1
|
4-Hydroxyderricin Promotes Apoptosis and Cell Cycle Arrest through Regulating PI3K/AKT/mTOR Pathway in Hepatocellular Cells. Foods 2021; 10:foods10092036. [PMID: 34574146 PMCID: PMC8468691 DOI: 10.3390/foods10092036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
4-hydroxyderricin (4-HD), as a natural flavonoid compound derived from Angelica keiskei, has largely unknown inhibition and mechanisms on liver cancer. Herein, we investigated the inhibitory effects of 4-HD on hepatocellular carcinoma (HCC) cells and clarified the potential mechanisms by exploring apoptosis and cell cycle arrest mediated via the PI3K/AKT/mTOR signaling pathway. Our results show that 4-HD treatment dramatically decreased the survival rate and activities of HepG2 and Huh7 cells. The protein expressions of apoptosis-related genes significantly increased, while those related to the cell cycle were decreased by 4-HD. 4-HD also down-regulated PI3K, p-PI3K, p-AKT, and p-mTOR protein expression. Moreover, PI3K inhibitor (LY294002) enhanced the promoting effect of 4-HD on apoptosis and cell cycle arrest in HCC cells. Consequently, we demonstrate that 4-HD can suppress the proliferation of HCC cells by promoting the PI3K/AKT/mTOR signaling pathway mediated apoptosis and cell cycle arrest.
Collapse
|
2
|
Sobhani F, Robinson R, Hamidinekoo A, Roxanis I, Somaiah N, Yuan Y. Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology. Biochim Biophys Acta Rev Cancer 2021; 1875:188520. [PMID: 33561505 PMCID: PMC9062980 DOI: 10.1016/j.bbcan.2021.188520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023]
Abstract
The field of immuno-oncology has expanded rapidly over the past decade, but key questions remain. How does tumour-immune interaction regulate disease progression? How can we prospectively identify patients who will benefit from immunotherapy? Identifying measurable features of the tumour immune-microenvironment which have prognostic or predictive value will be key to making meaningful gains in these areas. Recent developments in deep learning enable big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated and analysed far beyond what is possible with conventional techniques, and to do so efficiently and at scale. This has the potential to reshape what can be achieved in terms of volume, precision and reliability of output, enabling data for large cohorts to be summarised and compared. This review examines applications of artificial intelligence (AI) to important questions in immuno-oncology (IO). We discuss general considerations that need to be taken into account before AI can be applied in any clinical setting. We describe AI methods that have been applied to the field of IO to date and present several examples of their use.
Collapse
Affiliation(s)
- Faranak Sobhani
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK; Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Ruth Robinson
- Division of Radiotherapy and Imaging, Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, London, UK.
| | - Azam Hamidinekoo
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK; Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Navita Somaiah
- Division of Radiotherapy and Imaging, Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, London, UK.
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK; Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
3
|
Vuillier C, Lohard S, Fétiveau A, Allègre J, Kayaci C, King LE, Braun F, Barillé-Nion S, Gautier F, Dubrez L, Gilmore AP, Juin PP, Maillet L. E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death. EMBO Rep 2018; 19:234-243. [PMID: 29233828 PMCID: PMC5797968 DOI: 10.15252/embr.201744046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.
Collapse
Affiliation(s)
| | - Steven Lohard
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
| | | | - Jennifer Allègre
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Cémile Kayaci
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Louise E King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | | | | | - Fabien Gautier
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | - Laurence Dubrez
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Philippe P Juin
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | | |
Collapse
|
4
|
Pécot J, Maillet L, Le Pen J, Vuillier C, Trécesson SDC, Fétiveau A, Sarosiek KA, Bock FJ, Braun F, Letai A, Tait SWG, Gautier F, Juin PP. Tight Sequestration of BH3 Proteins by BCL-xL at Subcellular Membranes Contributes to Apoptotic Resistance. Cell Rep 2017; 17:3347-3358. [PMID: 28009301 DOI: 10.1016/j.celrep.2016.11.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/14/2016] [Accepted: 11/21/2016] [Indexed: 12/26/2022] Open
Abstract
Anti-apoptotic BCL-2 family members bind to BH3-only proteins and multidomain BAX/BAK to preserve mitochondrial integrity and maintain survival. Whereas inhibition of these interactions is the biological basis of BH3-mimetic anti-cancer therapy, the actual response of membrane-bound protein complexes to these compounds is currently ill-defined. Here, we find that treatment with BH3 mimetics targeting BCL-xL spares subsets of cells with the highest levels of this protein. In intact cells, sequestration of some pro-apoptotic activators (including PUMA and BIM) by full-length BCL-xL is much more resistant to derepression than previously described in cell-free systems. Alterations in the BCL-xL C-terminal anchor that impacts subcellular membrane-targeting and localization dynamics restore sensitivity. Thus, the membrane localization of BCL-xL enforces its control over cell survival and, importantly, limits the pro-apoptotic effects of BH3 mimetics by selectively influencing BCL-xL binding to key pro-apoptotic effectors.
Collapse
Affiliation(s)
- Jessie Pécot
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France
| | - Laurent Maillet
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France
| | - Janic Le Pen
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France
| | - Céline Vuillier
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France
| | | | - Aurélie Fétiveau
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France
| | | | - Florian J Bock
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Frédérique Braun
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Fabien Gautier
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France; ICO René Gauducheau, 44805 Saint Herblain, France.
| | - Philippe P Juin
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44035 Nantes, France; ICO René Gauducheau, 44805 Saint Herblain, France.
| |
Collapse
|
5
|
Khan MSS, Asif M, Basheer MKA, Kang CW, Al-Suede FS, Ein OC, Tang J, Majid ASA, Majid AMSA. Treatment of novel IL17A inhibitor in glioblastoma implementing 3rd generation co-culture cell line and patient-derived tumor model. Eur J Pharmacol 2017; 803:24-38. [PMID: 28322833 DOI: 10.1016/j.ejphar.2017.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022]
Abstract
Despite many treatment options, cancer remains a growing problem and has become the second leading cause of death globally. Here, we present fluorescence molecular tomography (FMT) data regarding the reversion of third generation co-cultured U87+DBTRG and patient-derived GBM tumor model after treatment with novel IL17A inhibitor named FLVM and FLVZ (organic derivatives of caffeic acid). FMT was used to determine tumor angiogenesis volume (assessment of number of blood vessel; the expression of angiogenic factors CD34 and other angiogenic cancer bio-markers) in U87+DBTRG and patient-derived gliomas. Immunohistochemistry was used to determine microvessel density [CD34], and cell proliferation [Ki67]. Western blot was used to assess the interleukin 17A [IL17A], vascular endothelial growth factor [VEGF] and hypoxia-inducible factor-1α [HIF-1α]. Antibody array was used to assess the cancer bio-markers in co-cultured U87+DBTRG gliomas. Animal survival was found to be significantly increased (P<0.0001) after FLVM treatment compared with control-IL17A. After FMT detection, FLVM, administered orally, was found to decrease tumor growth (P<0.0001). FLVM and FLVZ administration resulted in significant decreases in tumor hypoxia [HIF-1α (P<0.05)], angiogenesis [CD34 (P<0.05)], VEGF, IL17A and cell proliferation [Ki67 (P<0.05)] and caused a significant increase of Bax, caspase and FasL (P<0.05), compared with untreated animals. Additionally, Leptin, LPL (P<0.01), FFA (P<0.05) and adipogenesis were downregulated and no additive toxicity was found in mice except calorie-restriction like effect. Use of FLVM can be considered as a novel inhibitor of IL17A for the treatment of human gliomas.
Collapse
Affiliation(s)
- Md Shamsuddin Sultan Khan
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia; EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia; Eman research, Level 3, 81 Flushcombe Rd, Blacktown, NSW 2148, Australia.
| | - Muhammad Asif
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia
| | | | - Cheng Wei Kang
- Institute for Research in Molecular medicine, University of Science Malaysia, Penang, Malaysia
| | - Fouad Saleh Al-Suede
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia; EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia
| | - Oon Chern Ein
- Institute for Research in Molecular medicine, University of Science Malaysia, Penang, Malaysia
| | - Jing Tang
- Department of Mathematics and Statistics, University of Turku, Finland
| | - Aman Shah Abdul Majid
- EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia; School of Medicine, Department of Pharmacology, Quest International University, Malaysia
| | - Amin Malik Shah Abdul Majid
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia; EMAN Biodiscoveries Sdn Bhd, Eureka Complex, Universiti of Science Malaysia, Minden, Penang, Malaysia.
| |
Collapse
|
6
|
Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, Martinou JC, Letaï A, Braun F, Juin PP. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis 2016; 7:e2083. [PMID: 26844698 PMCID: PMC4849148 DOI: 10.1038/cddis.2015.400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023]
Abstract
Proapoptotic molecules directly targeting the BCL-2 family network are promising anticancer therapeutics, but an understanding of the cellular stress signals that render them effective is still elusive. We show here that the tumor suppressor p53, at least in part by transcription independent mechanisms, contributes to cell death induction and full activation of BAX by BH3 mimetic inhibitors of BCL-xL. In addition to mildly facilitating the ability of compounds to derepress BAX from BCL-xL, p53 also provides a death signal downstream of anti-apoptotic proteins inhibition. This death signal cooperates with BH3-induced activation of BAX and it is independent from PUMA, as enhanced p53 can substitute for PUMA to promote BAX activation in response to BH3 mimetics. The acute sensitivity of mitochondrial priming to p53 revealed here is likely to be critical for the clinical use of BH3 mimetics.
Collapse
Affiliation(s)
- J Le Pen
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - L Maillet
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - K Sarosiek
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Vuillier
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - F Gautier
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre de Lutte contre le Cancer René Gauducheau, Saint Herblain, France
| | - S Montessuit
- Department of Cell Biology, University of Geneva, Geneva,Switzerland
| | - J C Martinou
- Department of Cell Biology, University of Geneva, Geneva,Switzerland
| | - A Letaï
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - F Braun
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - P P Juin
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre de Lutte contre le Cancer René Gauducheau, Saint Herblain, France
| |
Collapse
|
7
|
Giampazolias E, Tait SWG. Mitochondria and the hallmarks of cancer. FEBS J 2015; 283:803-14. [PMID: 26607558 DOI: 10.1111/febs.13603] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023]
Abstract
Mitochondria have traditionally been viewed as the powerhouse of the cell, where they serve, amongst other functions, as a major source of ATP generation. More recently, mitochondria have also been shown to have active roles in a variety of other processes, including apoptotic cell death and inflammation. Here we review the various ways in which mitochondrial functions affect cancer. Although there are many diverse types of cancer, hallmarks have been defined that are applicable to most cancer types. We provide an overview of how mitochondrial functions affect some of these hallmarks, which include evasion of cell death, de-regulated bioenergetics, genome instability, tumour-promoting inflammation and metastasis. In addition to discussing the underlying mitochondrial roles in each of these processes, we also highlight the considerable potential of targeting mitochondrial functions to improve cancer treatment.
Collapse
Affiliation(s)
- Evangelos Giampazolias
- Cancer Research UK Beatson Institute, University of Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, University of Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
8
|
Clavier A, Ruby V, Rincheval-Arnold A, Mignotte B, Guénal I. The Drosophila retinoblastoma protein, Rbf1, induces a Debcl- and Drp1-dependent mitochondrial apoptosis. J Cell Sci 2015. [PMID: 26208635 DOI: 10.1242/jcs.169896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In accordance with its tumor suppressor role, the retinoblastoma protein pRb can ensure pro-apoptotic functions. Rbf1, the Drosophila homolog of Rb, also displays a pro-apoptotic activity in proliferative cells. We have previously shown that the Rbf1 pro-apoptotic activity depends on its ability to decrease the level of anti-apoptotic proteins such as the Bcl-2 family protein Buffy. Buffy often acts in an opposite manner to Debcl, the other Drosophila Bcl-2-family protein. Both proteins can localize at the mitochondrion, but the way they control apoptosis still remains unclear. Here, we demonstrate that Debcl and the pro-fission gene Drp1 are necessary downstream of Buffy to trigger a mitochondrial fragmentation during Rbf1-induced apoptosis. Interestingly, Rbf1-induced apoptosis leads to a Debcl- and Drp1-dependent reactive oxygen species production, which in turn activates the Jun Kinase pathway to trigger cell death. Moreover, we show that Debcl and Drp1 can interact and that Buffy inhibits this interaction. Notably, Debcl modulates Drp1 mitochondrial localization during apoptosis. These results provide a mechanism by which Drosophila Bcl-2 family proteins can control apoptosis, and shed light on a link between Rbf1 and mitochondrial dynamics in vivo.
Collapse
Affiliation(s)
- Amandine Clavier
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France Ecole Pratique des Hautes Etudes, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Vincent Ruby
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Aurore Rincheval-Arnold
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Bernard Mignotte
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France Ecole Pratique des Hautes Etudes, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Isabelle Guénal
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| |
Collapse
|
9
|
Cao B, Shi Q, Wang W. Higher expression of SIRT1 induced resistance of esophageal squamous cell carcinoma cells to cisplatin. J Thorac Dis 2015; 7:711-9. [PMID: 25973238 DOI: 10.3978/j.issn.2072-1439.2015.04.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND High expression of Sirtuin type 1 (SIRT1) exists in some cancer cells. However, it is still unclear whether SIRT1 affects the sensitivity of esophageal cancer cells to cisplatin. This study was designed to explore the relationship between SIRT1 expression and resistance of esophageal squamous cell carcinoma (ESCC) cells to cisplatin and reveal the underlying mechanism. METHODS The tissue samples of 68 ESCC patients were collected from Nanjing Drum Tower Hospital, China. All the patients had undergone cisplatin based combination chemotherapy. The expression of SIRT1and Noxa in tissue samples were analyzed by quantitative real-time reverse PCR (qRT-PCR) and Western blot. Human ESCC cell line (ECa9706 cells) was cultured and a cisplatin-resistant subline (ECa9706-CisR cells) was established by continuous exposure to cisplatin at different concentrations. The expression of SIRT1 and Noxa in both cell lines was analyzed by qRT-PCR and Western blot. siRNA technology was utilized to down-regulate the SIRT1 expression in ECa9706-CisR cells. The influence of SIRT1 silence on sensitivity of ECa9706-CisR cells to cisplatin was confirmed using CCK-8 assay and flow cytometry. Furthermore, the level change of Noxa after SIRT1 silence in ECa9706-CisR cells was determined by qRT-PCR and Western blot. RESULT SIRT1 and Noxa expression in chemo-resistant patients was significantly increased and decreased respectively, compared with chemo-sensitive patients. SIRT1 expression in ECa9706-CisR cells was significantly increased with a lower Noxa level, compared with normal ECa9706 cells. Cisplatin 5 µM could cause proliferation inhibition, G2/M phase arrest and apoptosis in ECa9706-CisR cells and these effects could be enhanced dramatically by SIRT1 silencing. Moreover, Noxa expression was increased after treated with SIRT1 siRNA. CONCLUSIONS Over-expression of SIRT1 may cause resistance of ESCC cells to cisplatin through the mechanism involved with Noxa expression.
Collapse
Affiliation(s)
- Bin Cao
- Department of cardiothoracic surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Qintong Shi
- Department of cardiothoracic surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Wengong Wang
- Department of cardiothoracic surgery, Nanjing Drum Tower Hospital, Nanjing 210008, China
| |
Collapse
|
10
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
11
|
Poppy Roworth A, Ghari F, La Thangue NB. To live or let die - complexity within the E2F1 pathway. Mol Cell Oncol 2015; 2:e970480. [PMID: 27308406 PMCID: PMC4905241 DOI: 10.4161/23723548.2014.970480] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 04/21/2023]
Abstract
The E2F1 transcription factor is a recognized regulator of the cell cycle as well as a potent mediator of DNA damage-induced apoptosis and the checkpoint response. Understanding the diverse and seemingly dichotomous functions of E2F1 activity has been the focus of extensive ongoing research. Although the E2F pathway is frequently deregulated in cancer, the contributions of E2F1 itself to tumorigenesis, as a promoter of proliferation or cell death, are far from understood. In this review we aim to provide an update on our current understanding of E2F1, with particular insight into its novel interaction partners and post-translational modifications, as a means to explaining its diverse functional complexity.
Collapse
Affiliation(s)
- A Poppy Roworth
- Laboratory of Cancer Biology; Department of Oncology; University of Oxford; Oxford, UK
| | - Fatemeh Ghari
- Laboratory of Cancer Biology; Department of Oncology; University of Oxford; Oxford, UK
| | - Nicholas B La Thangue
- Laboratory of Cancer Biology; Department of Oncology; University of Oxford; Oxford, UK
- Correspondence to: Nicholas B La Thangue;
| |
Collapse
|
12
|
The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA. Cell Death Dis 2014; 5:e1405. [PMID: 25188515 PMCID: PMC4540203 DOI: 10.1038/cddis.2014.372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
Abstract
The retinoblastoma gene, rb, ensures at least its tumor suppressor function by inhibiting cell proliferation. Its role in apoptosis is more complex and less described than its role in cell cycle regulation. Rbf1, the Drosophila homolog of Rb, has been found to be pro-apoptotic in proliferative tissue. However, the way it induces apoptosis at the molecular level is still unknown. To decipher this mechanism, we induced rbf1 expression in wing proliferative tissue. We found that Rbf1-induced apoptosis depends on dE2F2/dDP heterodimer, whereas dE2F1 transcriptional activity is not required. Furthermore, we highlight that Rbf1 and dE2F2 downregulate two major anti-apoptotic genes in Drosophila: buffy, an anti-apoptotic member of Bcl-2 family and diap1, a gene encoding a caspase inhibitor. On the one hand, Rbf1/dE2F2 repress buffy at the transcriptional level, which contributes to cell death. On the other hand, Rbf1 and dE2F2 upregulate how expression. How is a RNA binding protein involved in diap1 mRNA degradation. By this way, Rbf1 downregulates diap1 at a post-transcriptional level. Moreover, we show that the dREAM complex has a part in these transcriptional regulations. Taken together, these data show that Rbf1, in cooperation with dE2F2 and some members of the dREAM complex, can downregulate the anti-apoptotic genes buffy and diap1, and thus promote cell death in a proliferative tissue.
Collapse
|
13
|
Milet C, Rincheval-Arnold A, Moriéras A, Clavier A, Garrigue A, Mignotte B, Guénal I. Mutating RBF can enhance its pro-apoptotic activity and uncovers a new role in tissue homeostasis. PLoS One 2014; 9:e102902. [PMID: 25089524 PMCID: PMC4121136 DOI: 10.1371/journal.pone.0102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 06/24/2014] [Indexed: 02/02/2023] Open
Abstract
The tumor suppressor retinoblastoma protein (pRb) is inactivated in a wide variety of cancers. While its role during cell cycle is well characterized, little is known about its properties on apoptosis regulation and apoptosis-induced cell responses. pRb shorter forms that can modulate pRB apoptotic properties, resulting from cleavages at caspase specific sites are observed in several cellular contexts. A bioinformatics analysis showed that a putative caspase cleavage site (TELD) is found in the Drosophila homologue of pRb(RBF) at a position similar to the site generating the p76Rb form in mammals. Thus, we generated a punctual mutant form of RBF in which the aspartate of the TELD site is replaced by an alanine. This mutant form, RBFD253A, conserved the JNK-dependent pro-apoptotic properties of RBF but gained the ability of inducing overgrowth phenotypes in adult wings. We show that this overgrowth is a consequence of an abnormal proliferation in wing imaginal discs, which depends on the JNK pathway activation but not on wingless (wg) ectopic expression. These results show for the first time that the TELD site of RBF could be important to control the function of RBF in tissue homeostasis in vivo.
Collapse
Affiliation(s)
- Cécile Milet
- Laboratoire de Génétique et Biologie Cellulaire - EA4589, Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- Laboratoire de Génétique et Biologie Cellulaire - EA4589, Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, Montigny-le-Bretonneux, France
| | - Angéline Moriéras
- Laboratoire de Génétique et Biologie Cellulaire - EA4589, Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, Montigny-le-Bretonneux, France
| | - Amandine Clavier
- Laboratoire de Génétique et Biologie Cellulaire - EA4589, Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, Montigny-le-Bretonneux, France
| | - Alexandrine Garrigue
- Laboratoire de Génétique et Biologie Cellulaire - EA4589, Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, Montigny-le-Bretonneux, France
| | - Bernard Mignotte
- Laboratoire de Génétique et Biologie Cellulaire - EA4589, Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Laboratoire de Génétique et Biologie Cellulaire - EA4589, Université de Versailles Saint-Quentin-en-Yvelines, Ecole Pratique des Hautes Etudes, Montigny-le-Bretonneux, France
| |
Collapse
|
14
|
Albert MC, Brinkmann K, Kashkar H. Noxa and cancer therapy: Tuning up the mitochondrial death machinery in response to chemotherapy. Mol Cell Oncol 2014; 1:e29906. [PMID: 27308315 PMCID: PMC4905168 DOI: 10.4161/mco.29906] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
Biochemical analyses have characterized the BH3-only protein family member Noxa as a “sensitizer” with weak pro-apoptotic activity. Investigations into cancer cell responses to chemotherapeutic agents have identified Noxa as a pivotal factor mediating the cytotoxic effect of a plethora of anticancer treatments independent of its own pro-apoptotic activity. Accumulating evidence now suggests that tumor cells exert a number of strategies to counteract Noxa function by exploiting diverse cellular regulatory circuits that normally govern Noxa expression during cellular stress responses. Here, we summarize data concerning the role of Noxa in cancer chemosensitivity and highlight the potential of this enigmatic BH3-only protein family member in current and novel anticancer therapies.
Collapse
Affiliation(s)
- Marie-Christine Albert
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Kerstin Brinkmann
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| |
Collapse
|
15
|
Maamer-Azzabi A, Ndozangue-Touriguine O, Bréard J. Metastatic SW620 colon cancer cells are primed for death when detached and can be sensitized to anoikis by the BH3-mimetic ABT-737. Cell Death Dis 2013; 4:e801. [PMID: 24030153 PMCID: PMC3789186 DOI: 10.1038/cddis.2013.328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/16/2022]
Abstract
Anoikis, a Bax-dependent apoptosis triggered by detachment from the extracellular matrix, is often inhibited in metastatic cancer cells. Using a couple of isogenic human colon cancer cell lines derived either from the primary tumor (SW480) or from a lymph node metastasis (SW620), we found that only SW480 cells were sensitive to anoikis. Bim upregulation but not Mcl-1 degradation was determined to be a critical factor of anoikis initiation in SW480 cells. ERK-mediated phosphorylation targets Bim for ubiquitination and proteasomal degradation. A MEK inhibitor (PD0325901) was able to increase Bim expression in SW620 cells and to sensitize these cells to anoikis. Thus, in both cell lines anoikis is under the control of proteins of the Bcl-2 family. Most interestingly, the BH3-mimetic ABT-737 was found not only to increase the level of apoptosis in suspended SW480 cells but also to sensitize SW620 cells to anoikis. Accordingly, both cell lines cultured in suspension were found to be primed for death, as determined by the detection of Bcl-2:Bim and Bcl-xL:Bim complexes. In contrast, adherent SW480 and SW620 cells were resistant to ABT-737. This indicates that, whether or not they undergo anoikis, colon cancer cells that have detached from the extracellular matrix might go through a transient state, where they are sensitive to BH3 mimetics. This would confer to compounds such as Navitoclax or ABT-199 a therapeutic window where they could have anti-metastatic potential.
Collapse
Affiliation(s)
- A Maamer-Azzabi
- Inserm U1004, Hôpital Paul Brousse, 12 Avenue Paul Vaillant-Couturier, Villejuif 94800, France
| | | | | |
Collapse
|
16
|
Braun F, de Carné Trécesson S, Bertin-Ciftci J, Juin P. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle 2013; 12:2937-47. [PMID: 23974114 PMCID: PMC3875667 DOI: 10.4161/cc.25972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is widely accepted that anti-apoptotic Bcl-2 family members promote cancer cell survival by binding to their pro-apoptotic counterparts, thereby preventing mitochondrial outer membrane permeabilization (MOMP) and cytotoxic caspase activation. Yet, these proteins do not only function as guardians of mitochondrial permeability, preserving it, and maintaining cell survival in the face of acute or chronic stress, they also regulate non-apoptotic functions of caspases and biological processes beyond MOMP from diverse subcellular localizations and in complex with numerous binding partners outside of the Bcl-2 family. In particular, some of the non-canonical effects and functions of Bcl-2 homologs lead to an interplay with E2F-1, NFκB, and Myc transcriptional pathways, which themselves influence cancer cell growth and survival. We thus propose that, by feedback loops that we currently have only hints of, Bcl-2 proteins may act as rulers of survival signaling, predetermining the apoptotic threshold that they also directly scaffold. This underscores the robustness of the control exerted by Bcl-2 homologs over cancer cell survival, and implies that small molecules compounds currently used in the clinic to inhibit their mitochondrial activity may be not always be fully efficient to override this control.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 892 INSERM/6299 CNRS/Université de Nantes; Team 8 "Cell survival and tumor escape in breast cancer"; Institut de Recherche en Santé de l'Université de Nantes; Nantes, France
| | | | | | | |
Collapse
|
17
|
Evaluation and critical assessment of putative MCL-1 inhibitors. Cell Death Differ 2013; 20:1475-84. [PMID: 23832116 DOI: 10.1038/cdd.2013.79] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
High levels of BCL-2 family proteins are implicated in a failed/ineffective apoptotic programme, often resulting in diseases, including cancer. Owing to their potential as drug targets in cancer therapy, several inhibitors of BCL-2 family proteins have been developed. These primarily target specific members of the BCL-2 family, particularly BCL-2 and BCL-XL but are ineffective against MCL-1. Major efforts have been invested in developing inhibitors of MCL-1, which is commonly amplified in human tumours and associated with tumour relapse and chemoresistance. In this report, the specificity of several BCL-2 family inhibitors (ABT-263, UCB-1350883, apogossypol and BH3I-1) was investigated and compared with putative MCL-1 inhibitors designed to exhibit improved or selective binding affinities for MCL-1 (TW-37, BI97C1, BI97C10, BI112D1, compounds 6 and 7, and MCL-1 inhibitor molecule (MIM-1)). ABT-263, BI97C1, BI112D1, MIM-1 and TW-37 exhibited specificity in inducing apoptosis in a Bax/Bak- and caspase-9-dependent manner, whereas the other agents showed no killing activity, or little or no specificity. Of these inhibitors, only ABT-263 and UCB-1350883 induced apoptosis in a BCL-2- or BCL-XL-dependent system. In cells that depend on MCL-1 for survival, ABT-263 and TW-37 induced extensive apoptosis, suggesting that at high concentrations these inhibitors have the propensity to inhibit MCL-1 in a cellular context. TW-37 induced apoptosis, assessed by chromatin condensation, caspase processing and phosphatidylserine externalisation, in a BAK-dependent manner and in cells that require MCL-1 for survival. TW-37-mediated apoptosis was also partly dependent on NOXA, suggesting that derivatives of TW-37, if engineered to exhibit better selectivity and efficacy at low nanomolar concentrations, may provide useful lead compounds for further synthetic programmes. Expanded medicinal chemistry iteration, as performed for the ABT series, may likewise improve the potency and specificity of the evaluated MCL-1 inhibitors.
Collapse
|
18
|
Juin P, Geneste O, Gautier F, Depil S, Campone M. Decoding and unlocking the BCL-2 dependency of cancer cells. Nat Rev Cancer 2013; 13:455-65. [PMID: 23783119 DOI: 10.1038/nrc3538] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer cells are subject to many apoptotic stimuli that would kill them were it not for compensatory prosurvival alterations. BCL-2-like (BCL-2L) proteins contribute to such aberrant behaviour by engaging a network of interactions that is potent at promoting survival but that is also fragile: inhibition of a restricted number of interactions may suffice to trigger cancer cell death. Currently available and novel compounds that inhibit these interactions could be efficient therapeutic agents if this phenotype of BCL-2L dependence was better understood at a molecular, cellular and systems level and if it could be diagnosed by relevant biomarkers.
Collapse
Affiliation(s)
- Philippe Juin
- Team 8 Cell survival and tumor escape in breast cancer, UMR 892 INSERM / 6299 CNRS / Université de Nantes, Institut de Recherche Thérapeutique de l'Université de Nantes, 8 quai Moncousu, BP 70721, 44007 Nantes Cedex, 1 France.
| | | | | | | | | |
Collapse
|