abstract
AIM Histone lysine demethylases (KDMs) control the lineage commitments of stem cells. However, the KDMs involved in the determination of the cardiomyogenic lineage are not fully defined. The aim of this study was to investigate the expression profiles of KDMs during the cardiac differentiation of mouse embryonic stem cells (mESCs). METHODS An in vitro cardiac differentiation system of mESCs with Brachyury (a mesodermal specific marker) and Flk-1(+)/Cxcr4(+) (dual cell surface biomarkers) selection was used. The expression profiles of KDMs during differentiation were analyzed using Q-PCR. To understand the contributions of KDMs to cardiomyogenesis, the mESCs on differentiation d 3.5 were sorted by FACS into Brachyury(+) cells and Brachyury(-) cells, and mESCs on d 5.5 were sorted into Flk-1(+)/Cxcr4(+) and Flk-1(-)/Cxcr4(-) cells. RESULTS mESCs were differentiated into spontaneously beating cardiomyocytes that were visible in embryoid bodies (EBs) on d 7. On d 12-14, all EBs developed spontaneously beating cardiomyocytes. Among the 16 KDMs examined, the expression levels of Phf8, Jarid1a, Jhdm1d, Utx, and Jmjd3 were increased by nearly 2-6-fold on d 14 compared with those on d 0. Brachyury(+) cells showed higher expression levels of Jmjd3, Jmjd2a and Jhdm1d than Brachyury(-) cells. A higher level of Jmjd3 was detected in Flk-1(+)/Cxcr4(+) cells, whereas the level of Jmjd2c was lower in both Brachyury(+) cells and Flk-1(+)/Cxcr4(+) cells. CONCLUSION KDMs may play important roles during cardiomyogenesis of mESCs. Our results provide a clue for further exploring the roles of KDMs in the cardiac lineage commitment of mESCs and the potential interference of cardiomyogenesis.
Collapse
|
20
|
Role of STIM1 in survival and neural differentiation of mouse embryonic stem cells independent of Orai1-mediated Ca2+ entry. Stem Cell Res 2014; 12:452-66. [PMID: 24424349 DOI: 10.1016/j.scr.2013.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
|
21
|
Signore S, Sorrentino A, Ferreira-Martins J, Kannappan R, Shafaie M, Del Ben F, Isobe K, Arranto C, Wybieralska E, Webster A, Sanada F, Ogórek B, Zheng H, Liu X, Del Monte F, D'Alessandro DA, Wunimenghe O, Michler RE, Hosoda T, Goichberg P, Leri A, Kajstura J, Anversa P, Rota M. Inositol 1, 4, 5-trisphosphate receptors and human left ventricular myocytes. Circulation 2013; 128:1286-97. [PMID: 23983250 DOI: 10.1161/circulationaha.113.002764] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Little is known about the function of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the adult heart experimentally. Moreover, whether these Ca(2+) release channels are present and play a critical role in human cardiomyocytes remains to be defined. IP3Rs may be activated after Gαq-protein-coupled receptor stimulation, affecting Ca(2+) cycling, enhancing myocyte performance, and potentially favoring an increase in the incidence of arrhythmias. METHODS AND RESULTS IP3R function was determined in human left ventricular myocytes, and this analysis was integrated with assays in mouse myocytes to identify the mechanisms by which IP3Rs influence the electric and mechanical properties of the myocardium. We report that IP3Rs are expressed and operative in human left ventricular myocytes. After Gαq-protein-coupled receptor activation, Ca(2+) mobilized from the sarcoplasmic reticulum via IP3Rs contributes to the decrease in resting membrane potential, prolongation of the action potential, and occurrence of early afterdepolarizations. Ca(2+) transient amplitude and cell shortening are enhanced, and extrasystolic and dysregulated Ca(2+) elevations and contractions become apparent. These alterations in the electromechanical behavior of human cardiomyocytes are coupled with increased isometric twitch of the myocardium and arrhythmic events, suggesting that Gαq-protein-coupled receptor activation provides inotropic reserve, which is hampered by electric instability and contractile abnormalities. Additionally, our findings support the notion that increases in Ca(2+) load by IP3Rs promote Ca(2+) extrusion by forward-mode Na(+)/Ca(2+) exchange, an important mechanism of arrhythmic events. CONCLUSIONS The Gαq-protein/coupled receptor/IP3R axis modulates the electromechanical properties of the human myocardium and its propensity to develop arrhythmias.
Collapse
Affiliation(s)
- Sergio Signore
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.S., A.S., J.F.-M., R.K., M.S., F.D.B., K.I., C.A., E.W., A.W., F.S., B.O., H.Z., X.L., T.H., P.G., A.L., J.K., P.A., M.R.); Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.d.M.); and Department of Cardiovascular and Thoracic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY (D.A.D., O.W., R.E.M.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang HT, Zhang M, Huang J, Liang H, Zhang P, Boheler KR. Cardiomyocytes derived from pluripotent stem cells: Progress and prospects from China. Exp Cell Res 2013; 319:120-5. [DOI: 10.1016/j.yexcr.2012.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
|
23
|
Cui H, Liu Y, Deng M, Pang X, Zhang P, Wang X, Chen X, Wei Y. Synthesis of Biodegradable and Electroactive Tetraaniline Grafted Poly(ester amide) Copolymers for Bone Tissue Engineering. Biomacromolecules 2012; 13:2881-9. [DOI: 10.1021/bm300897j] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Haitao Cui
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R.
China
| | - Yadong Liu
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Mingxiao Deng
- Department of Chemistry, Northeast Normal University, Changchun 130022, P. R.
China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Wang J, Cao N, Yuan M, Cui H, Tang Y, Qin L, Huang X, Shen N, Yang HT. MicroRNA-125b/Lin28 pathway contributes to the mesendodermal fate decision of embryonic stem cells. Stem Cells Dev 2012; 21:1524-37. [PMID: 22277001 DOI: 10.1089/scd.2011.0350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of cell fate decisions, while the miRNAs and their targets in the regulation of stem cell differentiation are largely unidentified. Here we report novel functions of miR-125b/Lin28 axis in the regulation of mouse embryonic stem cell (mESC) lineage specification and cardiomyocyte differentiation. With a MicroRNA Array screen, we identified a number of miRNAs significantly changed during ESC differentiation, among which miR-125b showed a marked reduction during early differentiation. The abundantly expressed miR-125b in undifferentiated mESCs was dramatically downregulated to a level hardly detected during differentiation day 3 to 5, with a concomitant upregulation of Lin28. Ectopically expressing miR-125b did not alter characteristics of undifferentiated mESCs, whereas it impaired the endoderm and mesoderm development, but not the ectoderm, and inhibited cardiomyocyte formation. We further demonstrate that miR-125b targeted the 3'-untranslated region of Lin28 and reduced the abundance of Lin28 at both mRNA and protein levels. Moreover, phenotypes of miR-125b overexpressing cells were mimicked by downregulation of Lin28 and rescued by reintroduction of Lin28. In addition, the impaired cardiogenesis in miR-125b-introduced cells was greatly recovered when mimicking endoderm environment by cultivation with the condition medium from a visceral endoderm-like cell line, END-2. These results reveal that the miR-125b/Lin28 axis is an important regulator of early lineage specification and cardiomyocyte differentiation of ESCs.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cao N, Liu Z, Chen Z, Wang J, Chen T, Zhao X, Ma Y, Qin L, Kang J, Wei B, Wang L, Jin Y, Yang HT. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res 2011; 22:219-36. [PMID: 22143566 DOI: 10.1038/cr.2011.195] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases, drug screening and potential autologous cardiac regeneration. However, their application is hampered by inefficient cardiac differentiation, high interline variability, and poor maturation of iPSC-derived cardiomyocytes (iPS-CMs). To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms, we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential. We then optimized the treatment conditions and demonstrated that differentiation day 2-6, a period for the specification of cardiac progenitor cells (CPCs), was a critical time for AA to take effect. This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers. Noteworthily, AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs. Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by through promoting collagen synthesis. In addition, AA-induced cardiomyocytes showed better sarcomeric organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations. These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply, universally, and efficiently. These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.
Collapse
Affiliation(s)
- Nan Cao
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field. J Mol Cell Cardiol 2011; 51:58-66. [PMID: 21382375 DOI: 10.1016/j.yjmcc.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/24/2011] [Indexed: 11/21/2022]
Abstract
Congenital heart defects (CHDs) occur in 0.5-1% of live births, yet the underlying genetic etiology remains mostly unknown. Recently, a new source of myocardial cells, namely the second heart field (SHF), was discovered in the splanchnic mesoderm. Abnormal development of the SHF leads to a spectrum of outflow tract defects, such as persistent truncus arteriosus and tetralogy of Fallot. Intracellular Ca(2+) signaling is known to be essential for many aspects of heart biology including heart development, but its role in the SHF is uncertain. Here, we analyzed mice deficient for genes encoding inositol 1,4,5-trisphosphate receptors (IP(3)Rs), which are intracellular Ca(2+) release channels on the endo/sarcoplasmic reticulum that mediate Ca(2+) mobilization. Mouse embryos that are double mutant for IP(3)R type 1 and type 3 (IP(3)R1(-/-)IP(3)R3(-/-)) show hypoplasia of the outflow tract and the right ventricle, reduced expression of specific molecular markers and enhanced apoptosis of mesodermal cells in the SHF. Gene expression analyses suggest that IP(3)R-mediated Ca(2+) signaling may involve, at least in part, the Mef2C-Smyd1 pathway, a transcriptional cascade essential for the SHF. These data reveal that IP(3)R type 1 and type 3 may play a redundant role in the development of the SHF.
Collapse
|