1
|
Santa Cruz-Pavlovich FJ, Bolaños-Chang AJ, Del Rio-Murillo XI, Aranda-Preciado GA, Razura-Ruiz EM, Santos A, Navarro-Partida J. Beyond Vision: An Overview of Regenerative Medicine and Its Current Applications in Ophthalmological Care. Cells 2024; 13:179. [PMID: 38247870 PMCID: PMC10814238 DOI: 10.3390/cells13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Regenerative medicine (RM) has emerged as a promising and revolutionary solution to address a range of unmet needs in healthcare, including ophthalmology. Moreover, RM takes advantage of the body's innate ability to repair and replace pathologically affected tissues. On the other hand, despite its immense promise, RM faces challenges such as ethical concerns, host-related immune responses, and the need for additional scientific validation, among others. The primary aim of this review is to present a high-level overview of current strategies in the domain of RM (cell therapy, exosomes, scaffolds, in vivo reprogramming, organoids, and interspecies chimerism), centering around the field of ophthalmology. A search conducted on clinicaltrials.gov unveiled a total of at least 209 interventional trials related to RM within the ophthalmological field. Among these trials, there were numerous early-phase studies, including phase I, I/II, II, II/III, and III trials. Many of these studies demonstrate potential in addressing previously challenging and degenerative eye conditions, spanning from posterior segment pathologies like Age-related Macular Degeneration and Retinitis Pigmentosa to anterior structure diseases such as Dry Eye Disease and Limbal Stem Cell Deficiency. Notably, these therapeutic approaches offer tailored solutions specific to the underlying causes of each pathology, thus allowing for the hopeful possibility of bringing forth a treatment for ocular diseases that previously seemed incurable and significantly enhancing patients' quality of life. As advancements in research and technology continue to unfold, future objectives should focus on ensuring the safety and prolonged viability of transplanted cells, devising efficient delivery techniques, etc.
Collapse
Affiliation(s)
- Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Andres J. Bolaños-Chang
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Ximena I. Del Rio-Murillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | | | - Esmeralda M. Razura-Ruiz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico; (F.J.S.C.-P.); (A.J.B.-C.); (X.I.D.R.-M.); (E.M.R.-R.); (A.S.)
| |
Collapse
|
2
|
Noguchi H, Miyagi-Shiohira C, Nakashima Y, Onishi Y, Saitoh I, Watanabe M. Establishment of Induced Pancreatic Stem Cells by Yes-Associated Protein 1. Cell Transplant 2024; 33:9636897241248942. [PMID: 38712762 PMCID: PMC11080735 DOI: 10.1177/09636897241248942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/08/2024] Open
Abstract
Recently, we and others generated induced tissue-specific stem/progenitor (iTS/iTP) cells. The advantages of iTS/iTP cells compared with induced pluripotent stem (iPS) cells are (1) easier generation, (2) efficient differentiation, and (3) no teratomas formation. In this study, we generated mouse induced pancreatic stem cells (iTS-P cells) by the plasmid vector expressing Yes-associated protein 1 (YAP). The iTS-P YAP9 cells expressed Foxa2 (endoderm marker) and Pdx1 (pancreatic marker) while the expressions of Oct3/4 and Nanog (marker of embryonic stem [ES] cells) in iTS-P YAP9 cells was significantly lower compared with those in ES cells. The iTS-P YAP9 cells efficiently differentiated into insulin-expressing cells compared with ES cells. The ability to generate autologous iTS cells may be applied to diverse applications of regenerative medicine.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yuka Onishi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Hozumi, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Nakashima Y, Miyagi-Shiohira C, Saitoh I, Watanabe M, Matsushita M, Tsukahara M, Noguchi H. Induced hepatic stem cells are suitable for human hepatocyte production. iScience 2022; 25:105052. [PMID: 36147945 PMCID: PMC9485912 DOI: 10.1016/j.isci.2022.105052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/31/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Human hepatocytes were transfected with Sendai virus vectors (SeV) expressing OCT3/4, SOX2, KLF4, and C-MYC to produce hepatocyte-derived induced pluripotent stem cells (iPSCs). The messenger RNA (mRNA) expression of undifferentiated markers (passage 19-21) and hepatocyte-specific markers (HSMs) (passage 0-20) in 48 established hepatocyte-derived iPSC-like colonies was examined. Among the 48 clones, 10 clones continuously expressed HSM mRNA (HNF1β and HNF4α) in passage 0-20. The colonies which expressed HSMs (iTS-L cells: induced tissue-specific stem cells from liver) showed a different tendency in microarray and methylation analyses to fibroblast-derived iPSCs (strain: 201B7). iTS-L cells were less likely to form teratomas in mice than iPSCs (He). The iTS-L cells were differentiated into hepatocyte-like cells more efficiently than iPSCs (He) or iPSCs (201B7). These data suggest that SeV expressing OCT3/4, SOX2, KLF4, and C-MYC induce the generation of iPSCs and iTS-L cells. iTS cells have self-renewal and multipotency iTS cells express tissue-specific markers iTS-L cells are less prone to teratoma formation than iPSCs
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.,Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Masayoshi Tsukahara
- Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Facility for iPS Cell Therapy (FiT), Kyoto 606-8397, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
4
|
Mukherjee S, Yadav G, Kumar R. Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative medicine. World J Stem Cells 2021; 13:521-541. [PMID: 34249226 PMCID: PMC8246250 DOI: 10.4252/wjsc.v13.i6.521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells are undifferentiated cells that can self-renew and differentiate into diverse types of mature and functional cells while maintaining their original identity. This profound potential of stem cells has been thoroughly investigated for its significance in regenerative medicine and has laid the foundation for cell-based therapies. Regenerative medicine is rapidly progressing in healthcare with the prospect of repair and restoration of specific organs or tissue injuries or chronic disease conditions where the body’s regenerative process is not sufficient to heal. In this review, the recent advances in stem cell-based therapies in regenerative medicine are discussed, emphasizing mesenchymal stem cell-based therapies as these cells have been extensively studied for clinical use. Recent applications of artificial intelligence algorithms in stem cell-based therapies, their limitation, and future prospects are highlighted.
Collapse
Affiliation(s)
- Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
5
|
Induced Tissue-Specific Stem Cells (iTSCs): Their Generation and Possible Use in Regenerative Medicine. Pharmaceutics 2021; 13:pharmaceutics13060780. [PMID: 34071015 PMCID: PMC8224740 DOI: 10.3390/pharmaceutics13060780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Induced tissue-specific stem cells (iTSCs) are partially reprogrammed cells which have an intermediate state, such as progenitors or stem cells. They originate from the de-differentiation of differentiated somatic cells into pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), or from the differentiation of undifferentiated cells. They show a limited capacity to differentiate and a morphology similar to that of somatic cell stem cells present in tissues, but distinct from that of iPSCs and ESCs. iTSCs can be generally obtained 7 to 10 days after reprogramming of somatic cells with Yamanaka’s factors, and their fibroblast-like morphology remains unaltered. iTSCs can also be obtained directly from iPSCs cultured under conditions allowing cellular differentiation. In this case, to effectively induce iTSCs, additional treatment is required, as exemplified by the conversion of iPSCs into naïve iPSCs. iTSCs can proliferate continuously in vitro, but when transplanted into immunocompromised mice, they fail to generate solid tumors (teratomas), implying loss of tumorigenic potential. The low tendency of iTSCs to elicit tumors is beneficial, especially considering applications for regenerative medicine in humans. Several iTSC types have been identified, including iTS-L, iTS-P, and iTS-D, obtained by reprogramming hepatocytes, pancreatic cells, and deciduous tooth-derived dental pulp cells, respectively. This review provides a brief overview of iPSCs and discusses recent advances in the establishment of iTSCs and their possible applications in regenerative medicine.
Collapse
|
6
|
Gene Expression in Pancreatic Cancer-Like Cells and Induced Pancreatic Stem Cells Generated by Transient Overexpression of Reprogramming Factors. J Clin Med 2021; 10:jcm10030454. [PMID: 33504014 PMCID: PMC7865593 DOI: 10.3390/jcm10030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
We previously reported that transient overexpression of reprogramming factors can be used to generate induced pluripotent stem (iPS) cells, induced tissue-specific stem (iTS) cells, and fibroblast-like (iF) cells from pancreatic tissue. iF cells have tumorigenic ability and behave similarly to pancreatic cancer cells. In this study, we analyzed gene expression in iF cells and iTS-P cells (iTS cells from pancreatic tissue) via microarray analysis and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression levels of the Mybl2 and Lyn genes, which are reported to be oncogenes, were significantly higher in iF cells than in iTS-P cells. The expression level of Nestin, which is expressed in not only pancreatic progenitor cells but also pancreatic ductal adenocarcinomas, was also higher in iF cells than in iTS-P cells. Itgb6 and Fgf13, which are involved in the pathogenesis of diseases such as cancer, exhibited higher expression levels in iF cells than in iTS-P cells. Unexpectedly, the expression levels of genes related to epithelial-mesenchymal transition (EMT), except Bmp4, were lower in iF cells than in iTS-P cells. These data suggest that the Mybl2, Lyn, Nestin, Itgb6, and Fgf13 genes could be important biomarkers to distinguish iTS-P cells from iF cells.
Collapse
|
7
|
Miyagi-Shiohira C, Saitoh I, Watanabe M, Noguchi H. Kyoto probe-1 reveals phenotypic differences between mouse ES cells and iTS-P cells. Sci Rep 2020; 10:18084. [PMID: 33093580 PMCID: PMC7582910 DOI: 10.1038/s41598-020-75016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023] Open
Abstract
Kyoto probe 1 (KP-1) rapidly distinguishes between human ES/iPS (hES/iPS) cells and their differentiated cells. Recently, we generated induced tissue-specific stem cells from pancreas (iTS-P cells) using reprogramming factors and tissue-specific selection. The iTS-P cells have self-renewal potential, and subcutaneously transplanting them into immunodeficient mice did not generate teratomas. In this study, we applied KP-1 to analyze mouse ES (mES) cells and mouse iTS-P (miTS-P) cells. KP-1 completely stained mES cells in colonies, but only miTS-P cells at the edge of a colony. This difference was caused by cell type-specific expression of different ABC transporters. These finding suggest that KP-1 will be useful for distinguishing between iPS and iTS-P cells.
Collapse
Affiliation(s)
- Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
8
|
Kiyokawa Y, Sato M, Noguchi H, Inada E, Iwase Y, Kubota N, Sawami T, Terunuma M, Maeda T, Hayasaki H, Saitoh I. Drug-Induced Naïve iPS Cells Exhibit Better Performance than Primed iPS Cells with Respect to the Ability to Differentiate into Pancreatic β-Cell Lineage. J Clin Med 2020; 9:jcm9092838. [PMID: 32887316 PMCID: PMC7564489 DOI: 10.3390/jcm9092838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Pluripotent stem cells are classified as naïve and primed cells, based on their in vitro growth characteristics and potential to differentiate into various types of cells. Human-induced pluripotent stem cells (iPSCs, also known as epiblast stem cells [EpiSCs]) have limited capacity to differentiate and are slightly more differentiated than naïve stem cells (NSCs). Although there are several in vitro protocols that allow iPSCs to differentiate into pancreatic lineage, data concerning generation of β-cells from these iPSCs are limited. Based on the pluripotentiality of NSCs, it was hypothesized that NSCs can differentiate into pancreatic β-cells when placed under an appropriate differentiation induction condition. We examined whether NSCs can be efficiently induced to form potentially pancreatic β cells after being subjected to an in vitro protocol. Several colonies resembling in vitro-produced β-cell foci, with β-cell-specific marker expression, were observed when NSC-derived embryoid bodies (EBs) were induced to differentiate into β-cell lineage. Conversely, EpiSC-derived EBs failed to form such foci in vitro. Intrapancreatic grafting of the in vitro-formed β-cell foci into nude mice (BALB/c-nu/nu) generated a cell mass containing insulin-producing cells (IPCs), without noticeable tumorigenesis. These NSCs can be used as a promising resource for curing type 1 diabetes.
Collapse
Affiliation(s)
- Yuki Kiyokawa
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; (E.I.); (N.K.)
| | - Yoko Iwase
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
| | - Naoko Kubota
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan; (E.I.); (N.K.)
| | - Tadashi Sawami
- Yokohama City Center for Oral Health of Persons with Disabilities, Kanagawa 231-0012, Japan;
| | - Miho Terunuma
- Department of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
| | - Issei Saitoh
- Division of Pediatric Dentistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (Y.K.); (Y.I.); (H.H.)
- Correspondence: ; Tel.: +81-25-227-2911
| |
Collapse
|
9
|
Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther 2020; 14:136-153. [PMID: 32110683 PMCID: PMC7033303 DOI: 10.1016/j.reth.2020.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
There is enormous global anticipation for stem cell-based therapies that are safe and effective. Numerous pre-clinical studies present encouraging results on the therapeutic potential of different cell types including tissue derived stem cells. Emerging evidences in different fields of research suggest several cell types are safe, whereas their therapeutic application and effectiveness remain challenged. Multiple factors that influence treatment outcomes are proposed including immunocompatibility and potency, owing to variations in tissue origin, ex-vivo methodologies for preparation and handling of the cells. This communication gives an overview of literature data on the different types of cells that are potentially promising for regenerative therapy. As a case in point, the recent trends in research and development of the mesenchymal stem cells (MSCs) for cell therapy are considered in detail. MSCs can be isolated from a variety of tissues and organs in the human body including bone marrow, adipose, synovium, and perinatal tissues. However, MSC products from the different tissue sources exhibit unique or varied levels of regenerative abilities. The review finally focuses on adipose tissue-derived MSCs (ASCs), with the unique properties such as easier accessibility and abundance, excellent proliferation and differentiation capacities, low immunogenicity, immunomodulatory and many other trophic properties. The suitability and application of the ASCs, and strategies to improve the innate regenerative capacities of stem cells in general are highlighted among others.
Collapse
Affiliation(s)
- Edward H. Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Hiroshi Sunami
- Research Center for Regenerative Medicine, School of Medicine, University of the Ryukyus, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Japan
| |
Collapse
|
10
|
Noguchi H, Miyagi-Shiohira C, Nakashima Y, Kinjo T, Kobayashi N, Saitoh I, Watanabe M, Shapiro AMJ, Kin T. Induction of Expandable Tissue-Specific Progenitor Cells from Human Pancreatic Tissue through Transient Expression of Defined Factors. Mol Ther Methods Clin Dev 2019; 13:243-252. [PMID: 30828587 PMCID: PMC6383192 DOI: 10.1016/j.omtm.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
We recently demonstrated the generation of mouse induced tissue-specific stem (iTS) cells through transient overexpression of reprogramming factors combined with tissue-specific selection. Here we induced expandable tissue-specific progenitor (iTP) cells from human pancreatic tissue through transient expression of genes encoding the reprogramming factors OCT4 (octamer-binding transcription factor 4), p53 small hairpin RNA (shRNA), SOX2 (sex-determining region Y-box 2), KLF4 (Kruppel-like factor 4), L-MYC, and LIN28. Transfection of episomal plasmid vectors into human pancreatic tissue efficiently generated iTP cells expressing genetic markers of endoderm and pancreatic progenitors. The iTP cells differentiated into insulin-producing cells more efficiently than human induced pluripotent stem cells (iPSCs). iTP cells continued to proliferate faster than pancreatic tissue cells until days 100-120 (passages 15-20). iTP cells subcutaneously inoculated into immunodeficient mice did not form teratomas. Genomic bisulfite nucleotide sequence analysis demonstrated that the OCT4 and NANOG promoters remained partially methylated in iTP cells. We compared the global gene expression profiles of iPSCs, iTP cells, and pancreatic cells (islets >80%). Microarray analyses revealed that the gene expression profiles of iTP cells were similar, but not identical, to those of iPSCs but different from those of pancreatic cells. The generation of human iTP cells may have important implications for the clinical application of stem/progenitor cells.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
- Corresponding author: Hirofumi Noguchi, MD, PhD, Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takao Kinjo
- Department of Basic Laboratory Sciences, School of Health Sciences in Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - A. M. James Shapiro
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Soda M, Saitoh I, Murakami T, Inada E, Iwase Y, Noguchi H, Shibasaki S, Kurosawa M, Sawami T, Terunuma M, Kubota N, Terao Y, Ohshima H, Hayasaki H, Sato M. Repeated human deciduous tooth-derived dental pulp cell reprogramming factor transfection yields multipotent intermediate cells with enhanced iPS cell formation capability. Sci Rep 2019; 9:1490. [PMID: 30728386 PMCID: PMC6365514 DOI: 10.1038/s41598-018-37291-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/30/2018] [Indexed: 01/26/2023] Open
Abstract
Human tissue-specific stem cells (hTSCs), found throughout the body, can differentiate into several lineages under appropriate conditions in vitro and in vivo. By transfecting terminally differentiated cells with reprogramming factors, we previously produced induced TSCs from the pancreas and hepatocytes that exhibit additional properties than iPSCs, as exemplified by very low tumour formation after xenogenic transplantation. We hypothesised that hTSCs, being partially reprogrammed in a state just prior to iPSC transition, could be isolated from any terminally differentiated cell type through transient reprogramming factor overexpression. Cytochemical staining of human deciduous tooth-derived dental pulp cells (HDDPCs) and human skin-derived fibroblasts following transfection with Yamanaka’s factors demonstrated increased ALP activity, a stem cell marker, three weeks after transfection albeit in a small percentage of clones. Repeated transfections (≤3) led to more efficient iPSC generation, with HDDPCs exhibiting greater multipotentiality at two weeks post-transfection than the parental intact HDDPCs. These results indicated the utility of iPSC technology to isolate TSCs from HDDPCs and fibroblasts. Generally, a step-wise loss of pluripotential phenotypes in ESCs/iPSCs occurs during their differentiation process. Our present findings suggest that the reverse phenomenon can also occur upon repeated introduction of reprogramming factors into differentiated cells such as HDDPCs and fibroblasts.
Collapse
Affiliation(s)
- Miki Soda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan.
| | - Tomoya Murakami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Mie Kurosawa
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tadashi Sawami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Miho Terunuma
- Department of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Biology of the Hard Tissue, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Human Pluripotent Stem Cells: Applications and Challenges for Regenerative Medicine and Disease Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:189-224. [PMID: 31740987 DOI: 10.1007/10_2019_117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, human pluripotent stem (hPS) cells have started to emerge as a potential tool with application in fields such as regenerative medicine, disease modeling, and drug screening. In particular, the ability to differentiate human-induced pluripotent stem (hiPS) cells into different cell types and to mimic structures and functions of a specific target organ, resourcing to organoid technology, has introduced novel model systems for disease recapitulation while offering a powerful tool to provide a faster and reproducible approach in the process of drug discovery. All these technologies are expected to improve the overall quality of life of the humankind. Here, we highlight the main applications of hiPS cells and the main challenges associated with the translation of hPS cell derivatives into clinical settings and other biomedical applications, such as the costs of the process and the ability to mimic the complexity of the in vivo systems. Moreover, we focus on the bioprocessing approaches that can be applied towards the production of high numbers of cells as well as their efficient differentiation into the final product and further purification.
Collapse
|
13
|
Miyagi-Shiohira C, Nakashima Y, Kobayashi N, Kitamura S, Saitoh I, Watanabe M, Noguchi H. Induction of Expandable Adipose-Derived Mesenchymal Stem Cells from Aged Mesenchymal Stem Cells by a Synthetic Self-Replicating RNA. Int J Mol Sci 2018; 19:E3489. [PMID: 30404192 PMCID: PMC6274871 DOI: 10.3390/ijms19113489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) have attracted attention due to their potential for use in the treatment of various diseases. However, the self-renewal capacity of ADSCs is restricted and their function diminishes during passage. We previously generated induced tissue-specific stem cells from mouse pancreatic cells using a single synthetic self-replicating Venezuelan Equine Encephalitis (VEE)-reprogramming factor (RF) RNA replicon (SR-RNA) expressing the reprogramming factors POU class 5 homeobox 1 (OCT4), Krueppel-like factor 4 (KLF4), Sex determining region Y-box 2 (SOX2), and Glis Family Zinc Finger 1 (GLIS1). This vector was used to generate induced pluripotent stem (iPS) cells. Here, we applied this SR-RNA vector to generate human iTS cells from aged mesenchymal stem cells (hiTS-M cells) deficient in self-renewal that were derived from adipose tissue. These hiTS-M cells transfected with the SR-RNA vector survived for 15 passages. The hiTS-M cells expressed cell surface markers similar to those of human adipose-derived mesenchymal stem cells (hADSCs) and differentiated into fat cells and osteoblasts. Global gene expression profiling showed that hiTS-M cells were transcriptionally similar to hADSCs. These data suggest that the generation of iTS cells has important implications for the clinical application of autologous stem cell transplantation.
Collapse
Affiliation(s)
- Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | - Naoya Kobayashi
- Department of Surgery, Okayama Saidaiji Hospital, Okayama 704-8192, Japan.
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan.
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
14
|
Miyagi-Shiohira C, Nakashima Y, Kobayashi N, Saitoh I, Watanabe M, Noguchi H. Characterization of induced tissue-specific stem cells from pancreas by a synthetic self-replicative RNA. Sci Rep 2018; 8:12341. [PMID: 30120295 PMCID: PMC6098023 DOI: 10.1038/s41598-018-30784-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have significant implications for overcoming most of the ethical issues associated with embryonic stem (ES) cells. Furthermore, our recent study demonstrated the generation of induced tissue-specific stem (iTS) cells by transient overexpression of the reprogramming factors using a plasmid combined with tissue-specific selection. In this study, we were able to generate RNA-based iTS cells that utilize a single, synthetic, self-replicating VEE-RF RNA replicon expressing four reprogramming factors (OCT4, KLF4, SOX2, and GLIS1). A single VEE-RF RNA transfection into mouse pancreatic tissue resulted in efficient generation of iTS cells from pancreas (iTS-P cells) with genetic markers of endoderm and pancreatic progenitors and differentiation into insulin-producing cells more efficiently than ES cells. Subcutaneous transplantation of iTS-P cells into immunodeficient mice resulted in no teratoma formation. Bisulfite genomic sequencing demonstrated that the promoters of Oct4 and Nanog remained partially methylated in iTS-P cells. We compared the global gene-expression profiles of ES cells, iTS-P cells, and pancreatic islets. Microarray analyses confirmed that the iTS-P cells were similar but not identical to ES cells compared with islets. These data suggest that iTS-P cells are cells that inherit numerous components of epigenetic memory from pancreas cells and acquire self-renewal potential. The generation of iTS cells may have important implications for the clinical application of stem cells.
Collapse
Affiliation(s)
- Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan.
| |
Collapse
|
15
|
Nakashima Y, Miyagi-Shiohira C, Noguchi H, Omasa T. Atorvastatin Inhibits the HIF1α-PPAR Axis, Which Is Essential for Maintaining the Function of Human Induced Pluripotent Stem Cells. Mol Ther 2018; 26:1715-1734. [PMID: 29929789 PMCID: PMC6036234 DOI: 10.1016/j.ymthe.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
We herein report a novel mechanism of action of statin preparations using a new drug discovery method. Milk fat globule-EGF factor 8 protein (MFG-E8) was identified from the secretory component of mouse embryonic fibroblast (MEF) as a cell adhesion-promoting factor effective for screening active cellular agents of human induced pluripotent stem cells (hiPSCs) in vitro using electrochemical impedance. Our analyses showed that atorvastatin did not cause death in myocardial cells differentiated from hiPSCs but reduced the pluripotent cell survival in vitro when using serum- and albumin-free media, and inhibited the ability to form teratomas in mice. This result could have been already the cytopathic effect of atorvastatin, and complete elimination of hiPSCs was confirmed in the xenotransplantation assay. The administration of atorvastatin to hiPSCs caused the expression of hypoxia inducible factor (HIF)1α mRNA to be unchanged at 6 hr and downregulated at 24 hr. In addition, the inhibition of the survival of hiPSCs was confirmed by HIF1α-peroxisome proliferator-activated receptor (PPAR) axis inhibition. These results suggest that the addition of atorvastatin to hiPSC cultures reduces the survival of pluripotent cells by suppressing the HIF1α-PPAR axis. In summary, the HIF1α-PPAR axis has an important role in maintaining the survival of pluripotent hiPSCs.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8506, Japan; Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan.
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Takeshi Omasa
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8506, Japan; Department of Material and Life Science, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Nakashima Y, Miyagi-Shiohira C, Ebi N, Hamada E, Tamaki Y, Kuwae K, Kobayashi N, Saitoh I, Watanabe M, Kinjo T, Noguchi H. A Comparison of Pancreatic Islet Purification using Iodixanol with University of Wisconsin Solution and with Na-Lactobionate and Histidine Solution. CELL MEDICINE 2018; 10:2155179018775071. [PMID: 32634189 PMCID: PMC6172993 DOI: 10.1177/2155179018775071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Purification of pancreatic islets is an important step in islet isolation for islet
transplantation. In this study, to investigate how a solution composed mainly of
Na-lactobionate and histidine (HL) influences the purification of islets, iodixanol was
added to a purified solution for porcine islet isolation. A solution (IU) made by adding
iodixanol to University of Wisconsin solution and a solution (IHL) made by adding
iodixanol to HL solution were used to evaluate the islet isolation performance. We noted
no significant differences between the two purification methods with regard to the islet
yield, survival rate or purity, score, or stimulation index. These results show that IHL
solution is as useful as IU solution for islet purification.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| | - Nana Ebi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| | - Eri Hamada
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama Prefecture, Japan
| | - Takao Kinjo
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa Prefecture, Japan
| |
Collapse
|
17
|
Tsugata T, Nikoh N, Kin T, Miyagi-Shiohira C, Nakashima Y, Saitoh I, Noguchi Y, Ueki H, Watanabe M, Kobayashi N, Shapiro AMJ, Noguchi H. Role of Egr1 on Pancreatic Endoderm Differentiation. CELL MEDICINE 2018; 10:2155179017733177. [PMID: 32634182 PMCID: PMC6172987 DOI: 10.1177/2155179017733177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 11/17/2022]
Abstract
The low efficiency of in vitro differentiation of human embryonic stem cells (hESCs) or human-induced pluripotent stem cells (iPSCs) into insulin-producing cells is a crucial hurdle for the clinical implementation of human pluripotent stem cells (PSCs). Our previous investigation into the key factors for the differentiation of PSCs into insulin-producing cells suggested that the expression of GATA binding protein 6 (GATA6) and Gremlin 1 (GREM1) and inhibition of early growth response protein 1 (Egr1) may be important factors. In this study, we investigated the role of Egr1 in pancreas development. The transfection of small interfering RNA (siRNA) of Egr1 in the early phase induced the differentiation of iPSCs derived from fibroblasts (FiPSCs) into pancreatic endoderm and insulin-producing cells. In contrast, the downregulation of Egr1 in the late phase suppressed the differentiation of FiPSCs into pancreatic endoderm and insulin-producing cells. In addition, the overexpression of Egr1 suppressed the differentiation of iPSCs derived from pancreatic cells into pancreatic endoderm and insulin-producing cells. These data suggest that the downregulation of Egr1 in the early phase can efficiently induce the differentiation of iPSCs into insulin-producing cells.
Collapse
Affiliation(s)
- Takako Tsugata
- Natural and Environmental Sciences Program, The Open University of Japan, Chiba, Japan
| | - Naruo Nikoh
- Natural and Environmental Sciences Program, The Open University of Japan, Chiba, Japan
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Yasufumi Noguchi
- Department of Socio-environmental Design, Hiroshima International University, Hiroshima, Japan
| | - Hideo Ueki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
18
|
Miyagi-Shiohira C, Nakashima Y, Kobayashi N, Saitoh I, Watanabe M, Noguchi Y, Kinjo T, Noguchi H. The Development of Cancer through the Transient Overexpression of Reprogramming Factors. CELL MEDICINE 2018; 10:2155179017733172. [PMID: 32634181 PMCID: PMC6172998 DOI: 10.1177/2155179017733172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 04/27/2017] [Indexed: 01/04/2023]
Abstract
Although induced pluripotent stem (iPS) cells have significant implications for overcoming most of the ethical issues associated with embryonic stem cells, several issues related to the use of iPS cells in clinical applications remain unresolved, including the issue of teratoma formation. We previously reported that the induction of induced tissue-specific stem (iTS) cells from the pancreas (iTS-P) or liver (iTS-L) by the transient overexpression of reprogramming factors, combined with tissue-specific selection and the generation of iTS cells, could have important implications for the clinical application of stem cells. At the same time, we also generated "induced fibroblast-like (iF) cells" that were capable of self-renewal, which had a similar morphology to fibroblast cells. In this study, we evaluated iF cells. iF cells are unlikely to show adipogenic/osteogenic differentiation. Moreover, iF cells have the ability to form tumors and behave similarly to pancreatic cancer cells. The technology used in the generation of iPS/iTS cells is also associated with the risk of generating cancer-like cells.
Collapse
Affiliation(s)
- Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasufumi Noguchi
- Department of Socio-environmental Design, Hiroshima International University, Hiroshima, Japan
| | - Takao Kinjo
- Department of Basic Laboratory Sciences, Division of Morphological Pathology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
19
|
Nakashima Y, Miyagi-Shiohira C, Kobayashi N, Saitoh I, Watanabe M, Noguchi H. Adhesion characteristics of porcine pancreatic islets and exocrine tissue to coating materials. Islets 2018; 10:e1460294. [PMID: 29757700 PMCID: PMC5989899 DOI: 10.1080/19382014.2018.1460294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the report of the Edmonton protocol in 2000, islet transplantation has been implemented worldwide, and xenotransplantation using porcine islets has also been reported. In addition, many basic experiments using pancreatic islets and exocrine tissue after isolation have been reported. Recently, exocrine cells have been found to be essential for inducing the differentiation of pancreatic islets. Therefore, the importance of the culture conditions for pancreatic tissue when conducting experiments using pancreatic tissue is also increasing. In this study, we focused on the coat material and examined the adhesive properties of porcine pancreatic islets and exocrine tissue after isolation. Porcine islet isolation was performed, and isolated islets (purity ≥95%) and exocrine tissue (purity ≥99%) were used to achieve adhesion to several extracellular matrixes, fibronectin, collagen type I, collagen type IV, laminin I, fibrinogen, and bovine serum albumin (BSA). DMEM with 0.5% FBS was used as the assay medium. For exocrine tissue, the adhesion was promoted in fibronectin, collagen type I, laminin I, and fibrinogen. The adhesive ability to fibronectin was more than twice that to BSA, while the adhesive ability to collagen type I, laminin I, and fibrinogen was less than twice that to BSA. For islets, the adhesive ability to fibronectin was weaker than that of exocrine tissue. Furthermore, the adhesion effect in fibronectin was obtained within 30 minutes and in medium containing little serum for both islets and exocrine tissues. These data suggest that fibronectin may be useful for the adhesion of pancreatic tissue.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Naoya Kobayashi
- Department of Surgery, Okayama Saidaiji Hospital, Okayama, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- CONTACT Hirofumi Noguchi, MD, PhD Department of Regenerative Medicine Graduate School of Medicine, University of the Ryukyus 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
20
|
Noguchi H, Miyagi-Shiohira C, Nakashima Y. Induced Tissue-Specific Stem Cells and Epigenetic Memory in Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:E930. [PMID: 29561778 PMCID: PMC5979574 DOI: 10.3390/ijms19040930] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells have significant implications for overcoming most of the ethical issues associated with embryonic stem (ES) cells. The pattern of expressed genes, DNA methylation, and covalent histone modifications in iPS cells are very similar to those in ES cells. However, it has recently been shown that, following the reprogramming of mouse/human iPS cells, epigenetic memory is inherited from the parental cells. These findings suggest that the phenotype of iPS cells may be influenced by their cells of origin and that their skewed differentiation potential may prove useful in the generation of differentiated cell types that are currently difficult to produce from ES/iPS cells for the treatment of human diseases. Our recent study demonstrated the generation of induced tissue-specific stem (iTS) cells by transient overexpression of the reprogramming factors combined with tissue-specific selection. iTS cells are cells that inherit numerous components of epigenetic memory from donor tissue and acquire self-renewal potential. This review describes the "epigenetic memory" phenomenon in iPS and iTS cells and the possible clinical applications of these stem cells.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
21
|
Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells. Cell Death Dis 2016; 7:e2567. [PMID: 28032868 PMCID: PMC5260988 DOI: 10.1038/cddis.2016.419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
Abstract
The tumour suppressor p53 plays an important role in somatic cell reprogramming. While wild-type p53 reduces reprogramming efficiency, mutant p53 exerts a gain of function activity that leads to increased reprogramming efficiency. Furthermore, induced pluripotent stem cells expressing mutant p53 lose their pluripotency in vivo and form malignant tumours when injected in mice. It is therefore of great interest to identify targets of p53 (wild type and mutant) that are responsible for this phenotype during reprogramming, as these could be exploited for therapeutic use, that is, formation of induced pluripotent stem cells with high reprogramming efficiency, but no oncogenic potential. Here we studied the transcriptional changes of microRNA in a series of mouse embryonic fibroblasts that have undergone transition to induced pluripotent stem cells with wild type, knock out or mutant p53 status in order to identify microRNAs whose expression during reprogramming is dependent on p53. We identified a number of microRNAs, with known functions in differentiation and carcinogenesis, the expression of which was dependent on the p53 status of the cells. Furthermore, we detected several uncharacterised microRNAs that were regulated differentially in the different p53 backgrounds, suggesting a novel role of these microRNAs in reprogramming and pluripotency.
Collapse
|
22
|
Saitoh I, Sato M, Soda M, Inada E, Iwase Y, Murakami T, Ohshima H, Hayasaki H, Noguchi H. Tissue-Specific Stem Cells Obtained by Reprogramming of Non-Obese Diabetic (NOD) Mouse-Derived Pancreatic Cells Confer Insulin Production in Response to Glucose. PLoS One 2016; 11:e0163580. [PMID: 27662374 PMCID: PMC5035045 DOI: 10.1371/journal.pone.0163580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/12/2016] [Indexed: 12/31/2022] Open
Abstract
Type 1 diabetes occurs due to the autoimmune destruction of pancreatic β-cells in islets. Transplantation of islets is a promising option for the treatment of patients with type 1 diabetes that experience hypoglycemic unawareness despite maximal care, but the present shortage of donor islets hampers such transplantation. Transplantation of insulin-producing cells derived from the patients themselves would be one of the most promising approaches to cure type 1 diabetes. Previously, we demonstrated that insulin-producing cells could be produced by transfecting murine pancreatic cells with Yamanaka’s reprogramming factors. Non-obese diabetic (NOD) mice are naturally occurring mutant mice defective in insulin production due to autoimmune ablation of pancreatic β-cells. In this study, we showed that glucose-sensitive insulin-producing cells are successfully generated by transfecting primary pancreatic cells from NOD mice (aged 6 months old) with a plasmid harboring the cDNAs for Oct-3/4, Sox2, Klf4, and c-Myc. Transfection was repeated 4 times in a 2 day-interval. Sixty-five days after final transfection, cobblestone-like colonies appeared. They proliferated in vitro and expressed pluripotency-related genes as well as Pdx1, a transcription factor specific to tissue-specific stem cells for the β-cell lineage. Transplantation of these cells into nude mice failed to produce teratoma unlike induced pluripotent stem cells (iPSCs). Induction of these cells to the pancreatic β-cell lineage demonstrated their capability to produce insulin in response to glucose. These findings suggest that functional pancreatic β-cells can be produced from patients with type 1 diabetes. We call these resultant cells as “induced tissue-specific stem cells from the pancreas” (iTS-P) that could be valuable sources of safe and effective materials for cell-based therapy in type 1 diabetes.
Collapse
Affiliation(s)
- Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, 890–0065, Japan
| | - Miki Soda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890–8544, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Tomoya Murakami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951–8514, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyu, Okinawa, 903–0215, Japan
- * E-mail:
| |
Collapse
|
23
|
Nakajima-Koyama M, Lee J, Ohta S, Yamamoto T, Nishida E. Induction of Pluripotency in Astrocytes through a Neural Stem Cell-like State. J Biol Chem 2015; 290:31173-88. [PMID: 26553868 DOI: 10.1074/jbc.m115.683466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/20/2023] Open
Abstract
It remains controversial whether the routes from somatic cells to induced pluripotent stem cells (iPSCs) are related to the reverse order of normal developmental processes. Specifically, it remains unaddressed whether or not the differentiated cells become iPSCs through their original tissue stem cell-like state. Previous studies analyzing the reprogramming process mostly used fibroblasts; however, the stem cell characteristics of fibroblasts made it difficult to address this. Here, we generated iPSCs from mouse astrocytes, a type of glial cells, by three (OCT3/4, KLF4, and SOX2), two (OCT3/4 and KLF4), or four (OCT3/4, KLF4, and SOX2 plus c-MYC) factors. Sox1, a neural stem cell (NSC)-specific transcription factor, is transiently up-regulated during reprogramming, and Sox1-positive cells become iPSCs. The up-regulation of Sox1 is essential for OCT3/4- and KLF4-induced reprogramming. Genome-wide analysis revealed that the gene expression profile of Sox1-expressing intermediate-state cells resembles that of NSCs. Furthermore, the intermediate-state cells are able to generate neurospheres, which can differentiate into both neurons and glial cells. Remarkably, during fibroblast reprogramming, neither Sox1 up-regulation nor an increase in neurogenic potential occurs. Our results thus demonstrate that astrocytes are reprogrammed through an NSC-like state.
Collapse
Affiliation(s)
- May Nakajima-Koyama
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Joonseong Lee
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - Sho Ohta
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, the Department of Reprogramming Science, Center for iPS Cell Research and Application, and
| | - Takuya Yamamoto
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan the Department of Reprogramming Science, Center for iPS Cell Research and Application, and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8507, and
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|