1
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
2
|
He J, Li F, Jing Z, Ren X, Jia D, Zeng Y, Yu Y. GNPNAT1 Serves as a Prognostic Biomarker Correlated with Immune Infiltration and Promotes Cancer Cell Metastasis through Stabilization of Snai2 in Lung Adenocarcinoma. Biomedicines 2024; 12:1477. [PMID: 39062049 PMCID: PMC11274686 DOI: 10.3390/biomedicines12071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Lung cancer is a common malignant tumor with high morbidity and mortality rate. Glucosamine 6-phosphate N-acetyltransferase (GNPNAT1), which serves as a critical enzyme in hexosamine biosynthetic pathway (HBP), has been identified as a metastasis-associated gene and is upregulated in lung adenocarcinoma (LUAD). However, the exact role and related mechanism of GNPNAT1 in LUAD metastasis remain unknown. METHODS We analyzed the expression of GNPNAT1 in the public databases and confirmed the results by immunohistochemistry (IHC). The biological functions of GNPNAT1 in LUAD were investigated based on The Cancer Genome Atlas (TCGA). Correlations between GNPNAT1 and cancer immune characteristics were analyzed via the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) and Cell-type Identification by Estimating Relative Subsets of RNA Transcript (CIBERSORT) R package. The underlying mechanisms of altered GNPNAT1 expression on LUAD cell tumorigenesis, proliferation, migration, invasion, and metastasis were explored in vitro and in vivo. RESULTS We demonstrated that GNPNAT1 expression was significantly increased in LUAD and negatively associated with the overall survival (OS) of patients. hsa-miR-1-3p and hsa-miR-26a-5p were identified as upstream miRNA targets of GNPNAT1. GNPNAT1 was associated with the infiltration levels of CD8 T cells, memory-activated CD4 T cells, NK cells resting, macrophages M0, macrophages M1, neutrophils, gamma delta T cells, and eosinophils, while it was negatively correlated with memory-resting CD4 T cells, regulatory T cells (Tregs), resting NK cells, monocytes, resting dendritic cells, and resting mast cells. GNPNAT1 knockdown significantly inhibited proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) process, and metastasis of LUAD cells, while overexpression of GNPNAT1 revealed the opposite effects. Rescue assay showed that Snai2 knockdown reversed GNPNAT1-induced LUAD cells migration, invasion, and EMT. Mechanistically, GNPNAT1 promoted cancer cell metastasis via repressing ubiquitination degradation of Snai2 in LUAD. CONCLUSIONS Taken together, these data indicate that GNPNAT1 serves as a prognostic biomarker for LUAD patient. Additionally, GNPNAT1 is critical for promoting tumorigenesis and metastasis of LUAD cells and may be a potential therapeutic target for preventing LUAD metastasis.
Collapse
Affiliation(s)
- Jinqi He
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Faxiang Li
- Department of Medical Oncology, The Central Hospital of Shaoyang, Shaoyang 422000, China;
| | - Zihan Jing
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Xingmei Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Yuan Zeng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China; (J.H.); (Z.J.); (X.R.); (D.J.); (Y.Z.)
| |
Collapse
|
3
|
Moghbeli M. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell Int 2024; 24:165. [PMID: 38730433 PMCID: PMC11084110 DOI: 10.1186/s12935-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer, as the leading cause of cancer related deaths, is one of the main global health challenges. Despite various progresses in diagnostic and therapeutic methods, there is still a high rate of mortality among lung cancer patients, which can be related to the lack of clinical symptoms to differentiate lung cancer from the other chronic respiratory disorders in the early tumor stages. Most lung cancer patients are identified in advanced and metastatic tumor stages, which is associated with a poor prognosis. Therefore, it is necessary to investigate the molecular mechanisms involved in lung tumor progression and metastasis in order to introduce early diagnostic markers as well as therapeutic targets. Epithelial-mesenchymal transition (EMT) is considered as one of the main cellular mechanisms involved in lung tumor metastasis, during which tumor cells gain the metastatic ability by acquiring mesenchymal characteristics. Since, majority of the oncogenic signaling pathways exert their role in tumor cell invasion by inducing the EMT process, in the present review we discussed the role of PI3K/AKT signaling pathway in regulation of EMT process during lung tumor metastasis. It has been reported that the PI3K/AKT acts as an inducer of EMT process through the activation of EMT-specific transcription factors in lung tumor cells. MicroRNAs also exerted their inhibitory effects during EMT process by inhibition of PI3K/AKT pathway. This review can be an effective step towards introducing the PI3K/AKT pathway as a suitable therapeutic target to inhibit the EMT process and tumor metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Chen Y, Xue H, Jin J. Applications of protein ubiquitylation and deubiquitylation in drug discovery. J Biol Chem 2024; 300:107264. [PMID: 38582446 PMCID: PMC11087986 DOI: 10.1016/j.jbc.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
The ubiquitin (Ub)-proteasome system (UPS) is the major machinery mediating specific protein turnover in eukaryotic cells. By ubiquitylating unwanted, damaged, or harmful proteins and driving their degradation, UPS is involved in many important cellular processes. Several new UPS-based technologies, including molecular glue degraders and PROTACs (proteolysis-targeting chimeras) to promote protein degradation, and DUBTACs (deubiquitinase-targeting chimeras) to increase protein stability, have been developed. By specifically inducing the interactions between different Ub ligases and targeted proteins that are not otherwise related, molecular glue degraders and PROTACs degrade targeted proteins via the UPS; in contrast, by inducing the proximity of targeted proteins to deubiquitinases, DUBTACs are created to clear degradable poly-Ub chains to stabilize targeted proteins. In this review, we summarize the recent research progress in molecular glue degraders, PROTACs, and DUBTACs and their applications. We discuss immunomodulatory drugs, sulfonamides, cyclin-dependent kinase-targeting molecular glue degraders, and new development of PROTACs. We also introduce the principle of DUBTAC and its applications. Finally, we propose a few future directions of these three technologies related to targeted protein homeostasis.
Collapse
Affiliation(s)
- Yilin Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haoan Xue
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Jianping Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Shin SJ, Ko J, Hwang HS, Huh J, Lee CW, Lee JK, Go H. Tumoural Pellino-1 expression and Pellino-1-expressive cytotoxic T-cells are associated with poor prognosis in diffuse large B-cell lymphoma. Pathology 2024; 56:374-381. [PMID: 38296676 DOI: 10.1016/j.pathol.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 02/02/2024]
Abstract
Pellino-1 plays a role in regulating inflammation and immune responses, and its effects on tumours are complex, with different outcomes reported in various studies. Additionally, the role of Pellino-1 in diffuse large B-cell lymphoma (DLBCL) has not been thoroughly investigated. We aimed to examine the expression of Pellino-1 in tumour cells and tumour-infiltrating lymphocytes (TILs) separately and identify the clinicopathological significance of Pellino-1 expression in DLBCL. We evaluated Pellino-1 expression in 104 patients with DLBCL. The density of specific cell types was quantitatively analysed using digital image analysis after a multiplex immunofluorescence staining with Pellino-1, CD20, CD8, FOXP3, and PD-1. Pellino-1 expression was mostly observed in CD20+ tumour cells and CD8+ TILs. The high CD8+/Pellino-1+ group was significantly associated with the non-GCB subtype and higher numbers of Foxp3+ T-cells. Patients with high CD20+/Pellino-1+ and high CD8+/Pellino-1+ cell densities had significantly shorter event-free survival (EFS) rates. The multivariate Cox-regression analysis showed that CD20+/Pellino-1+ cell density and CD8+/Pellino-1+ cell density were independent poor prognostic factors for EFS. Furthermore, patients with low densities of both CD20+/Pellino-1+ and CD8+/Pellino-1+ cells demonstrated a prognosis superior to that of patients with high Pellino-1+ cell densities, either alone or in combination. Additionally, the multivariate analysis demonstrated that the combination of CD20+/Pellino-1+ and CD8+/Pellino-1+ cell densities was an independent prognostic factor for EFS and overall survival. Pellino-1 expression was observed in both tumour cells and TILs, particularly in cytotoxic T-cells, and was correlated with poor outcomes in DLBCL. Thus, Pellino-1 might have an oncogenic effect on DLBCL and might be a potential target for improving cytotoxic T-cell activity.
Collapse
Affiliation(s)
- Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; Research Institute, Curogen Co, Suwon, Republic of Korea
| | - Jin-Kwan Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; Research Institute, Curogen Co, Suwon, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Lin P, Chen W, Long Z, Yu J, Yang J, Xia Z, Wu Q, Min X, Tang J, Cui Y, Liu F, Wang C, Zheng J, Li W, Rich JN, Li L, Xie Q. RBBP6 maintains glioblastoma stem cells through CPSF3-dependent alternative polyadenylation. Cell Discov 2024; 10:32. [PMID: 38503731 PMCID: PMC10951364 DOI: 10.1038/s41421-024-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Glioblastoma is one of the most lethal malignant cancers, displaying striking intratumor heterogeneity, with glioblastoma stem cells (GSCs) contributing to tumorigenesis and therapeutic resistance. Pharmacologic modulators of ubiquitin ligases and deubiquitinases are under development for cancer and other diseases. Here, we performed parallel in vitro and in vivo CRISPR/Cas9 knockout screens targeting human ubiquitin E3 ligases and deubiquitinases, revealing the E3 ligase RBBP6 as an essential factor for GSC maintenance. Targeting RBBP6 inhibited GSC proliferation and tumor initiation. Mechanistically, RBBP6 mediated K63-linked ubiquitination of Cleavage and Polyadenylation Specific Factor 3 (CPSF3), which stabilized CPSF3 to regulate alternative polyadenylation events. RBBP6 depletion induced shortening of the 3'UTRs of MYC competing-endogenous RNAs to release miR-590-3p from shortened UTRs, thereby decreasing MYC expression. Targeting CPSF3 with a small molecular inhibitor (JTE-607) reduces GSC viability and inhibits in vivo tumor growth. Collectively, RBBP6 maintains high MYC expression in GSCs through regulation of CPSF3-dependent alternative polyadenylation, providing a potential therapeutic paradigm for glioblastoma.
Collapse
Affiliation(s)
- Peng Lin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wenyan Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Zhilin Long
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jichuan Yu
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiayao Yang
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhen Xia
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinyu Min
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jing Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Lei Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Qi Xie
- Westlake Disease Modeling Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Xu G, Zhou Q, Qi J, Li Z, Yin L, Li Z, Lu C, Zhao B, Shen Y. Resveratrol-derived inhibitors of the E3 ubiquitin ligase PELI1 inhibit the metastasis of triple-negative breast cancer. Eur J Med Chem 2024; 265:116060. [PMID: 38150964 DOI: 10.1016/j.ejmech.2023.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Triple-negative breast cancer (TNBC), as the most challenging subtype of breast cancer, exerts highly invasive ability and metastatic nature to the lymph nodes, which is correlated with poor survival rates among patients. Pellino-1 (PELI1) is an E3 ubiquitin ligase involved in tumor invasion and metastasis, and has the potential to be developed as a novel therapeutic target for TNBC. In this study, we identified a potent inhibitor of PELI1, namely compound 3d, on the basis of natural stilbene framework through medicinal chemistry approaches. This novel PELI1 inhibitor 3d showed potent binding affinity to PELI1 (Kd 8.2 μM) in fluorescence quenching assay, and markedly interrupted the interaction of PELI1 and SNAIL/SLUG confirmed by co-immunoprecipitation. Moreover, 3d exhibited potent antitumor activity in inhibiting tumor cell migration in scratch wound healing assay without affecting cell proliferation in vitro, and down-regulated the downstream EMT-effectors of PELI1 as assessed by western blotting. In the experimental lung metastasis model, 3d showed anti-TNBC metastasis efficacy without observable toxicity in vivo.
Collapse
Affiliation(s)
- Guangsen Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China; Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, 264209, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jie Qi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zhongyue Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Lijun Yin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zhuoran Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Ha GH, Yeon JY, Kim KH, Lee DM, Chae HY, Nam H, Lee K, Kim DO, Kim CK, Joo KM. Thrombin Priming Promotes the Neuroprotective Effects of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Via the HGF/AKT/STAT3 Signaling Pathway. Stem Cells Dev 2024; 33:89-103. [PMID: 38164089 DOI: 10.1089/scd.2023.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Mesenchymal stem cells (MSCs) directly differentiate into neurons and endothelial cells after transplantation, and their secretome has considerable potential for treating brain injuries. Previous studies have suggested that the effects of MSCs priming with exposure to hypoxia, cytokines, growth factors, or chemical agents could optimize the paracrine potency and therapeutic potential of MSCs. Studies have suggested that thrombin-primed Wharton's Jelly-derived mesenchymal stem cells (Th.WJ-MSCs) significantly enhance the neuroprotective beneficial effects of naive MSCs in brain injury such as hypoxic-ischemic brain injury (HIE) and intraventricular hemorrhage (IVH). This study aimed to characterize WJ-MSCs in terms of stem cell markers, differentiation, cell proliferation, and paracrine factors by comparing naive and Th.WJ-MSCs. We demonstrated that compared with naive MSCs, Th.MSCs significantly enhanced the neuroprotective effects in vitro. Moreover, we identified differentially expressed proteins in the conditioned media of naive and Th.WJ-MSCs by liquid chromatography-tandem mass spectrometry analysis. Secretome analysis of the conditioned medium of WJ-MSCs revealed that such neuroprotective effects were mediated by paracrine effects with secretomes of Th.WJ-MSCs, and hepatocyte growth factor was identified as a key paracrine mediator. These results can be applied further in the preclinical and clinical development of effective and safe cell therapeutics for brain injuries such as HIE and IVH.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Medical Innovation Technology, Inc. (MEDINNO, Inc.), Seoul, Republic of Korea
| | - Je Young Yeon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Hoon Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Medical Innovation Technology, Inc. (MEDINNO, Inc.), Seoul, Republic of Korea
| | - Du Man Lee
- Medical Innovation Technology, Inc. (MEDINNO, Inc.), Seoul, Republic of Korea
| | - Hye Yun Chae
- Medical Innovation Technology, Inc. (MEDINNO, Inc.), Seoul, Republic of Korea
| | - Hyun Nam
- Medical Innovation Technology, Inc. (MEDINNO, Inc.), Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyunghoon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong Oh Kim
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Chung Kwon Kim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Medical Innovation Technology, Inc. (MEDINNO, Inc.), Seoul, Republic of Korea
| | - Kyeung Min Joo
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Medical Innovation Technology, Inc. (MEDINNO, Inc.), Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Ma C, Tian Z, Wang D, Gao W, Qian L, Zang Y, Xu X, Jia J, Liu Z. Ubiquitin-specific Protease 35 Promotes Gastric Cancer Metastasis by Increasing the Stability of Snail1. Int J Biol Sci 2024; 20:953-967. [PMID: 38250150 PMCID: PMC10797686 DOI: 10.7150/ijbs.87176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Deubiquitinase (DUB) dysregulation is closely associated with multiple diseases, including tumors. In this study, we used data from The Cancer Genome Atlas and Gene Expression Omnibus databases to analyze the expression of 51 ubiquitin-specific proteases (USPs) in gastric cancer (GC) tissues and adjacent non-neoplastic tissues. The Kaplan-Meier Plotter database was used to analyze the association of the differentially expressed USPs with the overall survival of patients with GC. The results showed that five USPs (USP5, USP10, USP13, USP21, and USP35) were highly expressed in GC tissues and were associated with poor prognosis in patients with GC. Because the epithelial-mesenchymal transition enables epithelial cells to acquire mesenchymal features and contributes to poor prognosis, we investigated whether these USPs had regulatory effects on the key epithelial-mesenchymal transition transcription factor Snail1. Our results showed that USP35 exhibited the most significant regulation on Snail1. Overexpression of USP35 increased and its knockdown decreased Snail1 protein levels. Mechanistically, USP35 interacted with Snail1 and removed its polyubiquitinated chain, thereby increasing its stability. Furthermore, USP35 promoted the invasion and migration of GC cells depending on its DUB activity. USP35 knockdown exhibited the opposite effect. Snail1 depletion partially abrogated the biological effects of USP35. Experiments using nude mouse tail vein injections indicated that wild-type USP35, but not the catalytically inactive USP35-C450A mutant, dramatically enhanced cell colonization and tumorigenesis in the lungs of mice. In addition, USP35 positively correlated with Snail1 expression in clinical GC tissues. Helicobacter pylori infection increased USP35 and Snail1 expression levels. Altogether, we found that USP35 can deubiquitinate Snail1 and increase its expression, thereby contributing to the malignant progression of GC. Therefore, USP35 may serve as a viable target for GC treatment.
Collapse
Affiliation(s)
- Cunying Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Zhuangfei Tian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Dandan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Wenrong Gao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Lilin Qian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Yichen Zang
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
10
|
Pradeep SR, Thirunavukkarasu M, Accorsi D, Swaminathan S, Lim ST, Cernuda B, Kemerley A, Hubbard J, Campbell J, Wilson RL, Coca-Soliz V, Tapias L, Selvaraju V, Jellison ER, Yee SP, Palesty JA, Maulik N. Novel approaches to determine the functional role of cardiomyocyte specific E3 ligase, Pellino-1 following myocardial infarction. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166899. [PMID: 37778482 DOI: 10.1016/j.bbadis.2023.166899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Ubiquitination plays a vital role in controlling vascular inflammation, cellular protein quality control, and minimizing misfolded protein toxicity. Pellino-1 (Peli1), a type of E3 ubiquitin ligase, has emerged as a critical regulator of the innate immune response; however, its role in the repair and regeneration of ischemic myocardium remains to be elucidated. METHODS Mice (8-12 weeks old, male and females) were divided into (i) Wild type (ii) cardiomyocyte-specific Peli1 overexpressed (AMPEL1Tg/+), (iii) cardiomyocyte-specific Peli1 knockout (CP1KO) and were subjected to sham and left anterior descending artery ligation. The tissues were collected at various time points after surgery for Western blot, and immunohistochemical analyses. Echocardiography is performed 30 days after myocardial infarction. Cardiomyocytes isolated from wild-type, Peli1 overexpressed and knockout mice were used to study the interaction between cardiomyocytes and endothelial cells in vitro under oxidative stress and cells were used for Western blot, flow cytometric analysis, and scratch assay. RESULTS We observed faster wound closure and increased expression of angiogenic factors with MCECs treated with conditioned media obtained from the AMPEL1Tg/+ cardiomyocytes compared to CPIKO and WT cardiomyocytes. Again, AMPEL1Tg/+MI mice showed preserved systolic function and reduced fibrosis compared to the CPIKOMI and WTMI groups. Capillary and arteriolar density were found to be increased in AMPEL1Tg/+MI compared to CP1KOMI. Increased survival and angiogenic factors such as p-Akt, p-MK2, p-IkBα, VEGF, cIAP2, and Bcl2 were observed in AMPEL1Tg/+ compared to CP1KO and WT mice subjected to MI. CONCLUSION The present study uncovers the crucial role of cardiac Peli1 as a regulator of the repair and regeneration of ischemic myocardium by using multiple genetically engineered mouse models.
Collapse
Affiliation(s)
- Seetur R Pradeep
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Diego Accorsi
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Santosh Swaminathan
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Sue Ting Lim
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Bryan Cernuda
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Andrew Kemerley
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Jennifer Hubbard
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Jacob Campbell
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Rickesha L Wilson
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Vladimir Coca-Soliz
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Leonidas Tapias
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA; Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Vaithinathan Selvaraju
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA
| | - Evan R Jellison
- Department of Immunology, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, University of Connecticut Health, School of Medicine, Farmington, CT, USA
| | - J Alexander Palesty
- Stanley J. Dudrick, Department of Surgery, Saint Mary's Hospital, Waterbury 06706, CT, USA
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, School of Medicine, Farmington 06030, CT, USA.
| |
Collapse
|
11
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zhou W, Hu Y, Wang B, Yuan L, Ma J, Meng X. Aberrant expression of PELI1 caused by Jagged1 accelerates the malignant phenotype of pancreatic cancer. Cell Signal 2023; 111:110877. [PMID: 37657587 DOI: 10.1016/j.cellsig.2023.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Pancreatic cancer is one of the most aggressive cancers. PELI1 has been reported to promote cell survival and proliferation in multiple cancers. As of now, the role of PELI1 in pancreatic cancer is largely unknown. Here, we found that the PELI1 mRNA was higher expressed in pancreatic tumor tissues than in adjacent normal tissues, and the high PELI1 level in pancreatic cancer patients had a short survival time compared with the low level. Moreover, the results showed that PELI1 promoted cell proliferation, migration, and invasion, and inhibited apoptosis in vitro. Xenograft tumor experiments were used to determine the biological function of PELI1, and the results showed that PELI1 promoted tumor growth in vivo. Additionally, we found that Jagged1 activated PELI1 transcription in pancreatic cancer cells. To sum up, our results show that PELI1 affects the malignant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yuying Hu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lina Yuan
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
13
|
Kim Y, Kim H, Ha Thi HT, Kim J, Lee YJ, Kim S, Hong S. Pellino 3 promotes the colitis-associated colorectal cancer through suppression of IRF4-mediated negative regulation of TLR4 signalling. Mol Oncol 2023; 17:2380-2395. [PMID: 37341064 PMCID: PMC10620127 DOI: 10.1002/1878-0261.13475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
The incidence of colitis-associated colorectal cancer (CAC) has increased due to a high-nutrient diet, increased environmental stimuli and inherited gene mutations. To adequately treat CAC, drugs should be developed by identifying novel therapeutic targets. E3 ubiquitin-protein ligase pellino homolog 3 (pellino 3; Peli3) is a RING-type E3 ubiquitin ligase involved in inflammatory signalling; however, its role in the development and progression of CAC has not been elucidated. In this study, we studied Peli3-deficient mice in an azoxymethane/dextran sulphate sodium-induced CAC model. We observed that Peli3 promotes colorectal carcinogenesis with increased tumour burden and oncogenic signalling pathways. Ablation of Peli3 reduced inflammatory signalling activation at the early stage of carcinogenesis. Mechanistic studies indicate that Peli3 enhances toll-like receptor 4 (TLR4)-mediated inflammation through ubiquitination-dependent degradation of interferon regulatory factor 4, a negative regulator of TLR4 in macrophages. Our study suggests an important molecular link between Peli3 and colonic inflammation-mediated carcinogenesis. Furthermore, Peli3 can be a therapeutic target in the prevention and treatment of CAC.
Collapse
Affiliation(s)
- Young‐Mi Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Hye‐Youn Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Huyen Trang Ha Thi
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Jooyoung Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Young Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| | - Seong‐Jin Kim
- GILO InstituteGILO FoundationSeoulKorea
- Medpacto Inc.SeoulKorea
| | - Suntaek Hong
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes InstituteGachon University College of MedicineIncheonKorea
| |
Collapse
|
14
|
Cho H, Park NJY, Ko J, Lee CW, Lee JK, Maeng YI, Go H. Pellino-1 expression is associated with epidermal proliferation and enhanced Th17 cell infiltration in psoriatic lesions. Exp Dermatol 2023; 32:1476-1484. [PMID: 37291939 DOI: 10.1111/exd.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Pellino-1 plays a crucial role in cellular proliferation and regulates inflammatory processes. This study investigated Pellino-1 expression patterns and their relationship with CD4+ T-cell subsets in psoriasis patients. Group 1 comprised primarily biopsied psoriasis lesions from 378 patients, multiplex-immunostained for Pellino-1, CD4 and representative T helper (Th) cells (T-bet [Th1], GATA3 [Th2], and RORγt [Th17] and regulatory T cell [FoxP3] markers). Ki-67 labeling was evaluated in the epidermis. Group 2 comprised 43 Pellino-1-positive cases immunostained for Pellino-1 in both lesion and non-lesion skin biopsy samples. Five normal skin biopsies served as controls. Among 378 psoriasis cases, 293 (77.5%) were positive for Pellino-1 in the epidermis. Pellino-1-positivity was higher in psoriasis lesions than in non-lesions and normal skin (52.55% vs. 40.43% vs. 3.48%, p < 0.001; H-score, 72.08 vs. 47.55 vs. 4.40, p < 0.001, respectively). Pellino-1-positive cases also had a significantly higher Ki-67 labeling index (p < 0.001). Epidermal Pellino1-positivity was significantly associated with higher RORγt+ (p = 0.001) and FoxP3+ (p < 0.001) CD4+ T cell ratios but not T-bet+ and GATA3+ CD4+ T cell ratios. Among the CD4+ Pellino-1+ T-cell subsets, the CD4+ Pellino-1+ RORγt+ ratio was significantly associated with epidermal Pellinio-1 expression (p < 0.001). Pellino-1 expression is thus increased in psoriasis lesions and associated with increased epidermal proliferation and CD4+ T-cell subset infiltration, especially Th17 cells. This suggests that Pellino-1 could be a therapeutic target that simultaneously regulates psoriasis epidermal proliferation and immune interactions.
Collapse
Affiliation(s)
- Haeyon Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwon Ko
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Research Institute, Curogen Co., Ltd., Suwon, Republic of Korea
| | - Jin-Kwan Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Research Institute, Curogen Co., Ltd., Suwon, Republic of Korea
| | - Young-In Maeng
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Guo F, Ma J, Li C, Liu S, Wu W, Li C, Wang J, Wang J, Li Z, Zhai J, Sun F, Zhou Y, Guo C, Qian H, Xu B. PRR15 deficiency facilitates malignant progression by mediating PI3K/Akt signaling and predicts clinical prognosis in triple-negative rather than non-triple-negative breast cancer. Cell Death Dis 2023; 14:272. [PMID: 37072408 PMCID: PMC10113191 DOI: 10.1038/s41419-023-05746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast neoplasms with a higher risk of recurrence and metastasis than non-TNBC. Nevertheless, the factors responsible for the differences in the malignant behavior between TNBC and non-TNBC are not fully explored. Proline rich 15 (PRR15) is a protein involved in the progression of several tumor types, but its mechanisms are still controversial. Therefore, this study aimed to investigate the biological role and clinical applications of PRR15 on TNBC. PRR15 gene was differentially expressed between TNBC and non-TNBC patients, previously described as an oncogenic factor in breast cancer. However, our results showed a decreased expression of PRR15 that portended a favorable prognosis in TNBC rather than non-TNBC. PRR15 knockdown facilitated the proliferation, migration, and invasive ability of TNBC cells in vitro and in vivo, which was abolished by PRR15 restoration, without remarkable effects on non-TNBC. High-throughput drug sensitivity revealed that PI3K/Akt signaling was involved in the aggressive properties of PRR15 silencing, which was confirmed by the PI3K/Akt signaling activation in the tumors of PRR15Low patients, and PI3K inhibitor reversed the metastatic capacity of TNBC in mice. The reduced PRR15 expression in TNBC patients was positively correlated with more aggressive clinicopathological characteristics, enhanced metastasis, and poor disease-free survival. Collectively, PRR15 down-regulation promotes malignant progression through the PI3K/Akt signaling in TNBC rather than in non-TNBC, affects the response of TNBC cells to antitumor agents, and is a promising indicator of disease outcomes in TNBC.
Collapse
Affiliation(s)
- Fengzhu Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jialu Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Graduate School, Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuning Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weizheng Wu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Chunxiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijun Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fangzhou Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
PELI1 and EGFR cooperate to promote breast cancer metastasis. Oncogenesis 2023; 12:9. [PMID: 36841821 PMCID: PMC9968314 DOI: 10.1038/s41389-023-00457-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Pellino-1 (PELI1) is an E3 ubiquitin ligase acting as a key regulator for the inflammation and autoimmunity via the ubiquitination of the substrate proteins. There is increasing evidence to support that PELI1 functions as an oncoprotein in tumorigenesis and metastasis. However, the molecular mechanism underlying the high expression and oncogenic roles of PELI1 in cancers remains limited. Herein, we revealed a novel regulation mechanism by which PELI1 and EGFR cooperate to promote breast cancer metastasis. EGFR is positively correlated with PELI1 expression in breast cancers, and its activation led to the phosphorylation of PELI1 at Tyr154 and Thr264, which subsequently activated its E3 ubiquitin ligase. Simultaneously, PELI1 physically interacted with and enhanced the stability of EGFR via the K63-linked polyubiquitination in reverse. The co-inhibition of the PELI1-EGFR showed synergetic effect to repress breast cancer metastasis. Furthermore, we identified a compound S62 as a small molecule disruptor of PELI1/EGFR that effectively repressed breast cancer metastasis. Our study not only uncovered the emerging roles of PELI1/EGFR interaction in the progression of breast cancer, but also provided an effective strategy for the inhibition of metastasis in breast cancer.
Collapse
|
18
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
19
|
Ma JH, Zhang YT, Wang LP, Sun QY, Zhang H, Li JJ, Han NN, Zhu YY, Xie XY, Li X. K63 Ubiquitination of P21 Can Facilitate Pellino-1 in the Context of Chronic Obstructive Pulmonary Disease and Lung Cellular Senescence. Cells 2022; 11:cells11193115. [PMID: 36231077 PMCID: PMC9563803 DOI: 10.3390/cells11193115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic obstructive pulmonary diseases (COPD) is a kind of age-related, airflow-obstruction disease mostly caused by cigarette smoke. However, the relationship between COPD and lung cellular senescence is still not fully understood. Here, we found silencing Pellino-1 could inhibit the protein level of P21. Then, through constructing cell lines expressed ubiquitin-HA, we found that the E3 ubiquitin ligase Pellino-1 could bind to senescence marker p21 and modify p21 by K63-site ubiquitination by co-IP assays. Furthermore, we found that p21-mediated lung cellular senescence could be inhibited by silencing Pellino-1 in a D-galactose senescence mice model. Moreover, by constructing a COPD mouse model with shPellino-1 adenovirus, we found that silencing Pellino-1 could inhibit COPD and inflammation via reduction of SASPs regulated by p21. Taken together, our study findings elucidated that silencing E3 ligase Pellino-1 exhibits therapeutic potential for treatment to attenuate the progression of lung cellular senescence and COPD.
Collapse
Affiliation(s)
- Jia-Hui Ma
- Marine College, Shandong University, Weihai 264200, China
| | - Yi-Ting Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Ping Wang
- College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou 310000, China
| | - Qing-Yu Sun
- Marine College, Shandong University, Weihai 264200, China
| | - Hao Zhang
- Marine College, Shandong University, Weihai 264200, China
| | - Jian-Jiang Li
- Marine College, Shandong University, Weihai 264200, China
| | - Ning-Ning Han
- Marine College, Shandong University, Weihai 264200, China
| | - Yao-Yao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xiao-Yu Xie
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-531-88382612
| |
Collapse
|
20
|
Bai R, Zhang J, He F, Li Y, Dai P, Huang Z, Han L, Wang Z, Gong Y, Xie C. GPR87 promotes tumor cell invasion and mediates the immunogenomic landscape of lung adenocarcinoma. Commun Biol 2022; 5:663. [PMID: 35790819 PMCID: PMC9256611 DOI: 10.1038/s42003-022-03506-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study is to examine the association between G protein-coupled receptor 87 (GPR87) and lung adenocarcinoma (LUAD) metastasis and immune infiltration. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets extract clinical data. According to the TCGA database, increased GPR87 expression predicts poor overall survival, progression-free interval, and disease-specific survival in LUAD patients. The meta-analysis also reveals a significant association between high GPR87 expression and poor overall survival. Moreover, functional experiments demonstrate that GPR87 silencing reduces LUAD cell invasion and migration. Immunoblotting shows that GPR87 knockdown decreased Vimentin and N-cadherin expression and increased E-cadherin expression in LUAD cells. GPR87 expression in LUAD is positively correlated with immune infiltration. In addition, GPR87 expression is associated with immune and chemotherapy resistance in LUAD patients. Our findings indicate that GPR87 promotes tumor progression and is correlated with immune infiltration, suggesting GPR87 as a possible biomarker for prognosis prediction in LUAD. GPR87 is reported as a central player in lung adenocarcinoma and in resistance to immunotherapy, by promoting tumor cell invasion and mediating the immunogenomic landscape.
Collapse
|
21
|
Zhang E, Li X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front Immunol 2022; 13:728794. [PMID: 35197966 PMCID: PMC8860249 DOI: 10.3389/fimmu.2022.728794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure providing ubiquitin ligase activity without abrogating cell and structure-specific function. In this review, we mainly summarized the crucial roles of the Pellino family in pattern recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling, NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling. We also summarized the current information of the Pellino family in tumorigenesis, microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of the Pellino family in immunity.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- *Correspondence: Xia Li,
| |
Collapse
|
22
|
Park J, Lee SY, Jeon Y, Kim KM, Lee JK, Ko J, Park EJ, Yoon JS, Kang BE, Ryu D, Lee H, Shin SJ, Go H, Lee CW. The Pellino1-PKCθ signaling axis is an essential target for improving anti-tumor CD8+ T-lymphocyte function. Cancer Immunol Res 2022; 10:327-342. [DOI: 10.1158/2326-6066.cir-21-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
|
23
|
Zheng T, Zhou Y, Xu X, Qi X, Liu J, Pu Y, Zhang S, Gao X, Luo X, Li M, Wang X, Dong L, Wang Y, Mao C. MiR-30c-5p loss-induced PELI1 accumulation regulates cell proliferation and migration via activating PI3K/AKT pathway in papillary thyroid carcinoma. J Transl Med 2022; 20:20. [PMID: 34991623 PMCID: PMC8740468 DOI: 10.1186/s12967-021-03226-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background The aberrant expression of E3 ubiquitin ligase Pellino-1 (PELI1) contributes to several human cancer development and progression. However, its expression patterns and functional importance in papillary thyroid cancer (PTC) remains unknown. Methods PELI1 expression profiles in PTC tissues were obtained and analyzed through the starBase v3.0 analysis. Real-time PCR, Immunohistochemical assays (IHC) and Western blot were used to investigate the mRNA and protein levels of PELI1 in PTC. The effects of PELI1 on PTC cell progression were evaluated through CCK-8, colony formation, Transwell, and Wound healing assay in vitro, and a PTC xenograft mouse model in vivo. The downstream target signal of PELI1 in PTC was analyzed by using Kyoto encyclopedia of genes and genomes (KEGG), and bioinformatics tools were used to identify potential miRNAs targeting PELI1. Human umbilical cord mesenchymal stem cells were modified by miR-30c-5p and the miR-30c-5p containing extracellular vesicles were collected (miR-30c-5p-EVs) by ultra-high-speed centrifugation method. Then, the effects of miR-30c-5p-EVs on PELI1 expression and PTC progression were evaluated both in vitro and in vivo. Results Both mRNA and protein expression of PELI1 were widely increased in PTC tissues, and overexpression of PELI1 was positively correlated with bigger tumor size and lymph node metastases. PELI1 promoted PTC cell proliferation and migration in vitro. While, PELI1 silencing significantly suppressed PTC growth in vivo accompanied with reduced expression of Ki-67 and matrix metallopeptidase 2 (MMP-2). Mechanistically, PI3K-AKT pathway was identified as the downstream target of PELI1, and mediated the functional influence of PELI1 in PTC cells. Moreover, we found that the expression of miR-30c-5p was inversely correlated with PELI1 in PTC samples and further confirmed that miR-30c-5p was a tumor-suppressive miRNA that directly targeted PELI1 to inhibit PTC cell proliferation and migration. Furthermore, we showed that miR-30c-5p-EVs could effectively downregulate PELI1 expression and suppress the PTC cell growth in vitro and in vivo. Conclusion This study not only supported the first evidence that miR-30c-5p loss-induced PELI1 accumulation facilitated cell proliferation and migration by activating the PI3K-AKT pathway in PTC but also provided novel insights into PTC therapy based on miR-carrying-hUCMSC-EVs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03226-1.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Youxing Zhou
- Department of Surgery, Jiangyuan Hospital Affiliated To Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, People's Republic of China
| | - Xiaowei Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Xin Qi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Yanan Pu
- Department of Emergency Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shan Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Xuerong Gao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Xinkai Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Mei Li
- Department of Pathology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China.,Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China
| | - Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China.
| | - Ying Wang
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, People's Republic of China.
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Jian Y, Kong L, Xu H, Shi Y, Huang X, Zhong W, Huang S, Li Y, Shi D, Xiao Y, Yang M, Li S, Chen X, Ouyang Y, Hu Y, Chen X, Song L, Ye R, Wei W. Protein phosphatase 1 regulatory inhibitor subunit 14C promotes triple-negative breast cancer progression via sustaining inactive glycogen synthase kinase 3 beta. Clin Transl Med 2022; 12:e725. [PMID: 35090098 PMCID: PMC8797469 DOI: 10.1002/ctm2.725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is fast-growing and highly metastatic with the poorest prognosis among the breast cancer subtypes. Inactivation of glycogen synthase kinase 3 beta (GSK3β) plays a vital role in the aggressiveness of TNBC; however, the underlying mechanism for sustained GSK3β inhibition remains largely unknown. Here, we find that protein phosphatase 1 regulatory inhibitor subunit 14C (PPP1R14C) is upregulated in TNBC and relevant to poor prognosis in patients. Overexpression of PPP1R14C facilitates cell proliferation and the aggressive phenotype of TNBC cells, whereas the depletion of PPP1R14C elicits opposite effects. Moreover, PPP1R14C is phosphorylated and activated by protein kinase C iota (PRKCI) at Thr73. p-PPP1R14C then represses Ser/Thr protein phosphatase type 1 (PP1) to retain GSK3β phosphorylation at high levels. Furthermore, p-PPP1R14C recruits E3 ligase, TRIM25, toward the ubiquitylation and degradation of non-phosphorylated GSK3β. Importantly, the blockade of PPP1R14C phosphorylation inhibits xenograft tumorigenesis and lung metastasis of TNBC cells. These findings provide a novel mechanism for sustained GSK3β inactivation in TNBC and suggest that PPP1R14C might be a potential therapeutic target.
Collapse
Affiliation(s)
- Yunting Jian
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Pathology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Lingzhi Kong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Hongyi Xu
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yawei Shi
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinjian Huang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wenjing Zhong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yue Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Dongni Shi
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yunyun Xiao
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Muwen Yang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Siqi Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Guangzhou Institute of OncologyTumor Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Libing Song
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Runyi Ye
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wei
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
25
|
Dai D, Zhou H, Yin L, Ye F, Yuan X, You T, Zhao X, Long W, Wang D, He X, Feng J, Chen D. PELI1 promotes radiotherapy sensitivity by inhibiting noncanonical NF-κB in esophageal squamous cancer. Mol Oncol 2021; 16:1384-1401. [PMID: 34738714 PMCID: PMC8936515 DOI: 10.1002/1878-0261.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022] Open
Abstract
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongping Zhou
- Department of Radiotherapy, The Affiliated BenQ Hospital of Nanjing Medical University, China
| | - Li Yin
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fei Ye
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tao You
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaohui Zhao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Weiguo Long
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Zhu L, Zheng Y, Wu T, He J, Fang X, Zhou S, Wang K, Wang N. Immune-related genes STIM1, ITPKC and PELI1 polymorphisms are associated with risk of colorectal cancer. Eur J Cancer Prev 2021; 30:357-363. [PMID: 33470690 DOI: 10.1097/cej.0000000000000641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES STIM1, ITPKC and PELI1 are all immune-related genes that take part in the T cell activation, toll-like receptor and IL1 receptor pathways. The goal of this study was to evaluate the associations between STIM1, ITPKC and PELI1 polymorphisms and colorectal cancer (CRC) risk. METHODS Six single nucleotide polymorphisms (SNPs) in STIM1, ITPKC and PELI1 were genotyped using a MassARRAY platform in a discovery cohort including 480 CRC cases and 480 healthy individuals and validated in a replication cohort including 505 CRC cases and 510 controls. RESULTS The minor alleles of rs3794050, rs3750996 and rs2607420 were associated with an increased CRC risk (P < 0.05). In contrast, the minor allele of rs329497 was correlated with reduced disease risk (P = 0.025). Genetic model analysis showed that rs3794050 was related to an increased risk of disease in recessive and log-additive models (P < 0.05); rs3750996 had a strong correlation with CRC risk under all genetic models (P < 0.02); rs2607420 was correlated with an increased risk of disease in dominant and log-additive models (P < 0.01); whereas the protective effect of rs329497 on CRC risk was observed in dominant and log-additive models (P < 0.05). Finally, the association between the above SNPs and CRC risk was validated in a replication cohort (P < 0.05). CONCLUSIONS Our results could be helpful for the early screening of individuals with high CRC risk.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastrointestinal and Breast Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University
| | - Yuqin Zheng
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang
| | - Tao Wu
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiaxing He
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiongchao Fang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuai Zhou
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ke Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Li L, Zhang J, Cao S. Lysine Acetyltransferase 2B predicts favorable prognosis and functions as anti-oncogene in cervical carcinoma. Bioengineered 2021; 12:2563-2575. [PMID: 34130593 PMCID: PMC8806817 DOI: 10.1080/21655979.2021.1935525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Lysine Acetyltransferase 2B (KAT2B) functions pivotally in regulating chromatin organization as well as function, and is a key regulator of signal transduction during development of many diseases, like tumors. This research intends to exploit expression, clinical significance as well as how KAT2B functions in cervical cancer. Our study showed that the KAT2B expression in cervical carcinoma tissues was inferior to that in normal tissues; decreased KAT2B expression was signally related to increased T staging, lymph node metastasis together with tissue differentiation; patients with high KAT2B expression had better prognosis. After knocking down KAT2B, cell proliferation diminished with decreased cell migration and invasion. Additionally, knocking down KAT2B made for increasing EMT-related proteins N-cadherin and Vimentin expression, while ZO-1 expression decreased; overexpression had the opposite effect. Dual luciferase analysis affirmed that miR-93-5p could in specifical bind to KAT2B, and thus reducing its expression and activity. KAT2B may be a new cervical tumor-suppressor gene, which is closely concerned with poor prognosis of patients, and under negative regulation by miR-93-5p.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, People's Hospital of Dongying District, Dongying City, Shandong Province, China
| | - Juntao Zhang
- Department of Pathology, People's Hospital of Dongying District, Dongying City, Shandong Province, China
| | - Shuping Cao
- Department of Gynecology, People's Hospital of Dongying District, Dongying City, Shandong Province, China
| |
Collapse
|
28
|
Kang E, Seo J, Yoon H, Cho S. The Post-Translational Regulation of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Cancer Metastasis. Int J Mol Sci 2021; 22:3591. [PMID: 33808323 PMCID: PMC8037257 DOI: 10.3390/ijms22073591] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is generally observed in normal embryogenesis and wound healing. However, this process can occur in cancer cells and lead to metastasis. The contribution of EMT in both development and pathology has been studied widely. This transition requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (E.K.); (J.S.); (H.Y.)
| |
Collapse
|
29
|
Lim JH, Oh S, Kim L, Suh YJ, Ha YJ, Kim JS, Kim HJ, Park MH, Kim YS, Cho Y, Kwak SM, Lee HL, Kim YS, Ryu JS. Low-level expression of necroptosis factors indicates a poor prognosis of the squamous cell carcinoma subtype of non-small-cell lung cancer. Transl Lung Cancer Res 2021; 10:1221-1230. [PMID: 33889504 PMCID: PMC8044481 DOI: 10.21037/tlcr-20-1027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The programmed cell death pathway necroptosis may synergize with the DNA damage response (DDR) in opposing tumor progression. While our basic mechanistic understanding of the necroptotic cell death advances rapidly, its prognostic implications have not been thoroughly examined in cancers. Methods We included 394 patients with stage I non-small-cell lung cancer (NSCLC) who underwent surgical tumor resection between 1 January 1997 and 31 December 2011 and measured expression levels of nine proteins involved in necroptosis and the DDR in primary samples from 394 patients using tissue microarray. Protein expression evaluated by using an H-score method was dichotomized by the median value. The overall survival as the endpoint was calculated from the time of diagnosis to the time of the last follow-up or death. Results We find that low-level expression of the necroptosis markers RIPK3 and PELI1 is associated with high risk of patient death. High-level expression of the key DDR factor p53 in combination with low-level expression of either RIPK3 or PELI1 increases the risk further. These gene expression effects appear to occur specifically in the squamous cell carcinoma (SCC) subtype of stage I NSCLC, while not observed in the non-SCC subtypes. Conclusions Low-level expression of such necroptosis factors as RIPK3 and PELI1 in combination with high-level expression of the DDR factor p53 can serve as a critical indicator in predicting survival of stage I NSCLC patients with the SCC subtype.
Collapse
Affiliation(s)
- Jun Hyeok Lim
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - Sekyung Oh
- Department of Medical Sciences, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Lucia Kim
- Department of Pathology, Inha University Hospital, Incheon, South Korea
| | - Young Ju Suh
- Department of Biomedical Sciences, Inha University School of Medicine, Incheon, South Korea
| | - Yu-Jin Ha
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Jung Soo Kim
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - Hyun-Jung Kim
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - Mi Hwa Park
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - Young Sam Kim
- Department of Thoracic Cardiovascular Surgery, Inha University Hospital, Incheon, South Korea
| | - Yunjung Cho
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - Seung Min Kwak
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - Hong Lyeol Lee
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea
| | - Jeong-Seon Ryu
- Department of Internal Medicine, Inha University Hospital, Incheon, South Korea
| |
Collapse
|
30
|
Qiu W, Cai X, Xu K, Song S, Xiao Z, Hou Y, Qi X, Liu F, Chen Y, Yang H, Chu L, Liu J. PRL1 Promotes Glioblastoma Invasion and Tumorigenesis via Activating USP36-Mediated Snail2 Deubiquitination. Front Oncol 2021; 11:795633. [PMID: 35111679 PMCID: PMC8801937 DOI: 10.3389/fonc.2021.795633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we showed that PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Consistently, ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorigenicity and invasion both in vitro and in vivo by promoting epithelial-mesenchymal transition (EMT). Conversely, knocking down PRL1 blocked EMT in GBM cells, and inhibited their invasion, migration and tumorigenic growth. Additionally, PRL1 also stabilized Snail2 through its deubiquitination by activating USP36, thus revealing Snail2 as a crucial mediator of the oncogenic effects of PRL1 in GBM pathogenesis. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Collectively, our data support that PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaomin Cai
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shibin Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zumu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Feng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| | - Jian Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Jian Liu, ; Liangzhao Chu,
| |
Collapse
|
31
|
Wang J, Luo J, Sun Z, Sun F, Kong Z, Yu J. Identification of MTHFD2 as a novel prognosis biomarker in esophageal carcinoma patients based on transcriptomic data and methylation profiling. Medicine (Baltimore) 2020; 99:e22194. [PMID: 32925794 PMCID: PMC7489726 DOI: 10.1097/md.0000000000022194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic regulatory mechanism in esophageal carcinoma (EC) and is associated with genomic instability and carcinogenesis. In the present study, we aimed to identify tumor biomarkers for predicting prognosis of EC patients.We downloaded mRNA expression profiles and DNA methylation profiles associated with EC from the Gene Expression Omnibus database. Differentially expressed and differentially methylated genes between tumor tissues and adjacent normal tissue samples were identified. Functional enrichment analyses were performed, followed by the construction of protein-protein interaction networks. Data were validated based on methylation profiles from The Cancer Genome Atlas. Candidate genes were further verified according to survival analysis and Cox regression analysis.We uncovered multiple genes with differential expression or methylation in tumor samples compared with normal samples. After taking the intersection of 3 differential gene sets, we obtained a total of 232 overlapping genes. Functional enrichment analysis revealed that these genes are related to pathways such as "glutathione metabolism," "p53 signaling pathway," and "focal adhesion." Furthermore, 8 hub genes with inversed expression and methylation correlation were identified as candidate genes. The abnormal expression levels of MSN, PELI1, and MTHFD2 were correlated with overall survival times in EC patients (P < .05). Only MTHFD2 was significantly associated with a pathologic stage according to univariate analysis (P = .037) and multivariate analysis (P = .043).Our study identified several novel EC biomarkers with prognostic value by integrated analysis of transcriptomic data and methylation profiles. MTHFD2 could serve as an independent biomarker for predicting prognosis and pathological stages of EC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Ze Kong
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Jingping Yu
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
32
|
Kuang J, Min L, Liu C, Chen S, Gao C, Ma J, Wu X, Li W, Wu L, Zhu L. RNF8 Promotes Epithelial-Mesenchymal Transition in Lung Cancer Cells via Stabilization of Slug. Mol Cancer Res 2020; 18:1638-1649. [PMID: 32753472 DOI: 10.1158/1541-7786.mcr-19-1211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
RNF8 (ring finger protein 8), a RING finger E3 ligase best characterized for its role in DNA repair and sperm formation via ubiquitination, has been found to promote tumor metastasis in breast cancer recently. However, whether RNF8 also plays a role in other types of cancer, especially in lung cancer, remains unknown. We show here that RNF8 expression levels are markedly increased in human lung cancer tissues and negatively correlated with the survival time of patients. Overexpression of RNF8 promotes the EMT process and migration ability of lung cancer cells, while knockdown of RNF8 demonstrates the opposite effects. In addition, overexpression of RNF8 activates the PI3K/Akt signaling pathway, knockdown of RNF8 by siRNA inhibits this activation, and pharmacologic inhibition of PI3K/Akt in RNF8-overexpressing cells also reduces the expression of EMT markers and the ability of migration. Furthermore, RNF8 is found to directly interact with Slug and promoted the K63-Ub of Slug, and knockdown of Slug disrupts RNF8-dependent EMT in A549 cells, whereas overexpression of Slug rescues RNF8-dependent MET in H1299 cells, and depletion of RNF8 expression by shRNA inhibits metastasis of lung cancer cells in vivo. Taken together, these results indicate that RNF8 is a key regulator of EMT process in lung cancer and suggest that inhibition of RNF8 could be a useful strategy for lung cancer treatment. IMPLICATIONS: This study provides a new mechanistic insight into the novel role of RNF8 and identifies RNF8 as a potential new therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Si Chen
- Department of pathology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Changsong Gao
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Jiaxin Ma
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Xiaomin Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Wenying Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lei Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China. .,Hunan Engineering Research Center for Intelligent Decision Making and Big Data on Industrial Development, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China.
| |
Collapse
|
33
|
Ma T, Hou J, Zhou Y, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Dibutyl phthalate promotes juvenile Sertoli cell proliferation by decreasing the levels of the E3 ubiquitin ligase Pellino 2. Environ Health 2020; 19:87. [PMID: 32738922 PMCID: PMC7395429 DOI: 10.1186/s12940-020-00639-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/27/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND A previous study showed that dibutyl phthalate (DBP) exposure disrupted the growth of testicular Sertoli cells (SCs). In the present study, we aimed to investigate the potential mechanism by which DBP promotes juvenile SC proliferation in vivo and in vitro. METHODS Timed pregnant BALB/c mice were exposed to vehicle, or DBP (50, 250, and 500 mg/kg/day) from 12.5 days of gestation until delivery. In vitro, CCK-8 and EdU incorporation assays were performed to determine the effect of monobutyl phthalate (MBP), the active metabolite of DBP, on the proliferation of TM4 cells, which are a juvenile testicular SC cell line. Western blotting analysis, quantitative PCR (q-PCR), and flow cytometry were performed to analyse the expression of genes and proteins related to the proliferation and apoptosis of TM4 cells. Coimmunoprecipitation was used to determine the relationship between the ubiquitination of interleukin 1 receptor-associated kinase 1 (IRAK1) and the effect of MBP on promoting the proliferation of TM4 cells. RESULTS In the 50 mg/kg/day DBP-exposed male mice offspring, the number of SCs was significantly increased. Consistent with the in vivo results, in vitro experiments revealed that 0.1 mM MBP treatment promoted the proliferation of TM4 cells. Furthermore, the data showed that 0.1 mM MBP-mediated downregulation of the E3 ubiquitin ligase Pellino 2 (Peli2) increased ubiquitination of IRAK1 by K63, which activated MAPK/JNK signalling, leading to the proliferation of TM4 cells. CONCLUSIONS Prenatal exposure to DBP led to abnormal proliferation of SCs in prepubertal mice by affecting ubiquitination of the key proliferation-related protein IRAK1 via downregulation of Peli2.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
34
|
Liu SS, Qi J, Teng ZD, Tian FT, Lv XX, Li K, Song YJ, Xie WD, Hu ZW, Li X. Resistomycin attenuates triple-negative breast cancer progression by inhibiting E3 ligase Pellino-1 and inducing SNAIL/SLUG degradation. Signal Transduct Target Ther 2020; 5:133. [PMID: 32728028 PMCID: PMC7391765 DOI: 10.1038/s41392-020-00255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Shan-Shan Liu
- Department of Pharmacy, Marine College, Shandong University, Weihai, 264209, China.,Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Qi
- Department of Pharmacy, Marine College, Shandong University, Weihai, 264209, China
| | - Zu-Dong Teng
- Department of Pathology, Changle People's Hospital, Weifang, 262499, China
| | - Fu-Tao Tian
- Department of Pathology, Changle People's Hospital, Weifang, 262499, China
| | - Xiao-Xi Lv
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ya-Jie Song
- Department of Pharmacy, Marine College, Shandong University, Weihai, 264209, China
| | - Wei-Dong Xie
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuo-Wei Hu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Xia Li
- Department of Pharmacy, Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
35
|
Selvaraju V, Thirunavukkarasu M, Joshi M, Oriowo B, Shaikh IA, Rishi MT, Tapias L, Coca-Soliz V, Saad I, Campbell J, Pradeep SR, Swaminathan S, Yee SP, McFadden DW, Alexander Palesty J, Maulik N. Deletion of newly described pro-survival molecule Pellino-1 increases oxidative stress, downregulates cIAP2/NF-κB cell survival pathway, reduces angiogenic response, and thereby aggravates tissue function in mouse ischemic models. Basic Res Cardiol 2020; 115:45. [DOI: 10.1007/s00395-020-0804-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
36
|
Wang L, Yin C, Liu T, Abdul M, Zhou Y, Cao JL, Lu C. Pellino1 regulates neuropathic pain as well as microglial activation through the regulation of MAPK/NF-κB signaling in the spinal cord. J Neuroinflammation 2020; 17:83. [PMID: 32171293 PMCID: PMC7071701 DOI: 10.1186/s12974-020-01754-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal cord microglia plays a crucial role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely determined. Here, we investigated the role of Pellino1 (Peli1) and its interplay with spinal microglial activation in neuropathic pain. METHODS In this study, we examined the effects of Peli1 on pain hypersensitivity and spinal microglial activation after chronic constriction injury (CCI) of the sciatic nerve in mice. The molecular mechanisms involved in Peli1-mediated hyperalgesia were determined by western blot, immunofluorescence, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). We utilized immunoprecipitation to examine the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) following CCI. In addition, we explored the effect of Peli1 on BV2 microglial cells in response to lipopolysaccharide (LPS) challenge. RESULTS We found that CCI induced a significant increase in the levels of Peli1, which was present in the great majority of microglia in the spinal dorsal horn. Our results showed that spinal Peli1 contributed to the induction and maintenance of CCI-induced neuropathic pain. The biochemical data revealed that CCI-induced Peli1 in the spinal cord significantly increased mitogen-activated protein kinase (MAPK) phosphorylation, activated nuclear factor kappa B (NF-κB), and enhanced the production of proinflammatory cytokines, accompanied by spinal microglial activation. Peli1 additionally was able to promote K63-linked ubiquitination of TRAF6 in the ipsilateral spinal cord following CCI. Furthermore, we demonstrated that Peli1 in microglial cells significantly enhanced inflammatory reactions after LPS treatment. CONCLUSION These results suggest that the upregulation of spinal Peli1 is essential for the pathogenesis of neuropathic pain via Peli1-dependent mobilization of spinal cord microglia, activation of MAPK/NF-κB signaling, and production of proinflammatory cytokines. Modulation of Peli1 may serve as a potential approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Cui Yin
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Tianya Liu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Mannan Abdul
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jun-Li Cao
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Chen Lu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China.
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
37
|
Zhang H, Cheng W, Zheng J, Wang P, Liu Q, Li Z, Shi T, Zhou Y, Mao Y, Yu X. Identification and Molecular Characterization of a Pellino Protein in Kuruma Prawn ( Marsupenaeus Japonicus) in Response to White Spot Syndrome Virus and Vibrio Parahaemolyticus Infection. Int J Mol Sci 2020; 21:ijms21041243. [PMID: 32069894 PMCID: PMC7072872 DOI: 10.3390/ijms21041243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Kuruma prawn, Marsupenaeus japonicus, has the third largest annual yield among shrimp species with vital economic significance in China. White spot syndrome virus (WSSV) is a great threat to the global shrimp farming industry and results in high mortality. Pellino, a highly conserved E3 ubiquitin ligase, has been found to be an important modulator of the Toll-like receptor (TLR) signaling pathways that participate in the innate immune response and ubiquitination. In the present study, the Pellino gene from Marsupenaeus japonicus was identified. A qRT-PCR assay showed the presence of MjPellino in all the tested tissues and revealed that the transcript level of this gene was significantly upregulated in both the gills and hemocytes after challenge with WSSV and Vibrio parahaemolyticus. The function of MjPellino was further verified at the protein level. The results of the three-dimensional modeling and protein-protein docking analyses and a GST pull-down assay revealed that the MjPellino protein was able to bind to the WSSV envelope protein VP26. In addition, the knockdown of MjPellino in vivo significantly decreased the expression of MjAMPs. These results suggest that MjPellino might play an important role in the immune response of kuruma prawn.
Collapse
Affiliation(s)
- Heqian Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Jinbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Qinghui Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Zhen Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
| | - Tianyi Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yijian Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (W.C.); (J.Z.); (P.W.); (T.S.); (Y.Z.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.M.); (X.Y.)
| | - Xiangyong Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (Q.L.); (Z.L.)
- Correspondence: (Y.M.); (X.Y.)
| |
Collapse
|
38
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
39
|
Niño CA, Sala S, Polo S. When ubiquitin meets E-cadherin: Plasticity of the epithelial cellular barrier. Semin Cell Dev Biol 2019; 93:136-144. [DOI: 10.1016/j.semcdb.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
|
40
|
Petrillo MG, Oakley RH, Cidlowski JA. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling. J Biol Chem 2019; 294:11225-11239. [PMID: 31167788 DOI: 10.1074/jbc.ra118.007150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Indexed: 01/14/2023] Open
Abstract
Glucocorticoids are among the most widely used drugs to treat many autoimmune and inflammatory diseases. Although much research has been focused on investigating glucocorticoid activity, it remains unclear how glucocorticoids regulate distinct processes in different cells. Glucocorticoids exert their effects through the glucocorticoid receptor (GR), which, upon glucocorticoid binding, interacts with regulatory proteins, affecting its activity and function. These protein-protein interactions are necessary for the resolution of glucocorticoid-dependent physiological and pharmacological processes. In this study, we discovered a novel protein interaction between the glucocorticoid receptor and β-arrestin-1, a scaffold protein with a well-established role in G protein-coupled receptor signaling. Using co-immunoprecipitation and in situ proximity ligation assays in A549 cells, we observed that β-arrestin-1 and unliganded GR interact in the cytoplasm and that, following glucocorticoid binding, the protein complex is found in the nucleus. We show that siRNA-mediated β-arrestin-1 knockdown alters GR protein turnover by up-regulating the E3 ubiquitin ligase Pellino-1, which catalyzes GR ubiquitination and thereby marks the receptor for proteasomal degradation. The enhanced GR turnover observed in β-arrestin-1-deficient cells limits the duration of the glucocorticoid response on GR target genes. These results demonstrate that β-arrestin-1 is a crucial player for the stability of the glucocorticoid receptor. The GR/β-arrestin-1 interaction uncovered here may help unravel mechanisms that contribute to the cell type-specific activities of glucocorticoids.
Collapse
Affiliation(s)
- Maria G Petrillo
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robert H Oakley
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
41
|
Baulida J, Díaz VM, Herreros AGD. Snail1: A Transcriptional Factor Controlled at Multiple Levels. J Clin Med 2019; 8:jcm8060757. [PMID: 31141910 PMCID: PMC6616578 DOI: 10.3390/jcm8060757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition and fibroblast activation. As a consequence, Snail1 expression and function is regulated at multiple levels from gene transcription to protein modifications, affecting its interaction with specific cofactors. In this review, we describe the different elements that control Snail1 expression and its activity both as transcriptional repressor or activator.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
42
|
Park SM, Park SH, Ryu KJ, Kim IK, Han H, Kim HJ, Kim SH, Hong KS, Kim H, Kim M, Cho BI, Heo JD, Kim NH, Hwang EM, Park JY, Yook JI, Cho HJ, Hwangbo C, Kim KD, Song H, Yoo J. Downregulation of CHIP promotes ovarian cancer metastasis by inducing Snail-mediated epithelial-mesenchymal transition. Mol Oncol 2019; 13:1280-1295. [PMID: 30927556 PMCID: PMC6487736 DOI: 10.1002/1878-0261.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/03/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) plays a pivotal role in the conversion of early‐stage tumors into invasive malignancies. The transcription factor Snail, an extremely unstable protein whose subcellular levels are regulated by many E3 ubiquitin ligases, promotes EMT as well as associated pathological characteristics including migration, invasion, and metastasis. Through yeast two‐hybrid screening, we identified the carboxyl terminus of Hsc70‐interacting protein (CHIP) as a novel Snail ubiquitin ligase that interacts with Snail to induce ubiquitin‐mediated proteasomal degradation. Inhibition of CHIP expression increases Snail protein levels, induces EMT, and enhances in vitro migration and invasion as well as in vivo metastasis of ovarian cancer cells. In turn, Snail depletion abrogates all phenomena induced by CHIP depletion. Finally, Snail and CHIP expression is inversely correlated in ovarian tumor tissues. These findings establish the CHIP–Snail axis as a post‐translational mechanism of EMT and cancer metastasis regulation.
Collapse
Affiliation(s)
- Sun-Mi Park
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Jun Ryu
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - In-Kyu Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyeontak Han
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seon-Hee Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Minju Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Bok Im Cho
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Na Hyun Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
43
|
Lee JK, Ha GH, Kim HS, Lee CW. Oncogenic potential of BEX4 is conferred by Polo-like kinase 1-mediated phosphorylation. Exp Mol Med 2018; 50:1-12. [PMID: 30367032 PMCID: PMC6203768 DOI: 10.1038/s12276-018-0168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The brain-expressed X-linked 4 (BEX4) gene has been recently identified as a mediator of microtubule hyperacetylation through sirtuin 2 inhibition and is highly overexpressed in human cancers. However, the gain-of-function molecular mechanism of the BEX4 gene in human cancers still needs to be elucidated. This study shows that BEX4 colocalizes and interacts with Polo-like kinase 1 (PLK1) at centrosomes, spindle poles, and midbodies, particularly during mitosis. Interestingly, PLK1-mediated phosphorylation upregulates the stability of BEX4 protein, and the PLK1-BEX4 interaction allows abnormal mitotic cells to adapt to aneuploidy rather than undergo apoptotic cell death. In summary, these results suggest that the oncogenicity of BEX4 is conferred by PLK1-mediated phosphorylation, and thus, the BEX4-PLK1 interaction is a novel oncogenic signal that enables the acquisition of chromosomal aneuploidy.
Collapse
Affiliation(s)
- Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Geun-Hyoung Ha
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Hyun-Soo Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Chang-Woo Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
44
|
Lambies G, Miceli M, Martínez-Guillamon C, Olivera-Salguero R, Peña R, Frías CP, Calderón I, Atanassov BS, Dent SYR, Arribas J, García de Herreros A, Díaz VM. TGFβ-Activated USP27X Deubiquitinase Regulates Cell Migration and Chemoresistance via Stabilization of Snail1. Cancer Res 2018; 79:33-46. [PMID: 30341066 DOI: 10.1158/0008-5472.can-18-0753] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/14/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022]
Abstract
In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability. Expression of USP27X in breast and pancreatic cancer cell lines and tumors positively correlated with Snail1 expression levels. Accordingly, downregulation of USP27X decreased Snail1 protein in several tumor cell lines. USP27X depletion impaired Snail1-dependent cell migration and invasion and metastasis formation and increased cellular sensitivity to cisplatin. USP27X was upregulated by TGFβ during EMT and was required for TGFβ-induced expression of Snail1 and other mesenchymal markers in epithelial cells and CAF. In agreement with this, depletion of USP27X prevented TGFβ-induced EMT and fibroblast activation. Collectively, these results indicate that USP27X is an essential protein controlling Snail1 expression and function and may serve as a target for inhibition of Snail1-dependent tumoral invasion and chemoresistance. SIGNIFICANCE: These findings show that inhibition of USP27X destabilizes Snail1 to impair EMT and renders tumor cells sensitive to chemotherapy, thus opening new strategies for the inhibition of Snail1 expression and its protumoral actions.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/33/F1.large.jpg.
Collapse
Affiliation(s)
- Guillem Lambies
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Miceli
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Catalina Martínez-Guillamon
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Rubén Olivera-Salguero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Carolina-Paola Frías
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Irene Calderón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain
| | - Boyko S Atanassov
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO) CIBERONC, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Barcelona, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
45
|
van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 2018; 37:6195-6211. [PMID: 30002444 DOI: 10.1038/s41388-018-0378-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
Chemoresistance remains a major complication of cancer treatments. Recent data provide strong evidence that chemoresistance is linked to epithelial-mesenchymal transition (EMT), a latent developmental process, which is re-activated during cancer progression. EMT involves transcriptional reprogramming and is driven by specific EMT transcription factors (EMT-TFs). In this review, we provide support for the idea that EMT-TFs contribute to the development of resistance against cancer therapy and discuss how EMT-TFs might be targeted to advance novel therapeutic approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands.
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
46
|
The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. Nat Commun 2018; 9:1560. [PMID: 29674674 PMCID: PMC5908787 DOI: 10.1038/s41467-018-03669-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/03/2018] [Indexed: 12/30/2022] Open
Abstract
The NLRP3 inflammasome has an important function in inflammation by promoting the processing of pro-IL-1β and pro-IL-18 to their mature bioactive forms, and by inducing cell death via pyroptosis. Here we show a critical function of the E3 ubiquitin ligase Pellino2 in facilitating activation of the NLRP3 inflammasome. Pellino2-deficient mice and myeloid cells have impaired activation of NLRP3 in response to toll-like receptor priming, NLRP3 stimuli and bacterial challenge. These functions of Pellino2 in the NLRP3 pathway are dependent on Pellino2 FHA and RING-like domains, with Pellino2 promoting the ubiquitination of NLRP3 during the priming phase of activation. We also identify a negative function of IRAK1 in the NLRP3 inflammasome, and describe a counter-regulatory relationship between IRAK1 and Pellino2. Our findings reveal a Pellino2-mediated regulatory signaling system that controls activation of the NLRP3 inflammasome. The NLRP3 inflammasome is important for inducing IL-1β and IL-18 inflammatory responses. Here the authors show, by generating and characterizing Peli2 deficient mice and immune cells, that an E3 ubiquitin ligase Pellino2 promotes inflammasome priming by inducing NLRP3 ubiquitination and by targeting IRAK1.
Collapse
|
47
|
Lim R, Barker G, Lappas M. Pellino 1 is a novel regulator of TNF and TLR signalling in human myometrial and amnion cells. J Reprod Immunol 2018; 127:24-35. [PMID: 29751216 DOI: 10.1016/j.jri.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/15/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Preterm birth is the primary cause of neonatal deaths and morbidities. Pathological processes causally linked to preterm birth are inflammation and infection. Pellino-1 (Peli1) has previously been found to regulate the inflammatory response in non-gestational tissues in response to toll-like receptor (TLR) ligands and pro-inflammatory cytokines. The aims of this study were to determine the effect of labor on Peli1 expression in myometrium and fetal membranes, and the effect of Peli1 silencing by siRNA (siPELI1) on the production of pro-inflammatory and pro-labor mediators. The expression of Peli1 was found to be higher in myometrium and fetal membranes with term labor, compared to non-laboring samples. Peli1 mRNA and protein expression was also higher in amnion from women with preterm histological chorioamnionitis. In human primary myometrial cells, siPELI1 transfected cells showed a decrease in pro-inflammatory cytokine IL6, chemokines (CXCL8, CCL2) and adhesion molecule ICAM1 when in the presence of pro-inflammatory cytokine TNF, TLR2/6 ligand fsl-1, TLR5 ligand flagellin, and TLR3 ligand poly(I:C). Similarly in primary amnion cells, siPELI1 transfected cells decreased IL1B-induced expression and secretion of IL6 and CXCL8. In siPELI1 transfected myometrial cells, there was a decrease in prostaglandin PGF2α and its receptor, PTGFR mRNA expression when treated with TNF. There was a decrease in NF-κB RELA transcriptional activity in siPELI1 transfected cells in the presence of TNF, fsl-1 and flagellin, but not poly(I:C). Our study suggests a novel role for Peli1 in regulating pro-inflammatory and pro-labor mediators through TNF and TLR signalling.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
48
|
Petpiroon N, Sritularak B, Chanvorachote P. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:553. [PMID: 29284478 PMCID: PMC5747023 DOI: 10.1186/s12906-017-2059-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. METHODS The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. RESULTS Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including Ras-related C3 botulinum (Rac-GTP); Cell division cycle 42 (Cdc42); and Ras homolog gene family, member A (Rho-GTP)) in comparison to those of the non-treated control. CONCLUSIONS We have determined for the first time that phoyunnanin E could inhibit the motility of lung cancer cells via the suppression of EMT and metastasis-related integrins. This new information could support further development of this compound for anti-metastasis approaches.
Collapse
|
49
|
Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2017; 9:754-769. [PMID: 29080116 PMCID: PMC6107491 DOI: 10.1007/s13238-017-0486-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.
Collapse
Affiliation(s)
- Junting Cai
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Miranda K Culley
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yutong Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|