1
|
Zheng M, Wu L, Xiao R, Cai J, Chen W, Shen S. Fbxo45 facilitates the malignant progression of breast cancer by targeting Bim for ubiquitination and degradation. BMC Cancer 2024; 24:619. [PMID: 38773471 PMCID: PMC11110447 DOI: 10.1186/s12885-024-12382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Breast cancer is one of the common malignancies in women. Evidence has demonstrated that FBXO45 plays a pivotal role in oncogenesis and progression. However, the role of FBXO45 in breast tumorigenesis remains elusive. Exploration of the regulatory mechanisms of FBXO45 in breast cancer development is pivotal for potential therapeutic interventions in patients with breast cancer. METHODS Hence, we used numerous approaches to explore the functions of FBXO45 and its underlaying mechanisms in breast cancer pathogenesis, including CCK-8 assay, EdU assay, colony formation analysis, apoptosis assay, RT-PCR, Western blotting, immunoprecipitation, ubiquitination assay, and cycloheximide chase assay. RESULTS We found that downregulation of FBXO45 inhibited cell proliferation, while upregulation of FBXO45 elevated cell proliferation in breast cancer. Silencing of FBXO45 induced cell apoptosis, whereas overexpression of FBXO45 inhibited cell apoptosis in breast cancer. Moreover, FBXO45 interacted with BIM and regulated its ubiquitination and degradation. Furthermore, knockdown of FBXO45 inhibited cell proliferation via regulation of BIM pathway. Notably, overexpression of FBXO45 facilitated tumor growth in mice. Strikingly, FBXO45 expression was associated with poor survival of breast cancer patients. CONCLUSION Our study could provide the rational for targeting FBXO45 to obtain benefit for breast cancer patients. Altogether, modulating FBXO45/Bim axis could be a promising strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Linfeng Wu
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Rongyao Xiao
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Jiaohao Cai
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Weike Chen
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Shurong Shen
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
von Danwitz M, Klümper N, Bernhardt M, Cox A, Krausewitz P, Alajati A, Kristiansen G, Ritter M, Ellinger J, Stein J. Identification of F-Box/SPRY Domain-Containing Protein 1 (FBXO45) as a Prognostic Biomarker for TMPRSS2-ERG-Positive Primary Prostate Cancers. Cancers (Basel) 2023; 15:cancers15061890. [PMID: 36980776 PMCID: PMC10046786 DOI: 10.3390/cancers15061890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND F-box/SPRY domain-containing protein 1 (FBXO45) plays a crucial role in the regulation of apoptosis via the ubiquitylation and degradation of specific targets. Recent studies indicate the prognostic potential of FBXO45 in several cancers. However, its specific role in prostate carcinoma remains unclear. METHODS A systematic analysis of FBXO45 mRNA expression in PCA was performed using The Cancer Genome Atlas database and a publicly available Gene Expression Omnibus progression PCA cohort. Subsequently, FBXO45 protein expression was assessed via immunohistochemical analysis of a comprehensive tissue microarray cohort. The expression data were correlated with the clinicopathological parameters and biochemical-free survival. The immunohistochemical analyses were stratified according to the TMPRSS2-ERG rearrangement status. To assess the impact of FBXO45 knockdown on the tumour proliferation capacity of cells and metastatic potential, transfection with antisense-oligonucleotides was conducted within a cell culture model. RESULTS FBXO45 mRNA expression was associated with adverse clinicopathological parameters in the TCGA cohort and was enhanced throughout progression to distant metastasis. FBXO45 was associated with shortened biochemical-free survival, which was pronounced for the TMPRSS2-ERG-positive tumours. In vitro, FBXO45 knockdown led to a significant reduction in migration capacity in the PC3, DU145 and LNCaP cell cultures. CONCLUSIONS Comprehensive expression analysis and functional data suggest FBXO45 as a prognostic biomarker in PCA.
Collapse
Affiliation(s)
- Marthe von Danwitz
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Niklas Klümper
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Marit Bernhardt
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Pathology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Alexander Cox
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Philipp Krausewitz
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Abdullah Alajati
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Glen Kristiansen
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Institute of Pathology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Johannes Stein
- Department of Urology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Center for Integrated Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
3
|
Cao T, Cui Y, Wang Y, Wu L, Yu K, Chen K, Xia J, Li Y, Wang ZP, Ma J. CACNA1C-AS2 inhibits cell proliferation and suppresses cell migration and invasion via targeting FBXO45 and PI3K/AKT/mTOR pathways in glioma. Apoptosis 2022; 27:979-991. [PMID: 36038736 DOI: 10.1007/s10495-022-01764-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common brain cancer with a poor prognosis, and its underlying molecular mechanisms still needs to be further explored. In the current study, we discovered that an antisense lncRNA, CACNA1C-AS2, suppressed growth, migration and invasion of glioma cells, suggesting that CACNA1C-AS2 functions as a tumor suppressor. Furthermore, we found that CACNA1C-AS2 negatively regulated Fbxo45 protein expression in glioma cells. Impressively, extensive experimental results revealed that Fbxo45 accelerated growth, migration and invasion of glioma cells. Clinically, increased Fbxo45 expression was observed in 75 human glioma tissue samples. Moreover, in vivo experiments also demonstrated that Fbxo45 overexpression enhanced tumor growth in mice. Especially, we further identified that Fbxo45 activated mTORC1 rather than mTORC2 through PI3K/AKT signaling to promote cell growth and motility in glioma cells. Rescue experiments also exhibited that CACNA1C-AS2 inhibited cell growth and motility partly through down-regulating Fbxo45 expression in glioma. Our results provide the novel insights into the critical role of CACNA1C-AS2/Fbxo45/mTOR axis involved in regulating glioma tumorigenesis and progression, and further indicate that CACNA1C-AS2 and Fbxo45 may be the potential biomarkers and therapeutic targets for glioma.
Collapse
Affiliation(s)
- Tong Cao
- Department of Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.,Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Yue Cui
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China.,Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, 236001, Anhui, China
| | - Yingying Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Linhui Wu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China.,Clinical Laboratory Center, Lu'an People's Hospital, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, 237000, Anhui, China
| | - Ke Yu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Kai Chen
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Street, Bengbu, 233030, Anhui, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Zhiwei Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Street, Bengbu, 233030, Anhui, China. .,Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai Street, Bengbu, 233030, Anhui, China.
| |
Collapse
|
4
|
Wu L, Yu K, Chen K, Zhu X, Yang Z, Wang Q, Gao J, Wang Y, Cao T, Xu H, Pan X, Wang L, Xia J, Li Y, Wang ZP, Ma J. Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis 2022; 13:231. [PMID: 35279684 PMCID: PMC8918322 DOI: 10.1038/s41419-022-04675-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022]
Abstract
Fbxo45, a conserved F-box protein, comprises of an atypical SKP1, CUL1, F-box protein (SCF) ubiquitin ligase complex that promotes tumorigenesis and development. However, the biological function and molecular mechanisms of Fbxo45 involved in pancreatic carcinogenesis are ambiguous. We conducted several approaches, including transfection, coIP, real-time polymerase chain reaction (RT-PCR), Western blotting, ubiquitin assays, and animal studies, to explore the role of Fbxo45 in pancreatic cancer. Here, we report that USP49 stability is governed by Fbxo45-mediated ubiquitination and is enhanced by the absence of Fbxo45. Moreover, Fbxo45 binds to a short consensus sequence of USP49 through its SPRY domain. Furthermore, Fbxo45-mediated USP49 ubiquitination and degradation are enhanced by NEK6 kinase. Functionally, Fbxo45 increases cell viability and motility capacity by targeting USP49 in pancreatic cancer cells. Xenograft mouse experiments demonstrated that ectopic expression of Fbxo45 enhanced tumor growth in mice and that USP49 overexpression inhibited tumor growth in vivo. Notably, Fbxo45 expression was negatively associated with USP49 expression in pancreatic cancer tissues. Fbxo45 serves as an oncoprotein to facilitate pancreatic oncogenesis by regulating the stability of the tumor suppressor USP49 in pancreatic cancer.
Collapse
Affiliation(s)
- Linhui Wu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Ke Yu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Kai Chen
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xuelian Zhu
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zheng Yang
- Department of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Qi Wang
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yingying Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tong Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Hui Xu
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhiwei Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| |
Collapse
|
5
|
Cheratta AR, Thayyullathil F, Pallichankandy S, Subburayan K, Alakkal A, Galadari S. Prostate apoptosis response-4 and tumor suppression: it's not just about apoptosis anymore. Cell Death Dis 2021; 12:47. [PMID: 33414404 PMCID: PMC7790818 DOI: 10.1038/s41419-020-03292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The tumor suppressor prostate apoptosis response-4 (Par-4) has recently turned ‘twenty-five’. Beyond its indisputable role as an apoptosis inducer, an increasing and sometimes bewildering, new roles for Par-4 are being reported. These roles include its ability to regulate autophagy, senescence, and metastasis. This growing range of responses to Par-4 is reflected by our increasing understanding of the various mechanisms through which Par-4 can function. In this review, we summarize the existing knowledge on Par-4 tumor suppressive mechanisms, and discuss how the interaction of Par-4 with different regulators influence cell fate. This review also highlights the new secretory pathway that has emerged and the likely discussion on its clinical implications.
Collapse
Affiliation(s)
- Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
6
|
Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat 2019; 49:100673. [PMID: 31877405 DOI: 10.1016/j.drup.2019.100673] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Chemotherapy continues to be a major treatment strategy for various human malignancies. However, the frequent emergence of chemoresistance compromises chemotherapy efficacy leading to poor prognosis. Thus, overcoming drug resistance is pivotal to achieve enhanced therapy efficacy in various cancers. Although increased evidence has revealed that reduced drug uptake, increased drug efflux, drug target protein alterations, drug sequestration in organelles, enhanced drug metabolism, impaired DNA repair systems, and anti-apoptotic mechanisms, are critically involved in drug resistance, the detailed resistance mechanisms have not been fully elucidated in distinct cancers. Recently, F-box protein (FBPs), key subunits in Skp1-Cullin1-F-box protein (SCF) E3 ligase complexes, have been found to play critical roles in carcinogenesis, tumor progression, and drug resistance through degradation of their downstream substrates. Therefore, in this review, we describe the functions of FBPs that are involved in drug resistance and discuss how FBPs contribute to the development of cancer drug resistance. Furthermore, we propose that targeting FBPs might be a promising strategy to overcome drug resistance and achieve better treatment outcome in cancer patients. Lastly, we state the limitations and challenges of using FBPs to overcome chemotherapeutic drug resistance in various cancers.
Collapse
Affiliation(s)
- Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
7
|
A journey beyond apoptosis: new enigma of controlling metastasis by pro-apoptotic Par-4. Clin Exp Metastasis 2016; 33:757-764. [PMID: 27568374 DOI: 10.1007/s10585-016-9819-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Prostate apoptotic response 4 (Par-4) is coined as a therapeutic protein since owing to its diverse physiologically relevant properties, especially in the cancer perspective. Albeit, Par-4 expression is not restricted to any specific tissue/organ, apart from cell death promotion (due to challenging threats), the other biological role of Par-4 is convincingly emerging. In the recent years, several laboratories have intended to dissect the signaling or mechanisms involved in Par-4 activation to augment apoptosis cascades but new developments in Par-4 research have widened its therapeutic potential. One of these important avenues is the prevention of metastasis by pro-apoptotic Par-4. In this review, we will focus on the therapeutic perspective of Par-4 with a special reference to its (Par-4) virgin prospect of devastating metastasis control.
Collapse
|
8
|
Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol 2016; 73:99-110. [PMID: 26860958 PMCID: PMC4798898 DOI: 10.1016/j.biocel.2016.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|