1
|
Saritas Erdogan S, Yilmaz AE, Kumbasar A. PIN1 is a novel interaction partner and a negative upstream regulator of the transcription factor NFIB. FEBS Lett 2024; 598:2910-2925. [PMID: 39245791 PMCID: PMC11627009 DOI: 10.1002/1873-3468.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
NFIB is a transcription factor of the Nuclear Factor One (NFI) family that is essential for embryonic development. Post-translational control of NFIB or its upstream regulators have not been well characterized. Here, we show that PIN1 binds NFIB in a phosphorylation-dependent manner, via its WW domain. PIN1 interacts with the well-conserved N-terminal domains of all NFIs. Moreover, PIN1 attenuates the transcriptional activity of NFIB; this attenuation requires substrate binding by PIN1 but not its isomerase activity. Paradoxically, we found stabilization of NFIB by PIN1. We propose that PIN1 represses NFIB function not by regulating its abundance but by inducing a conformational change. These results identify NFIB as a novel PIN1 target and posit a role for PIN1 in post-translational regulation of NFIB and other NFIs.
Collapse
Affiliation(s)
| | - Ahmet Erdal Yilmaz
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| | - Asli Kumbasar
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| |
Collapse
|
2
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
3
|
Sardina F, Conte A, Paladino S, Pierantoni GM, Rinaldo C. HIPK2 in the physiology of nervous system and its implications in neurological disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119465. [PMID: 36935052 DOI: 10.1016/j.bbamcr.2023.119465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/21/2023]
Abstract
HIPK2 is an evolutionary conserved serine/threonine kinase with multifunctional roles in stress response, embryonic development and pathological conditions, such as cancer and fibrosis. The heterogeneity of its interactors and targets makes HIPK2 activity strongly dependent on the cellular context, and allows it to modulate multiple signaling pathways, ultimately regulating cell fate and proliferation. HIPK2 is highly expressed in the central and peripheral nervous systems, and its genetic ablation causes neurological defects in mice. Moreover, HIPK2 is involved in processes, such as endoplasmic reticulum stress response and protein aggregate accumulation, and pathways, including TGF-β and BMP signaling, that are crucial in the pathogenesis of neurological disorders. Here, we review the data about the role of HIPK2 in neuronal development, survival, and homeostasis, highlighting the implications in the pathogenesis of neurological disorders, and pointing out HIPK2 potentiality as therapeutic target and diagnostic or prognostic marker.
Collapse
Affiliation(s)
- F Sardina
- Institute of Molecular Biology and Pathology (IBPM), Consiglio Nazionale delle Ricerche (CNR), c/o Sapienza University, Rome, Italy
| | - A Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - S Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - G M Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - C Rinaldo
- Institute of Molecular Biology and Pathology (IBPM), Consiglio Nazionale delle Ricerche (CNR), c/o Sapienza University, Rome, Italy.
| |
Collapse
|
4
|
Özden-Yılmaz G, Savas B, Bursalı A, Eray A, Arıbaş A, Senturk S, Karaca E, Karakülah G, Erkek-Ozhan S. Differential Occupancy and Regulatory Interactions of KDM6A in Bladder Cell Lines. Cells 2023; 12:cells12060836. [PMID: 36980177 PMCID: PMC10047809 DOI: 10.3390/cells12060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic deregulation is a critical theme which needs further investigation in bladder cancer research. One of the most highly mutated genes in bladder cancer is KDM6A, which functions as an H3K27 demethylase and is one of the MLL3/4 complexes. To decipher the role of KDM6A in normal versus tumor settings, we identified the genomic landscape of KDM6A in normal, immortalized, and cancerous bladder cells. Our results showed differential KDM6A occupancy in the genes involved in cell differentiation, chromatin organization, and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed HES1 to be enriched at KDM6A peaks identified in the T24 bladder cancer cell line; moreover, it has a truncating mutation in KDM6A and lacks a demethylase domain. Our co-immunoprecipitation experiments revealed TLE co-repressors and HES1 as potential truncated and wild-type KDM6A interactors. With the aid of structural modeling, we explored how truncated KDM6A could interact with TLE and HES1, as well as RUNX and HHEX transcription factors. These structures provide a solid means of studying the functions of KDM6A independently of its demethylase activity. Collectively, our work provides important contributions to the understanding of KDM6A malfunction in bladder cancer.
Collapse
Affiliation(s)
| | - Busra Savas
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ahmet Bursalı
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Alirıza Arıbaş
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | |
Collapse
|
5
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
6
|
Zhou Q, Meng D, Li F, Zhang X, Liu L, Zhu Y, Liu S, Xu M, Deng J, Lei Z, Sluijter JP, Xiao J. Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine 2022; 85:104274. [PMID: 36182775 PMCID: PMC9526139 DOI: 10.1016/j.ebiom.2022.104274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
|
7
|
Chen X, Chen T, Dong C, Chen H, Dong X, Yang L, Hu L, Wang H, Wu B, Yao Y, Xiong Y, Xiong M, Lin Y, Zhou W. Deletion of CHD8 in cerebellar granule neuron progenitors leads to severe cerebellar hypoplasia, ataxia and psychiatric behavior in mice. J Genet Genomics 2022; 49:859-869. [DOI: 10.1016/j.jgg.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
|
8
|
Yan J, Yang Y, Fan X, Tang Y, Tang Z. Sp1-Mediated circRNA circHipk2 Regulates Myogenesis by Targeting Ribosomal Protein Rpl7. Genes (Basel) 2021; 12:genes12050696. [PMID: 34066653 PMCID: PMC8151578 DOI: 10.3390/genes12050696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed single-stranded RNA molecules that are emerging as essential regulators of various biological processes. The circRNA circHipk2 originates from exon 2 of the Hipk2 gene in mice and was reported to be involved in acute promyelocytic leukemia and myocardial injury. However, the functions and mechanisms of circHipk2 in myogenesis are largely unknown. Here, to deepen our knowledge about the role of circHipk2, we studied the expression and function of circHipk2 during skeletal myogenesis. We found that circHipk2 was mostly distributed in the cytoplasm, and dynamically and differentially expressed in various myogenesis systems in vitro and in vivo. Functionally, overexpression of circHipk2 inhibited myoblast proliferation and promoted myotube formation in C2C12 cells, whereas the opposite effects were observed after circHipk2 knockdown. Mechanistically, circHipk2 could directly bind to ribosomal protein Rpl7, an essential 60S preribosomal assembly factor, to inhibit ribosome translation. In addition, we verified that transcription factor Sp1 directly bound to the promoter of circHipk2 and affected the expression of Hipk2 and circHipk2 in C2C12 myoblasts. Collectively, these findings identify circHipk2 as a candidate circRNA regulating ribosome biogenesis and myogenesis proliferation and differentiation.
Collapse
Affiliation(s)
- Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
| | - Yijie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
- Correspondence:
| |
Collapse
|
9
|
HIPK2 overexpression relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes through enhancement of the Nrf2/ARE signaling pathway. Chem Biol Interact 2020; 316:108922. [DOI: 10.1016/j.cbi.2019.108922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
|
10
|
Zannini A, Rustighi A, Campaner E, Del Sal G. Oncogenic Hijacking of the PIN1 Signaling Network. Front Oncol 2019; 9:94. [PMID: 30873382 PMCID: PMC6401644 DOI: 10.3389/fonc.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular choices are determined by developmental and environmental stimuli through integrated signal transduction pathways. These critically depend on attainment of proper activation levels that in turn rely on post-translational modifications (PTMs) of single pathway members. Among these PTMs, post-phosphorylation prolyl-isomerization mediated by PIN1 represents a unique mechanism of spatial, temporal and quantitative control of signal transduction. Indeed PIN1 was shown to be crucial for determining activation levels of several pathways and biological outcomes downstream to a plethora of stimuli. Of note, studies performed in different model organisms and humans have shown that hormonal, nutrient, and oncogenic stimuli simultaneously affect both PIN1 activity and the pathways that depend on PIN1-mediated prolyl-isomerization, suggesting the existence of evolutionarily conserved molecular circuitries centered on this isomerase. This review focuses on molecular mechanisms and cellular processes like proliferation, metabolism, and stem cell fate, that are regulated by PIN1 in physiological conditions, discussing how these are subverted in and hijacked by cancer cells. Current status and open questions regarding the use of PIN1 as biomarker and target for cancer therapy as well as clinical development of PIN1 inhibitors are also addressed.
Collapse
Affiliation(s)
- Alessandro Zannini
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandra Rustighi
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Giannino Del Sal
- National Laboratory CIB, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy.,IFOM - Istituto FIRC Oncologia Molecolare, Milan, Italy
| |
Collapse
|
11
|
The Multiple Roles of Peptidyl Prolyl Isomerases in Brain Cancer. Biomolecules 2018; 8:biom8040112. [PMID: 30314361 PMCID: PMC6316532 DOI: 10.3390/biom8040112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Peptidyl prolyl isomerases (PPIases) are broadly expressed enzymes that accelerate the cis-trans isomerization of proline peptide bonds. The most extensively studied PPIase family member is protein interacting with never in mitosis A1 (PIN1), which isomerizes phosphorylated serine/threonine–proline bonds. By catalyzing this specific cis-trans isomerization, PIN1 can alter the structure of its target proteins and modulate their activities in a number of different ways. Many proteins are targets of proline-directed phosphorylation and thus PIN1-mediated isomerization of proline bonds represents an important step in the regulation of a variety of cellular mechanisms. Numerous other proteins in addition to PIN1 are endowed with PPIase activity. These include other members of the parvulin family to which PIN1 belongs, such as PIN4, as well as several cyclophilins and FK506-binding proteins. Unlike PIN1, however, these other PPIases do not isomerize phosphorylated serine/threonine–proline bonds and have different substrate specificities. PIN1 and other PPIases are overexpressed in many types of cancer and have been implicated in various oncogenic processes. This review will discuss studies providing evidence for multiple roles of PIN1 and other PPIases in glioblastoma and medulloblastoma, the most frequent adult and pediatric primary brain tumors.
Collapse
|
12
|
Epigenetic modification of TLE1 induce abnormal differentiation in diabetic mice intestinal epithelium. Mol Cell Biochem 2017; 438:85-96. [PMID: 28744818 DOI: 10.1007/s11010-017-3116-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium cells (IECs) in diabetes mellitus (DM) patients have been proven to be abnormally differentiated. During the differentiation of IECs, epigenetic modification acts as an important regulator. In this study, we aimed to examine the epigenetic alteration of Transducin-like Enhancer of Split 1 (TLE1), a multitask transcriptional co-repressor, contributing to the differentiation homeostasis in IECs of DM mice. The IECs of type 2 diabetic mice model were isolated and collected. Methylation states of whole genomic DNA promoter regions were investigated by microarray. Methylated-specific PCR was used to detect the methylation state of TLE1 promoter in DM mice IECs. The expression of TLE1, Hes1, and differentiated cell markers were measured through real-time PCR, Western blots, and immunohistochemistry; by transfection assay, TLE1 or Hes1 was independently down-regulated in intestinal epithelium cell line, IEC-6. Subsequent modulation on TLE1, Hes1, and differentiated intestinal cell markers were detected. Global gene promoter regions in DM intestinal epithelium were less methylated comparing to normal control. The expression of TLE1 was significantly increased via hypomethylated activation in DM mice IECs. Hes1 was significantly suppressed and the terminal cell markers abnormally expressed in DM mice IECs (P < 0.05). Inhibition or induction on the abundance of TLE1 in IEC-6 cell line resulted in the corresponding dysregulation of Hes1 and intestinal epithelium differentiation (P < 0.05). Demethylation of TLE1 promoter region activates the self-expression in diabetic mice IECs. Subsequently, TLE1, through the transcriptional suppression on expression of Hes1, contributes to the aberrant differentiation of IECs in DM mice.
Collapse
|
13
|
Lee JH, Bae SB, Oh MH, Cho HD, Jang SH, Hong SA, Cho J, Kim SY, Han SW, Lee JE, Kim HJ, Lee HJ. Clinicopathologic and Prognostic Significance of Transducin-Like Enhancer of Split 1 Protein Expression in Invasive Breast Cancer. J Breast Cancer 2017; 20:45-53. [PMID: 28382094 PMCID: PMC5378579 DOI: 10.4048/jbc.2017.20.1.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
Purpose Transducin-like enhancer of split 1 (TLE1) is a member of the TLE family of transcriptional co-repressors that control the transcription of a wide range of genes. We investigated the prognostic significance of TLE1 protein expression in breast cancers by using immunohistochemistry and explored the relationship of TLE1 with clinicopathological parameters. Methods Immunohistochemistry was performed on 456 cases of breast cancer tiled on tissue microarrays. The relationship between TLE1 expression in normal breast specimens and ductal carcinoma in situ (DCIS) was also analyzed. Results TLE1 was highly expressed in 57 of 456 (12.5%) carcinoma samples. TLE1 was more frequently expressed in DCIS and invasive breast cancers than in normal breast tissue (p=0.002). High expression of TLE1 significantly correlated with negative lymph node (LN) metastasis (p=0.007), high histologic grade (p<0.001), estrogen receptor negativity (p<0.001), progesterone receptor negativity (p<0.001), human epidermal growth factor receptor 2 (HER2) positivity (p<0.001), and high Ki-67 proliferation index (p<0.001). Based on intrinsic subtypes, high TLE1 expression was strongly associated with HER2+ and triple-negative breast cancers (TNBC) (p<0.001). Survival analysis demonstrated no significant association between TLE1 expression and disease-free survival (DFS) (p=0.167) or overall survival (OS) (p=0.286). In subgroup analyses, no correlation was found between TLE1 expression and DFS or OS according to LN status or intrinsic subtype. Conclusion High TLE1 expression is significantly associated with the HER2+ and TNBC subtypes. This is the first study documenting immunohistochemical expression of TLE1 in invasive breast cancer and its association with clinicopathological parameters, prognosis, and intrinsic subtype.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Byung Bae
- Department of Oncology and Hematology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Deuk Cho
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Si-Hyong Jang
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Soon Auck Hong
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Junhun Cho
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Yong Kim
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sun Wook Han
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong Eun Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Han Jo Kim
- Department of Oncology and Hematology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
14
|
A role for prolyl isomerase PIN1 in the phosphorylation-dependent modulation of PRRXL1 function. Biochem J 2017; 474:683-697. [PMID: 28049756 DOI: 10.1042/bcj20160560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/10/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
Abstract
Prrxl1 encodes for a paired-like homeodomain transcription factor essential for the correct establishment of the dorsal root ganglion - spinal cord nociceptive circuitry during development. Prrxl1-null mice display gross anatomical disruption of this circuitry, which translates to a markedly diminished sensitivity to noxious stimuli. Here, by the use of an immunoprecipitation and mass spectrometry approach, we identify five highly conserved phosphorylation sites (T110, S119, S231, S233 and S251) in PRRXL1 primary structure. Four are phospho-S/T-P sites, which suggest a role for the prolyl isomerase PIN1 in regulating PRRXL1. Accordingly, PRRXL1 physically interacts with PIN1 and displays diminished transcriptional activity in a Pin1-null cell line. Additionally, these S/T-P sites seem to be important for PRRXL1 conformation, and their point mutation to alanine or aspartate down-regulates PRRXL1 transcriptional activity. Altogether, our findings provide evidence for a putative novel role of PIN1 in the development of the nociceptive system and indicate phosphorylation-mediated conformational changes as a mechanism for regulating the PRRXL1 role in the process.
Collapse
|
15
|
Blaquiere JA, Verheyen EM. Homeodomain-Interacting Protein Kinases: Diverse and Complex Roles in Development and Disease. Curr Top Dev Biol 2016; 123:73-103. [PMID: 28236976 DOI: 10.1016/bs.ctdb.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Homeodomain-interacting protein kinase (Hipk) family of proteins plays diverse, and at times conflicting, biological roles in normal development and disease. In this review we will highlight developmental and cellular roles for Hipk proteins, with an emphasis on the pleiotropic and essential physiological roles revealed through genetic studies. We discuss the myriad ways of regulating Hipk protein function, and how these may contribute to the diverse cellular roles. Furthermore we will describe the context-specific activities of Hipk family members in diseases such as cancer and fibrosis, including seemingly contradictory tumor-suppressive and oncogenic activities. Given the diverse signaling pathways regulated by Hipk proteins, it is likely that Hipks act to fine-tune signaling and may mediate cross talk in certain contexts. Such regulation is emerging as vital for development and in disease.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
16
|
Rogals MJ, Greenwood AI, Kwon J, Lu KP, Nicholson LK. Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding. FEBS J 2016; 283:4528-4548. [PMID: 27790836 DOI: 10.1111/febs.13943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/20/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
The peptidyl prolyl isomerase Pin1 has two domains that are considered to be its binding (WW) and catalytic (PPIase) domains, both of which interact with phosphorylated Ser/Thr-Pro motifs. This shared specificity might influence substrate selection, as many known Pin1 substrates have multiple sequentially close phosphoSer/Thr-Pro motifs, including the protein interleukin-1 receptor-associated kinase-1 (IRAK1). The IRAK1 undefined domain (UD) contains two sets of such neighboring motifs (Ser131/Ser144 and Ser163/Ser173), suggesting possible bivalent interactions with Pin1. Using a series of NMR titrations with 15N-labeled full-length Pin1 (Pin1-FL), PPIase, or WW domain and phosphopeptides representing the Ser131/Ser144 and Ser163/Ser173 regions of IRAK1-UD, bivalent interactions were investigated. Binding studies using singly phosphorylated peptides showed that individual motifs displayed weak affinities (> 100 μm) for Pin1-FL and each isolated domain. Analysis of dually phosphorylated peptides binding to Pin1-FL showed that inclusion of bivalent states was necessary to fit the data. The resulting complex model and fitted parameters were applied to predict the impact of bivalent states at low micromolar concentrations, demonstrating significant affinity enhancement for both dually phosphorylated peptides (3.5 and 24 μm for peptides based on the Ser131/Ser144 and Ser163/Ser173 regions, respectively). The complementary technique biolayer interferometry confirmed the predicted affinity enhancement for a representative set of singly and dually phosphorylated Ser131/Ser144 peptides at low micromolar concentrations, validating model predictions. These studies provide novel insights regarding the complexity of interactions between Pin1 and activated IRAK1, and more broadly suggest that phosphorylation of neighboring Ser/Thr-Pro motifs in proteins might provide competitive advantage at cellular concentrations for engaging with Pin1.
Collapse
Affiliation(s)
- Monique J Rogals
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Alexander I Greenwood
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, IL, USA
| | - Jeahoo Kwon
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linda K Nicholson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Wu XC, Xiao CC, Li H, Tai Y, Zhang Q, Yang Y. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition. Biochem Biophys Res Commun 2016; 477:161-6. [DOI: 10.1016/j.bbrc.2016.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/08/2016] [Indexed: 10/24/2022]
|
18
|
Anzilotti S, Tornincasa M, Gerlini R, Conte A, Brancaccio P, Cuomo O, Bianco G, Fusco A, Annunziato L, Pignataro G, Pierantoni GM. Genetic ablation of homeodomain-interacting protein kinase 2 selectively induces apoptosis of cerebellar Purkinje cells during adulthood and generates an ataxic-like phenotype. Cell Death Dis 2015; 6:e2004. [PMID: 26633710 PMCID: PMC4720876 DOI: 10.1038/cddis.2015.298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a multitalented coregulator of an increasing number of transcription factors and cofactors involved in cell death and proliferation in several organs and systems. As Hipk2−/− mice show behavioral abnormalities consistent with cerebellar dysfunction, we investigated whether Hipk2 is involved in these neurological symptoms. To this aim, we characterized the postnatal developmental expression profile of Hipk2 in the brain cortex, hippocampus, striatum, and cerebellum of mice by real-time PCR, western blot analysis, and immunohistochemistry. Notably, we found that whereas in the brain cortex, hippocampus, and striatum, HIPK2 expression progressively decreased with age, that is, from postnatal day 1 to adulthood, it increased in the cerebellum. Interestingly, mice lacking Hipk2 displayed atrophic lobules and a visibly smaller cerebellum than did wild-type mice. More important, the cerebellum of Hipk2−/− mice showed a strong reduction in cerebellar Purkinje neurons during adulthood. Such reduction is due to the activation of an apoptotic process associated with a compromised proteasomal function followed by an unpredicted accumulation of ubiquitinated proteins. In particular, Purkinje cell dysfunction was characterized by a strong accumulation of ubiquitinated β-catenin. Moreover, our behavioral tests showed that Hipk2−/− mice displayed muscle and balance impairment, indicative of Hipk2 involvement in cerebellar function. Taken together, these results indicate that Hipk2 exerts a relevant role in the survival of cerebellar Purkinje cells and that Hipk2 genetic ablation generates cerebellar dysfunction compatible with an ataxic-like phenotype.
Collapse
Affiliation(s)
| | - M Tornincasa
- Institute of Endocrinology and Experimental Oncology of National Research Council and Department of Molecular Medicine and Medical Biotechnology, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - R Gerlini
- Institute of Endocrinology and Experimental Oncology of National Research Council and Department of Molecular Medicine and Medical Biotechnology, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - A Conte
- Institute of Endocrinology and Experimental Oncology of National Research Council and Department of Molecular Medicine and Medical Biotechnology, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - P Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - O Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - G Bianco
- Institute of Endocrinology and Experimental Oncology of National Research Council and Department of Molecular Medicine and Medical Biotechnology, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - A Fusco
- Institute of Endocrinology and Experimental Oncology of National Research Council and Department of Molecular Medicine and Medical Biotechnology, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - L Annunziato
- SDN IRCCS, Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - G Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| | - G M Pierantoni
- Institute of Endocrinology and Experimental Oncology of National Research Council and Department of Molecular Medicine and Medical Biotechnology, School of Medicine, 'Federico II' University of Naples, Naples, Italy
| |
Collapse
|
19
|
Agarwal M, Kumar P, Mathew SJ. The Groucho/Transducin-like enhancer of split protein family in animal development. IUBMB Life 2015; 67:472-81. [PMID: 26172616 DOI: 10.1002/iub.1395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/30/2023]
Abstract
Corepressors are proteins that cannot bind DNA directly but repress transcription by interacting with partner proteins. The Groucho/Transducin-Like Enhancer of Split (TLE) are a conserved family of corepressor proteins present in animals ranging from invertebrates such as Drosophila to vertebrates such as mice and humans. Groucho/TLE proteins perform important functions throughout the life span of animals, interacting with several pathways and regulating fundamental processes such as metabolism. However, these proteins have especially crucial functions in animal development, where they are required in multiple tissues in a temporally regulated manner. In this review, we summarize the functions of the Groucho/TLE proteins during animal development, emphasizing on specific tissues where they play essential roles.
Collapse
Affiliation(s)
- Megha Agarwal
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Pankaj Kumar
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| | - Sam J Mathew
- Regional Centre for Biotechnology, NCR Bio-Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
20
|
Wook Choi D, Yong Choi C. HIPK2 modification code for cell death and survival. Mol Cell Oncol 2014; 1:e955999. [PMID: 27308327 PMCID: PMC4905192 DOI: 10.1080/23723548.2014.955999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/03/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine protein kinase that participates in the regulation of diverse cellular activities as a transcriptional cofactor and signal transducer. HIPK2 senses various signaling cues that in turn phosphorylate downstream substrates to coordinate developmental processes, cell cycle regulation, cell proliferation, differentiation, and the DNA damage response. HIPK2 functions are affected by its catalytic activity, stability, and subcellular localization, which in turn are dynamically regulated by diverse post-translational modifications such as polyubiquitination, SUMOylation, phosphorylation, and acetylation. HIPK2 is not modified with small molecules and/or peptides individually or independently, but in a combinatorial manner that is referred to as the “HIPK2 modification code.” HIPK2 integrates various signaling cues and senses different doses of DNA damage and ROS stimuli, which are reflected by unique patterns of HIPK2 modification. Hence, the HIPK2 modification code differentially contributes to cellular homeostasis and determination of cell fate depending on cellular context.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| |
Collapse
|
21
|
Abstract
In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells--embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells--in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects.
Collapse
Affiliation(s)
- Wen-Hui Lien
- de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
22
|
Inhibition of Notch signaling facilitates the differentiation of human-induced pluripotent stem cells into neural stem cells. Mol Cell Biochem 2014; 395:291-8. [PMID: 24972705 DOI: 10.1007/s11010-014-2130-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
Neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) are becoming an appealing source of cell-based therapies of brain diseases. As such, it is important to understand the molecular mechanisms that regulate the differentiation of iPSCs toward NSCs. It is well known that Notch signaling governs the retention of stem cell features and drives stem cells fate. However, further studies are required to investigate the role of Notch signaling in the NSCs differentiation of iPSCs. In this study, we successfully generated NSCs from human iPSCs using serum-free medium supplemented with retinoic acid (RA) in vitro. We then assessed changes in the expression of Notch signaling-related molecules and some miRNAs (9, 34a, 200b), which exert their regulation by targeting Notch signaling. Moreover, we used a γ-secretase inhibitor (DAPT) to disturb Notch signaling. Data revealed that the levels of the Notch signaling-related molecules decreased, whereas those miRNAs increased, during this differentiation process. Inhibition of Notch signaling accelerated the formation of the neural rosette structures and the expression of NSC and mature neurocyte marker genes. This suggests that Notch signaling negatively regulated the neuralization of human iPSCs, and that this process may be regulated by some miRNAs.
Collapse
|