1
|
Lin MY, Wang CY, Chan YH, Su SP, Chiang HK, Yang MH, Lee YJ. The Emergence of Tumor-Initiating Cells in an Advanced Hypopharyngeal Tumor Model Exhibits Enhanced Angiogenesis and Nuclear Factor Erythroid 2-Related Factor 2-Associated Antioxidant Effects. Antioxid Redox Signal 2024; 41:505-521. [PMID: 38661516 DOI: 10.1089/ars.2023.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Aims: Hypopharyngeal cancer (HPC) is associated with the worst prognosis of all head and neck cancers and is typically identified in an advanced stage at the time of diagnosis. While oxidative stress might contribute to the onset of HPC in patients using tobacco or alcohol, the extent of this influence and the characteristics of HPC cells in advanced stage remain to be investigated. In this study, we explored whether HPC cells survived from necrotic xenograft tumors at late stage would display increased tumor resistance along with altered tolerance to oxidative stress. Results: The remnant living HPC cells isolated from a late-stage xenograft tumor, named FaDu ex vivo cells, showed stronger chemo- and radioresistance, tumorigenesis, and invasiveness compared with parental FaDu cells. FaDu ex vivo cells also displayed increased angiogenic ability after re-transplantation in mice visualized by in vivo near infrared-II fluorescence imaging modality. Moreover, FaDu ex vivo cells exhibited significant tumor-initiating cell (TIC)-related properties accompanied by a reduction of the level of reactive oxygen species, which was associated with the upregulation of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Interestingly, inhibition of Nrf2 by the RNA interference and the chemical inhibitor could reduce the TIC-related properties of FaDu ex vivo cells. Innovation: Oxidative stress potentially initiates HPC, but elevation of Nrf2-associated antioxidant mechanisms would be essential to mitigate this effect for promoting and sustaining the stemness of HPC at the advanced stage. Conclusion: Present data suggest that the antioxidant potency of advanced HPC would be a therapeutic target for the design of adjuvant treatment. Antioxid. Redox Signal. 41, 505-521.
Collapse
Affiliation(s)
- Min-Ying Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Po Su
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Huihua Kenny Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Use of piggyBac Transposon System Constructed Murine Breast Cancer Model for Reporter Gene Imaging and Characterization of Metastatic Tumor Cells. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Wang CY, Chang CY, Wang CY, Liu K, Kang CY, Lee YJ, Chen WR. N-Dihydrogalactochitosan Potentiates the Radiosensitivity of Liver Metastatic Tumor Cells Originated from Murine Breast Tumors. Int J Mol Sci 2019; 20:ijms20225581. [PMID: 31717306 PMCID: PMC6888949 DOI: 10.3390/ijms20225581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors.
Collapse
Affiliation(s)
- Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei 112, Taiwan;
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Chun-Yu Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Kaili Liu
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK 73034, USA;
| | - Chia-Yun Kang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (Y.-J.L.); (W.R.C.); Tel.: +886-960-429508 (Y.-J.L.); +1-212-2192879 (W.R.C.)
| | - Wei R. Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK 73034, USA;
- Correspondence: (Y.-J.L.); (W.R.C.); Tel.: +886-960-429508 (Y.-J.L.); +1-212-2192879 (W.R.C.)
| |
Collapse
|
4
|
Tan T, Wang Y, Wang H, Cao H, Wang Z, Wang J, Li J, Li Y, Zhang Z, Wang S. Apoferritin nanocages loading mertansine enable effective eradiation of cancer stem-like cells in vitro. Int J Pharm 2018; 553:201-209. [PMID: 30339945 DOI: 10.1016/j.ijpharm.2018.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/23/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
Abstract
Cancer stem-like cells (CSCs) are proposed to be responsible for tumor metastasis, resistance and relapse after therapy, but are unable to be eliminated by many current therapies. Herein, we report that the apoferritin nanocages loading cytotoxic mertansine (M-AFN) can significantly improve their uptake in CSCs-enriched tumorspheres and effectively eradicate CSCs in tumorspheres for anticancer therapy. M-AFN were uniformly nanocage structures with the mean diameter of 11.26 ± 2.58 nm and the loading capacity of 0.62%. In the CSCs-enriched tumorsphere model, M-AFN could be preferentially internalized by tumorsphere cells and the average half-inhibitory concentration (IC50) of M-AFN was obviously reduced by 5.46-fold when comparing to the parent 4T1 breast cancer cells. Moreover, both the already existing tumorspheres and the formation of secondary tumorspheres were drastically disrupted by M-AFN, but barely impacted by mertansine alone. The flow cytometer analysis showed the CSCs fractions in tumorspheres were considerably reduced by the M-AFN treatment. Therefore, the apoferritin nanocages represent an encouraging nanoplatform to eradicate CSCs for effective anticancer therapy.
Collapse
Affiliation(s)
- Tao Tan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yuqi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiqiang Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwan Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
5
|
Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA, Wang CH, Huang CW, Kang YN, Chang HY, Li LL, Chang KP, Shih YH, Lin CH, Kwan SY, Tsai JW. Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 2018; 9:2498. [PMID: 29950674 PMCID: PMC6021418 DOI: 10.1038/s41467-018-04880-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in genes involved in the production, migration, or differentiation of cortical neurons often lead to malformations of cortical development (MCDs). However, many genetic mutations involved in MCD pathogenesis remain unidentified. Here we developed a genetic screening paradigm based on transposon-mediated somatic mutagenesis by in utero electroporation and the inability of mutant neuronal precursors to migrate to the cortex and identified 33 candidate MCD genes. Consistent with the screen, several genes have already been implicated in neural development and disorders. Functional disruption of the candidate genes by RNAi or CRISPR/Cas9 causes altered neuronal distributions that resemble human cortical dysplasia. To verify potential clinical relevance of these candidate genes, we analyzed somatic mutations in brain tissue from patients with focal cortical dysplasia and found that mutations are enriched in these candidate genes. These results demonstrate that this approach is able to identify potential mouse genes involved in cortical development and MCD pathogenesis. Cortical malformations have a variety of causes. Here the authors use transposon mutagenesis to insert mutations into neural stem cells in the developing mouse cortex to screen for new candidate genes for cortical malformation, and validate some targets in human brain tissue.
Collapse
Affiliation(s)
- I-Ling Lu
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jia-Ping Pan
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 112, Taiwan
| | - Jia-Shing Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-An Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chun-Hung Wang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-Ning Kang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Yun Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lei-Li Li
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Kai-Ping Chang
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Yang-Hsin Shih
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chi-Hung Lin
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 112, Taiwan. .,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
6
|
Marcu LG, Moghaddasi L, Bezak E. Imaging of Tumor Characteristics and Molecular Pathways With PET: Developments Over the Last Decade Toward Personalized Cancer Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1165-1182. [PMID: 29907486 DOI: 10.1016/j.ijrobp.2018.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Improvements in personalized therapy are made possible by the advances in molecular biology that led to developments in molecular imaging, allowing highly specific in vivo imaging of biological processes. Positron emission tomography (PET) is the most specific and sensitive imaging technique for in vivo molecular targets and pathways, offering quantification and evaluation of functional properties of the targeted anatomy. MATERIALS AND METHODS This work is an integrative research review that summarizes and evaluates the accumulated current status of knowledge of recent advances in PET imaging for cancer diagnosis and treatment, concentrating on novel radiotracers and evaluating their advantages and disadvantages in cancer characterization. Medline search was conducted, limited to English publications from 2007 onward. Identified manuscripts were evaluated for most recent developments in PET imaging of cancer hypoxia, angiogenesis, proliferation, and clonogenic cancer stem cells (CSC). RESULTS There is an expansion observed from purely metabolic-based PET imaging toward antibody-based PET to achieve more information on cancer characteristics to identify hypoxia, proangiogenic factors, CSC, and others. 64Cu-ATSM, for example, can be used both as a hypoxia and a CSC marker. CONCLUSIONS Progress in the field of functional imaging will possibly lead to more specific tumor targeting and personalized treatment, increasing tumor control and improving quality of life.
Collapse
Affiliation(s)
- Loredana Gabriela Marcu
- Faculty of Science, University of Oradea, Oradea, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia
| | - Leyla Moghaddasi
- GenesisCare, Tennyson Centre, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia.
| |
Collapse
|
7
|
Rivas S, Gómez-Oro C, Antón IM, Wandosell F. Role of Akt Isoforms Controlling Cancer Stem Cell Survival, Phenotype and Self-Renewal. Biomedicines 2018. [PMID: 29518912 PMCID: PMC5874686 DOI: 10.3390/biomedicines6010029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that tumours are maintained by a subpopulation of cells with stem cell properties. Although the existence of CSCs was initially described in human leukaemia, less evidence exists for CSCs in solid tumours. Recently, a CD133+ cell subpopulation was isolated from human brain tumours exhibiting stem cell properties in vitro as well as the capacity to initiate tumours in vivo. In the present work, we try to summarize the data showing that some elements of the Phosphoinositide 3-kinase Class I (PI3K)/ Thymoma viral oncogene protein kinase (Akt) pathway, such the activity of PI3K Class I or Akt2, are necessary to maintain the CSC-like phenotype as well as survival of CSCs (also denoted as tumour-initiating cells (TICs)). Our data and other laboratory data permit a working hypothesis in which each Akt isoform plays an important and specific role in CSC/TIC growth, self-renewal, maintaining survival, and epithelial-mesenchymal transition (EMT) phenotype, not only in breast cancer, but also in glioma. We suggest that a more complete understanding is needed of the possible roles of isoforms in human tumours (iso-signalling determination). Thus, a comprehensive analysis of how hierarchical signalling is assembled during oncogenesis, how cancer landmarks are interconnected to favour CSC and tumour growth, and how some protein isoforms play a specific role in CSCs to ensure that survival and proliferation must be done in order to propose/generate new therapeutic approaches (alone or in combination with existing ones) to use against cancer.
Collapse
Affiliation(s)
- Sergio Rivas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| | - Carla Gómez-Oro
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
8
|
Jung K, Wang P, Gupta N, Gopal K, Wu F, Ye X, Alshareef A, Bigras G, McMullen TP, Abdulkarim BS, Lai R. Profiling gene promoter occupancy of Sox2 in two phenotypically distinct breast cancer cell subsets using chromatin immunoprecipitation and genome-wide promoter microarrays. Breast Cancer Res 2014; 16:470. [PMID: 25380620 PMCID: PMC4303205 DOI: 10.1186/s13058-014-0470-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/20/2014] [Indexed: 11/12/2022] Open
Abstract
Introduction Aberrant expression of the embryonic stem cell marker Sox2 has been reported in breast cancer (BC). We previously identified two phenotypically distinct BC cell subsets separated based on their differential response to a Sox2 transcription activity reporter, namely the reporter-unresponsive (RU) and the more tumorigenic reporter-responsive (RR) cells. We hypothesized that Sox2, as a transcription factor, contributes to their phenotypic differences by mediating differential gene expression in these two cell subsets. Methods We used chromatin immunoprecipitation and a human genome-wide promoter microarray (ChIP-chip) to determine the promoter occupancies of Sox2 in the MCF7 RU and RR breast cancer cell populations. We validated our findings with conventional chromatin immunoprecipitation, quantitative reverse transcription polymerase chain reaction (qPCR), and western blotting using cell lines, and also performed qPCR using patient RU and RR samples. Results We found a largely mutually exclusive profile of gene promoters bound by Sox2 between RU and RR cells derived from MCF7 (1830 and 456 genes, respectively, with only 62 overlapping genes). Sox2 was bound to stem cell- and cancer-associated genes in RR cells. Using quantitative RT-PCR, we confirmed that 15 such genes, including PROM1 (CD133), BMI1, GPR49 (LGR5), and MUC15, were expressed significantly higher in RR cells. Using siRNA knockdown or enforced expression of Sox2, we found that Sox2 directly contributes to the higher expression of these genes in RR cells. Mucin-15, a novel Sox2 downstream target in BC, contributes to the mammosphere formation of BC cells. Parallel findings were observed in the RU and RR cells derived from patient samples. Conclusions In conclusion, our data supports the model that the Sox2 induces differential gene expression in the two distinct cell subsets in BC, and contributes to their phenotypic differences. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0470-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen Jung
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Peng Wang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Keshav Gopal
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Fang Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Xiaoxia Ye
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Todd P McMullen
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada. .,Department of Surgery, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | | | - Raymond Lai
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada. .,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada. .,DynaLIFEDx Medical Laboratories, Edmonton, Canada.
| |
Collapse
|
9
|
Synergistic effects of glycated chitosan with high-intensity focused ultrasound on suppression of metastases in a syngeneic breast tumor model. Cell Death Dis 2014; 5:e1178. [PMID: 24743733 PMCID: PMC4001313 DOI: 10.1038/cddis.2014.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 01/12/2023]
Abstract
Stimulation of the host immune system is crucial in cancer treatment. In particular, nonspecific immunotherapies, when combined with other traditional therapies such as radiation and chemotherapy, may induce immunity against primary and metastatic tumors. In this study, we demonstrate that a novel, non-toxic immunoadjuvant, glycated chitosan (GC), decreases the motility and invasion of mammalian breast cancer cells in vitro and in vivo. Lung metastatic ratios were reduced in 4T1 tumor-bearing mice when intratumoral GC injection was combined with local high-intensity focused ultrasound (HIFU) treatment. We postulate that this treatment modality stimulates the host immune system to combat cancer cells, as macrophage accumulation in tumor lesions was detected after GC-HIFU treatment. In addition, plasma collected from GC-HIFU-treated tumor-bearing mice exhibited tumor-specific cytotoxicity. We also investigated the effect of GC on epithelial–mesenchymal transition-related markers. Our results showed that GC decreased the expression of Twist-1 and Slug, proto-oncogenes commonly implicated in metastasis. Epithelial-cadherin, which is regulated by these genes, was also upregulated. Taken together, our current data suggest that GC alone can reduce cancer cell motility and invasion, whereas GC-HIFU treatment can induce immune responses to suppress tumor metastasis in vivo.
Collapse
|