1
|
Ozawa M, Katagiri C, Okamura C, Miyai M, Matsunaga Y, Murata D, Knight CT, Onodera T, Asano M, Endo J, Omori R, Takahashi T, Saito M, Hanita T, Watanabe S, Sato S, Tabata N, Iizawa O, Asano Y, Aiba S. Efficacy of corneal squamous cell carcinoma antigen-1 in early infancy in predicting atopic dermatitis and food allergy: A prospective study. Allergol Int 2024:S1323-8930(24)00131-X. [PMID: 39732577 DOI: 10.1016/j.alit.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Identification of predictive biomarkers is crucial for formulating preventive interventions and halting the progression of atopic march. Although controversial, the use of accessible markers to predict or detect early onset of atopic diseases is highly desirable. Therefore, this study aimed to investigate whether corneal squamous cell carcinoma antigen-1 (SCCA1) collected from infants can predict the development of atopic dermatitis and food allergy. METHODS This prospective study enrolled 117 infants aged 2 months (55 female and 62 male infants). The participants were monitored to evaluate the occurrence of eczematous changes at several time points, and stratum corneum samples were obtained. The association of corneal SCCA1 with the development of atopic dermatitis and food allergy in the first 3 years of life was evaluated using univariate and multivariate logistic regression. RESULTS The corneal SCCA1 level was significantly higher in children who developed atopic dermatitis than in children who did not (cheek at 2 months: 1653.06 ± 178.48 ng/mg vs. 786.95 ± 101.59 ng/mg, P = 0.0033). The corneal SCCA1 level was also significantly higher in children who developed food allergy than in children who did not (perioral skin at 2 months: 2567.31 ± 408.09 ng/mg vs. 1120.85 ± 188.49 ng/mg, P = 0.0018). CONCLUSIONS The findings suggest that non-invasive measurements of corneal SCCA1 at 2 months of age is useful for predicting atopic dermatitis and food allergy in infants at risk for atopic dermatitis and subsequent food allergy.
Collapse
Affiliation(s)
- Maki Ozawa
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Chika Katagiri
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | - Chieko Okamura
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | - Masashi Miyai
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | | | - Daichi Murata
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | | | - Tomoko Onodera
- Shiseido Co., Ltd., MIRAI Technology Institute, Yokohama, Japan
| | - Masayuki Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Endo
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Omori
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatoshi Saito
- Department of Maternal and Fetal Therapeutics, Tohoku University School of Medicine, Sendai, Japan
| | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nobuko Tabata
- Division of Dermatology, Japanese Red Cross Sendai Hospital, Sendai, Japan
| | - Osamu Iizawa
- Division of Dermatology, Sendai Medical Center, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Zhang K, Zhang Y, Qin J, Zhu H, Liu N, Sun D, Yin Y, Mao S, Zhu W, Huang Z, Liu J. Early concentrate starter introduction induces rumen epithelial parakeratosis by blocking keratinocyte differentiation with excessive ruminal butyrate accumulation. J Adv Res 2024; 66:71-86. [PMID: 38128723 PMCID: PMC11674766 DOI: 10.1016/j.jare.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Rumen epithelial parakeratosis, a common disease in ruminants caused by abnormalities in the ruminal stratified squamous epithelial keratinization process, negatively impacts ruminant health and performance. However, we still lack a comprehensive perception of the underlying mechanisms and the predisposing factors for this disorder. OBJECTIVES Here, we investigated rumen epithelial cell heterogeneity, differentiation trajectories, and cornification to clarify the rumen epithelial keratinization process and discern the key ruminal metabolites contributing to rumen epithelial parakeratosis. METHODS Twenty-four 14-day-old lambs were divided into three groups, including only milk feeding, milk plus alfalfa hay feeding, and milk plus corn-soybean concentrate starter feeding. At 42 days of age, the lambs were slaughtered, and rumen tissues were collected for single-cell RNA-sequencing (scRNA-seq), immunofluorescence, and quantitative real-time PCR (qRT-PCR) analyses. Ruminal fluid samples were collected for metabolomic analyses. Rumen epithelial organoid was used to verify the key ruminal metabolites contributing to parakeratosis. RESULTS As expected, we observed that concentrate starter introduction resulted in rumen epithelial parakeratosis. Moreover, scRNA-seq analysis revealed a developmental impediment in the transition from differentiated keratinocytes to terminally differentiated keratinocytes (TDK) in lambs with concentrate starter introduction. Immunofluorescence and qRT-PCR analyses further verified the location and expression of marker genes of TDK. Metabolomic analysis showed a robust positive correlation between ruminal butyrate levels and rumen epithelial keratinization. More importantly, we successfully established a rumen organoid model capable of facilitating the study of the keratinization process in the rumen epithelia and further confirmed that high dose butyrate indeed contributed to rumen epithelial parakeratosis. CONCLUSION Collectively, concentrate starter introduction induces ruminal epithelial parakeratosis by blocking keratinocyte differentiation with excessive ruminal butyrate accumulation in a neonatal lamb model. These findings enhance our understanding of rumen epithelial keratinization and provide valuable insights for addressing rumen epithelial parakeratosis using early nutritional intervention strategies.
Collapse
Affiliation(s)
- Kai Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Qin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haining Zhu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Liu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daming Sun
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zan Huang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junhua Liu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Xu T, Zhong X, Luo N, Ma W, Hao P. Review of Excessive Cytosolic DNA and Its Role in AIM2 and cGAS-STING Mediated Psoriasis Development. Clin Cosmet Investig Dermatol 2024; 17:2345-2357. [PMID: 39464745 PMCID: PMC11512523 DOI: 10.2147/ccid.s476785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
In psoriasis, keratinocytes are triggered by factors, such as infection or tissue damage, to release DNA, which thereby activates plasmacytoid dendritic cells and macrophages to induce inflammation, thickened epidermis, and parakeratosis. The recognition of double-stranded (ds)DNA facilitates the activation of cytoplasmic DNA sensors absent in melanoma 2 (AIM2) inflammasome assembly and cyclic guanosine monophosphate adenosine monophosphate (cGAMP) synthase (cGAS) - stimulator of interferon gene (STING) pathway, both of which play a pivotal role in mediating the inflammatory response and driving the progression of psoriasis. Additionally, secreted proinflammatory cytokines can stimulate further DNA release from keratinocytes. Notably, the activation of AIM2 and cGAS-STING signaling pathways also mediates programmed cell death, potentially enhancing DNA overproduction. As a result, excessive DNA can activate these pathways, amplifying persistent inflammatory responses that contribute to the maintenance of psoriasis. Several studies have validated that targeting DNA and its mediated activation of AIM2 and cGAS-STING offers promising therapeutic strategies for psoriasis. Here, we postulate a hypothesis that excessive cytosolic DNA can activate AIM2 and cGAS-STING, mediating inflammation and programmed cell death, ultimately fostering DNA accumulation and contributing to the development of psoriasis.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaojing Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Nana Luo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wenyi Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Pingsheng Hao
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Liu H, Su P, Li Y, Hoover A, Hu S, King SA, Zhao J, Guan JL, Chen SY, Zhao Y, Tan M, Wu X. VAMP2 controls murine epidermal differentiation and carcinogenesis by regulation of nucleophagy. Dev Cell 2024; 59:2005-2016.e4. [PMID: 38810653 PMCID: PMC11303110 DOI: 10.1016/j.devcel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Differentiation of murine epidermal stem/progenitor cells involves the permanent withdrawal from the cell cycle, the synthesis of various protein and lipid components for the cornified envelope, and the controlled dissolution of cellular organelles and nuclei. Deregulated epidermal differentiation contributes to the development of various skin diseases, including skin cancers. With a genome-wide shRNA screen, we identified vesicle-associated membrane protein 2 (VAMP2) as a critical factor involved in skin differentiation. Deletion of VAMP2 leads to aberrant skin stratification and enucleation in vivo. With quantitative proteomics, we further identified an autophagy protein, focal adhesion kinase family interacting protein of 200 kDa (FIP200), as a binding partner of VAMP2. Additionally, we showed that both VAMP2 and FIP200 are critical for murine keratinocyte enucleation and epidermal differentiation. Loss of VAMP2 or FIP200 enhances cutaneous carcinogenesis in vivo. Together, our findings identify important molecular mechanisms underlying epidermal differentiation and skin tumorigenesis.
Collapse
Affiliation(s)
- Han Liu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Peihong Su
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yuanyuan Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alex Hoover
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sophie Hu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sarah A King
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jing Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Kida M, Abe J, Hori H, Hirai Y. PRSS3/mesotrypsin as a putative regulator of the biophysical characteristics of epidermal keratinocytes in superficial layers. Sci Rep 2024; 14:12383. [PMID: 38811772 PMCID: PMC11137022 DOI: 10.1038/s41598-024-63271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.
Collapse
Affiliation(s)
- Moeko Kida
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Haruna Hori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
6
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
Hori H, Kotani A, Abe J, Matsuguchi S, Hirai Y. Extracellular epimorphin impairs expression and processing of profilaggrin in HaCaT keratinocytes. Cytotechnology 2023; 75:123-133. [PMID: 36969570 PMCID: PMC10030722 DOI: 10.1007/s10616-022-00566-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The expression and processing of filaggrin, a filament-associated protein in the skin epidermis, is closely associated with keratinocyte cornification. The large precursor profilaggrin (Pro-FLG) is initially detected at the granular layer in keratohyalin granules, subsequently processed into 10 to 12 filaggrin monomers (mFLGs) for keratin assembly, and ultimately degraded into smaller peptides that behave as natural moisturizing factor (NMF) at the outermost epidermis. We previously reported that epimorphin (EPM) extruded upon external stimuli severely perturbs epidermal terminal differentiation. Using HaCaT keratinocytes with inducible expression and recombinant EPM and FLG, we investigated the effect of extracellular EPM on the expression profile of filaggrin. As expression and processing of Pro-FLG in primary keratinocytes are accompanied with apoptotic cell death, we employed HaCaT keratinocytes that grow and express filaggrin mRNA in standard culture medium. In response to ectopic stimulation with extracellular EPM, Pro-FLG expression decreased with elimination of keratohyalin granules in the cells, with filaggrin mRNA remained constant and profilaggrin processing was not accelerated. Additionally, using a recombinant form of mFLG engineered for intracellular localization, we found that extracellular EPM hindered proteolytic cleavage of mFLG for production of NMF. Taken together, extracellularly extruded EPM, an epidermal cornification blocker, not only decreases Pro-FLG expression but also reduces the production of NMF in HaCaT keratinocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00566-8.
Collapse
Affiliation(s)
- Haruna Hori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
- Present Address: Oppen Cosmetics Co, LTD. 2-17-1 Kisibeminami, Suita, 565-8501 Japan
| | - Ayaka Kotani
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Shuji Matsuguchi
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, GakuenUegahara, Sanda, 669-1330 Japan
| |
Collapse
|
8
|
Moosbrugger-Martinz V, Leprince C, Méchin MC, Simon M, Blunder S, Gruber R, Dubrac S. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int J Mol Sci 2022; 23:5318. [PMID: 35628125 PMCID: PMC9140947 DOI: 10.3390/ijms23105318] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022] Open
Abstract
The discovery in 2006 that loss-of-function mutations in the filaggrin gene (FLG) cause ichthyosis vulgaris and can predispose to atopic dermatitis (AD) galvanized the dermatology research community and shed new light on a skin protein that was first identified in 1981. However, although outstanding work has uncovered several key functions of filaggrin in epidermal homeostasis, a comprehensive understanding of how filaggrin deficiency contributes to AD is still incomplete, including details of the upstream factors that lead to the reduced amounts of filaggrin, regardless of genotype. In this review, we re-evaluate data focusing on the roles of filaggrin in the epidermis, as well as in AD. Filaggrin is important for alignment of keratin intermediate filaments, control of keratinocyte shape, and maintenance of epidermal texture via production of water-retaining molecules. Moreover, filaggrin deficiency leads to cellular abnormalities in keratinocytes and induces subtle epidermal barrier impairment that is sufficient enough to facilitate the ingress of certain exogenous molecules into the epidermis. However, although FLG null mutations regulate skin moisture in non-lesional AD skin, filaggrin deficiency per se does not lead to the neutralization of skin surface pH or to excessive transepidermal water loss in atopic skin. Separating facts from chaff regarding the functions of filaggrin in the epidermis is necessary for the design efficacious therapies to treat dry and atopic skin.
Collapse
Affiliation(s)
- Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Corinne Leprince
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse University, CNRS UMR5051, Inserm UMR1291, UPS, 31059 Toulouse, France; (C.L.); (M.-C.M.); (M.S.)
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (V.M.-M.); (S.B.); (R.G.)
| |
Collapse
|
9
|
New Functions of Low-Molecular-Weight Hyaluronic Acid on Epidermis Filaggrin Production and Degradation. COSMETICS 2021. [DOI: 10.3390/cosmetics8040118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a high-molecular-weight polysaccharide with high moisturizing power. It is composed of repeating disaccharides of N-acetyl-D-glucosamine and D-glucuronic acid. Low-molecular-weight hyaluronan (LMHA) is obtained by changing the molecular weight or modifying the functional groups of HA and is commonly used together with HA in cosmetics. The objective of this study was to determine whether LMHA promotes the synthesis of filaggrin (FLG). We also investigated whether LMHA activates FLG-degrading enzymes. Three-dimensional (3D) models of the human epidermis were cultured with LMHA. Real-time PCR was used to quantify the mRNA levels of profilaggrin (proFLG), involucrin (IVL), and FLG-degrading enzymes. FLG protein levels were measured by fluorescent antibody staining and Western blotting. The mRNA was quantified using a 3D epidermis model, and it was observed that the mRNA levels of proFLG, IVL, caspase-14 (CASP14), and bleomycin hydrolase were increased by the application of LMHA. Immunofluorescence results showed an increase in FLG proteins, and results from experiments using 3D epidermis models showed that LMHA increased the activity of CASP14. This suggests that the topical application of LMHA would result in an increase in natural moisturizing factor and promote moisturization of the stratum corneum.
Collapse
|
10
|
Mlitz V, Hermann M, Buchberger M, Tschachler E, Eckhart L. The Trichohyalin-Like Protein Scaffoldin Is Expressed in the Multilayered Periderm during Development of Avian Beak and Egg Tooth. Genes (Basel) 2021; 12:248. [PMID: 33578693 PMCID: PMC7916365 DOI: 10.3390/genes12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 01/19/2023] Open
Abstract
Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and cornulin, a related SFTP, in the developing beaks of birds. We determined the mRNA levels of both SFTPs by reverse transcription polymerase chain reaction (RT-PCR) in the beak and other ectodermal tissues of chicken (Gallus gallus) and quail (Coturnix japonica) embryos. Immunohistochemical staining was performed to localize scaffoldin in tissues. Scaffoldin and cornulin were expressed in the beak and, at lower levels, in other embryonic tissues of both chickens and quails. Immunohistochemistry revealed scaffoldin in the peridermal compartment of the egg tooth, a transitory cornified protuberance (caruncle) on the upper beak which breaks the eggshell during hatching. Furthermore, scaffoldin marked a multilayered peridermal structure on the lower beak. The results of this study suggest that scaffoldin plays an evolutionarily conserved role in the development of the avian beak with a particular function in the morphogenesis of the egg tooth.
Collapse
Affiliation(s)
- Veronika Mlitz
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Buchberger
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Erwin Tschachler
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (V.M.); (M.B.); (E.T.)
| |
Collapse
|
11
|
Liu Q, Luo L, Ren C, Zou M, Yang S, Cai B, Wu L, Wang Y, Fu S, Hua X, Tang N, Huang S, Huang X, Xin W, Chen F, Zhang X. The opposing roles of the mTOR signaling pathway in different phases of human umbilical cord blood-derived CD34 + cell erythropoiesis. Stem Cells 2020; 38:1492-1505. [PMID: 32871057 PMCID: PMC7693065 DOI: 10.1002/stem.3268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
As an indispensable, even lifesaving practice, red blood cell (RBC) transfusion is challenging due to several issues, including supply shortage, immune incompatibility, and blood-borne infections since donated blood is the only source of RBCs. Although large-scale in vitro production of functional RBCs from human stem cells is a promising alternative, so far, no such system has been reported to produce clinically transfusable RBCs due to the poor understanding of mechanisms of human erythropoiesis, which is essential for the optimization of in vitro erythrocyte generation system. We previously reported that inhibition of mammalian target of rapamycin (mTOR) signaling significantly decreased the percentage of erythroid progenitor cells in the bone marrow of wild-type mice. In contrast, rapamycin treatment remarkably improved terminal maturation of erythroblasts and anemia in a mouse model of β-thalassemia. In the present study, we investigated the effect of mTOR inhibition with rapamycin from different time points on human umbilical cord blood-derived CD34+ cell erythropoiesis in vitro and the underlying mechanisms. Our data showed that rapamycin treatment significantly suppressed erythroid colony formation in the commitment/proliferation phase of erythropoiesis through inhibition of cell-cycle progression and proliferation. In contrast, during the maturation phase of erythropoiesis, mTOR inhibition dramatically promoted enucleation and mitochondrial clearance by enhancing autophagy. Collectively, our results suggest contrasting roles for mTOR in regulating different phases of human erythropoiesis.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
- Shantou University Medical CollegeShantouPeople's Republic of China
| | - Linhong Luo
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Chunhong Ren
- Department of International Medical ServiceThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Muping Zou
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Siqin Yang
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Bozhi Cai
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Libiao Wu
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Yunsheng Wang
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Shan Fu
- Shantou University Medical CollegeShantouPeople's Republic of China
| | - Xu Hua
- Shantou University Medical CollegeShantouPeople's Republic of China
| | - Nianping Tang
- Shantou University Medical CollegeShantouPeople's Republic of China
| | - Shiping Huang
- Shantou University Medical CollegeShantouPeople's Republic of China
| | - Xianxi Huang
- Intensive Care Unit, The First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd.BeijingPeople's Republic of China
| | - Feiheng Chen
- Department of HematologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| | - Xin Zhang
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
- Shantou University Medical CollegeShantouPeople's Republic of China
- Department of CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
- Laboratory of Medical Molecular ImagingThe First Affiliated Hospital of Shantou University Medical CollegeShantouPeople's Republic of China
| |
Collapse
|
12
|
Zhang J, Cui WW, Du C, Huang Y, Pi X, Guo W, Wang J, Huang W, Chen D, Li J, Li H, Zhang J, Ma Y, Mu H, Zhang S, Liu M, Cui X, Hu Y. Knockout of DNase1l1l abrogates lens denucleation process and causes cataract in zebrafish. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165724. [PMID: 32061775 DOI: 10.1016/j.bbadis.2020.165724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Removal of nuclei in lens fiber cells is required for organelle-free zone (OFZ) formation during lens development. Defect in degradation of nuclear DNA leads to cataract formation. DNase2β degrades nuclear DNA of lens fiber cells during lens differentiation in mouse. Hsf4 is the principal heat shock transcription factor in lens and facilitates the lens differentiation. Knockout of Hsf4 in mouse and zebrafish resulted in lens developmental defect that was characterized by retaining of nuclei in lens fiber cells. In previous in vitro studies, we found that Hsf4 promoted DNase2β expression in human and mouse lens epithelial cells. In this study, it was found that, instead of DNase2β, DNase1l1l is uniquely expressed in zebrafish lens and was absent in Hsf4-/- zebrafish lens. Using CRISPR-Cas9 technology, a DNase1l1l knockout zebrafish line was constructed, which developed cataract. Deletion of DNase1l1l totally abrogated lens primary and secondary fiber cell denucleation process, whereas had little effect on the clearance of other organelles. The transcriptional regulation of DNase1l1l was dramatically impaired in Hsf4-/- zebrafish lens. Rescue of DNase1l1l mRNA into Hsf4-/- zebrafish embryos alleviated its defect in lens fiber cell denucleation. Our results in vivo demonstrated that DNase1l1l is the primary DNase responsible for nuclear DNA degradation in lens fiber cells, and Hsf4 can transcriptionally activate DNase1l1l expression in zebrafish.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wen-Wen Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Chunxiao Du
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuwen Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiahui Pi
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wenya Guo
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jungai Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Danling Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Shuman Zhang
- Huaihe Hospital of Henan University, Kaifeng, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China; Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
13
|
Egawa M, Iwanaga S, Hosoi J, Goto M, Yamanishi H, Miyai M, Katagiri C, Tokunaga K, Asai T, Ozeki Y. Label-free stimulated Raman scattering microscopy visualizes changes in intracellular morphology during human epidermal keratinocyte differentiation. Sci Rep 2019; 9:12601. [PMID: 31467379 PMCID: PMC6715667 DOI: 10.1038/s41598-019-49035-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 11/14/2022] Open
Abstract
Epidermal keratinocyte (KC) differentiation, which involves the process from proliferation to cell death for shedding the outermost layer of skin, is crucial for the barrier function of skin. Therefore, in dermatology, it is important to elucidate the epidermal KC differentiation process to evaluate the symptom level of diseases and skin conditions. Previous dermatological studies used staining or labelling techniques for this purpose, but they have technological limitations for revealing the entire process of epidermal KC differentiation, especially when applied to humans. Here, we demonstrate label-free visualization of three-dimensional (3D) intracellular morphological changes of ex vivo human epidermis during epidermal KC differentiation using stimulated Raman scattering (SRS) microscopy. Specifically, we observed changes in nuclei during the initial enucleation process in which the nucleus is digested prior to flattening. Furthermore, we found holes left behind by improperly digested nuclei in the stratum corneum, suggesting abnormal differentiation. Our findings indicate the great potential of SRS microscopy for discrimination of the degree of epidermal KC differentiation.
Collapse
Affiliation(s)
- Mariko Egawa
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan.
| | - Shinya Iwanaga
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Junichi Hosoi
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Makiko Goto
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | | | - Masashi Miyai
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Chika Katagiri
- Shiseido Global Innovation Center, Yokohama, 220-0011, Japan
| | - Kyoya Tokunaga
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
14
|
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E. The Shape Shifting Story of Reticulocyte Maturation. Front Physiol 2018; 9:829. [PMID: 30050448 PMCID: PMC6050374 DOI: 10.3389/fphys.2018.00829] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.
Collapse
Affiliation(s)
- Elina Ovchynnikova
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Cau L, Méchin MC, Simon M. Peptidylarginine deiminases and deiminated proteins at the epidermal barrier. Exp Dermatol 2018; 27:852-858. [PMID: 29756256 DOI: 10.1111/exd.13684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Deimination or citrullination is a post-translational modification catalysed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). It corresponds to the transformation of arginine residues within a peptide sequence into citrulline residues. Deimination induces a decreased net charge of targeted proteins; therefore, it alters their folding and changes intra- and intermolecular ionic interactions. Deimination is involved in several physiological processes (inflammation, gene regulation, etc.) and human diseases (rheumatoid arthritis, neurodegenerative diseases, cancer, etc.). Here, we describe the PADs expressed in the epidermis and their known substrates, focusing on their role in the epidermal barrier function.
Collapse
Affiliation(s)
- Laura Cau
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Marie-Claire Méchin
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | - Michel Simon
- UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Paul Sabatier, Université de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|
16
|
Rogerson C, Bergamaschi D, O'Shaughnessy RFL. Uncovering mechanisms of nuclear degradation in keratinocytes: A paradigm for nuclear degradation in other tissues. Nucleus 2018; 9:56-64. [PMID: 29205081 PMCID: PMC5973266 DOI: 10.1080/19491034.2017.1412027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic nuclei are essential organelles, storing the majority of the cellular DNA, comprising the site of most DNA and RNA synthesis, controlling gene expression and therefore regulating cellular function. The majority of mammalian cells retain their nucleus throughout their lifetime, however, in three mammalian tissues the nucleus is entirely removed and its removal is essential for cell function. Lens fibre cells, erythroblasts and epidermal keratinocytes all lose their nucleus in the terminal differentiation pathways of these cell types. However, relatively little is known about the pathways that lead to complete nuclear removal and about how these pathways are regulated. In this review, we aim to discuss the current understanding of nuclear removal mechanisms in these three cell types and expand upon how recent studies into nuclear degradation in keratinocytes, an easily accessible experimental model, could contribute to a wider understanding of these molecular mechanisms in both health and pathology.
Collapse
Affiliation(s)
- Clare Rogerson
- a Centre for Cell Biology and Cutaneous Research , Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Daniele Bergamaschi
- a Centre for Cell Biology and Cutaneous Research , Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| | - Ryan F L O'Shaughnessy
- a Centre for Cell Biology and Cutaneous Research , Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , UK
| |
Collapse
|
17
|
Lachner J, Mlitz V, Tschachler E, Eckhart L. Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci Rep 2017; 7:17446. [PMID: 29234126 PMCID: PMC5727156 DOI: 10.1038/s41598-017-17782-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
The homeostasis of the epidermis depends on keratinocyte differentiation and cornification, a mode of programmed cell death that does not elicit inflammation. Here, we report that cornification is associated with the expression of specific genes that control multiple steps of pyroptosis, another form of cell death that involves the processing and release of interleukin-1 family (IL1F) cytokines. Expression levels of pro-inflammatory IL1A and IL1B and of the pyroptotic pore-forming gasdermin (GSDM) D were downregulated during terminal differentiation of human keratinocytes in vitro. By contrast, negative regulators of IL-1 processing, including NLR family pyrin domain containing 10 (NLRP10) and pyrin domain-containing 1 (PYDC1), the anti-inflammatory IL1F members IL-37 (IL1F7) and IL-38 (IL1F10), and GSDMA, were strongly induced in differentiated keratinocytes. In human tissues, these keratinocyte differentiation-associated genes are expressed in the skin at higher levels than in any other organ, and mammalian species, that have lost the epidermal cornification program during evolution, i.e. whales and dolphins, lack homologs of these genes. Together, our results suggest that human epidermal cornification is accompanied by a tight control of pyroptosis and warrant further studies of potential defects in the balance between cornification and pyroptosis in skin pathologies.
Collapse
Affiliation(s)
- Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Manils J, Fischer H, Climent J, Casas E, García-Martínez C, Bas J, Sukseree S, Vavouri T, Ciruela F, de Anta JM, Tschachler E, Eckhart L, Soler C. Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses. Sci Rep 2017; 7:11902. [PMID: 28928425 PMCID: PMC5605544 DOI: 10.1038/s41598-017-12308-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/06/2017] [Indexed: 01/19/2023] Open
Abstract
The cornification of keratinocytes on the surface of skin and oral epithelia is associated with the degradation of nuclear DNA. The endonuclease DNase1L2 and the exonuclease Trex2 are expressed specifically in cornifying keratinocytes. Deletion of DNase1L2 causes retention of nuclear DNA in the tongue epithelium but not in the skin. Here we report that lack of Trex2 results in the accumulation of DNA fragments in the cytoplasm of cornifying lingual keratinocytes and co-deletion of DNase1L2 and Trex2 causes massive accumulation of DNA fragments throughout the cornified layers of the tongue epithelium. By contrast, cornification-associated DNA breakdown was not compromised in the epidermis. Aberrant retention of DNA in the tongue epithelium was associated neither with enhanced expression of DNA-driven response genes, such as Ifnb, Irf7 and Cxcl10, nor with inflammation. Of note, the expression of Tlr9, Aim2 and Tmem173, key DNA sensor genes, was markedly lower in keratinocytes and keratinocyte-built tissues than in macrophages and immune tissues, and DNA-driven response genes were not induced by introduction of DNA in keratinocytes. Altogether, our results indicate that DNase1L2 and Trex2 cooperate in the breakdown and degradation of DNA during cornification of lingual keratinocytes and aberrant DNA retention is tolerated in the oral epithelium.
Collapse
Affiliation(s)
- Joan Manils
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,The Francis Crick Institute-Mill Hill Laboratory, London, NW7 1AA, United Kingdom
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, Austria
| | - Joan Climent
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament d'Immunologia, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduard Casas
- Program of Predictive and Personalized Medicine of Cancer (PMPPC) - Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Celia García-Martínez
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Bas
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament d'Immunologia, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanya Vavouri
- Program of Predictive and Personalized Medicine of Cancer (PMPPC) - Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Francisco Ciruela
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Maria de Anta
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
19
|
Fischer H, Buchberger M, Napirei M, Tschachler E, Eckhart L. Inactivation of DNase1L2 and DNase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis. Sci Rep 2017; 7:6433. [PMID: 28743926 PMCID: PMC5527052 DOI: 10.1038/s41598-017-06652-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
The stratum corneum of the epidermis constitutes the mammalian skin barrier to the environment. It is formed by cornification of keratinocytes, a process which involves the removal of nuclear DNA. Here, we investigated the mechanism of cornification-associated DNA degradation by generating mouse models deficient of candidate DNA-degrading enzymes and characterizing their epidermal phenotypes. In contrast to Dnase1l2−/− mice and keratinocyte-specific DNase2 knockout mice (Dnase2Δep), Dnase1l2−/−Dnase2Δep mice aberrantly retained nuclear DNA in the stratum corneum, a phenomenon commonly referred to as parakeratosis. The DNA within DNase1L2/DNase2-deficient corneocytes was partially degraded in a DNase1-independent manner. Isolation of corneocytes, i.e. the cornified cell components of the stratum corneum, and labelling of DNA demonstrated that corneocytes of Dnase1l2−/−Dnase2Δep mice contained DNA in a nucleus-shaped compartment that also contained nucleosomal histones but lacked the nuclear intermediate filament protein lamin A/C. Parakeratosis was not associated with altered corneocyte resistance to mechanical stress, changes in transepidermal water loss, or inflammatory infiltrates in Dnase1l2−/−Dnase2Δep mice. The results of this study suggest that cornification of epidermal keratinocytes depends on the cooperation of DNase1L2 and DNase2 and indicate that parakeratosis per se does not suffice to cause skin pathologies.
Collapse
Affiliation(s)
- Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.,Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
20
|
Kayode O, Huang Z, Soares AS, Caulfield TR, Dong Z, Bode AM, Radisky ES. Small molecule inhibitors of mesotrypsin from a structure-based docking screen. PLoS One 2017; 12:e0176694. [PMID: 28463992 PMCID: PMC5413004 DOI: 10.1371/journal.pone.0176694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/16/2017] [Indexed: 01/18/2023] Open
Abstract
PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active site residues, and commercial availability. Diminazene (CID22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (Ki) of 3.6±0.3 μM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.
Collapse
Affiliation(s)
- Olumide Kayode
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, United States of America
| | - Zunnan Huang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Alexei S. Soares
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, United States of America
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
Mlitz V, Hussain T, Tschachler E, Eckhart L. Filaggrin has evolved from an "S100 fused-type protein" (SFTP) gene present in a common ancestor of amphibians and mammals. Exp Dermatol 2017; 26:955-957. [PMID: 28191671 DOI: 10.1111/exd.13317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
The expression of filaggrin in differentiated keratinocytes and the association of filaggrin mutations with ichthyosis vulgaris and atopic dermatitis suggest that this prototypical member of the S100 fused-type protein (SFTP) family plays a key role in the epidermal barrier to the environment. Here, we report that SFTP genes are present not only in amniotes but also in amphibians. Four SFTPs are expressed in the skin of the frog Xenopus laevis. The results of this study indicate that filaggrin has evolved from an ancestral SFTP that may have contributed to skin modifications during the evolutionary transition to terrestrial life.
Collapse
Affiliation(s)
- Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tajamul Hussain
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Manils J, Casas E, Viña-Vilaseca A, López-Cano M, Díez-Villanueva A, Gómez D, Marruecos L, Ferran M, Benito C, Perrino FW, Vavouri T, de Anta JM, Ciruela F, Soler C. The Exonuclease Trex2 Shapes Psoriatic Phenotype. J Invest Dermatol 2016; 136:2345-2355. [DOI: 10.1016/j.jid.2016.05.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/10/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023]
|
23
|
Yin N, Chen T, Yu Y, Han Y, Yan F, Zheng Z, Chen Z. Facile mechanical shaking method is an improved isolation approach for islet preparation and transplantation. Exp Ther Med 2016; 12:3658-3664. [PMID: 28101160 PMCID: PMC5228319 DOI: 10.3892/etm.2016.3844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Successful islet isolation is crucial for islet transplantation and cell treatment for type 1 diabetes. Current isolation methods are able to obtain 500-1,000 islets per rat, which results in a waste of ≥50% of total islets. In the present study, a facile mechanical shaking method for improving islet yield (up to 1,500 per rat) was developed and summarized, which was demonstrated to be more effective than the existing well-established stationary method. The present results showed that isolated islets have a maximum yield of 1,326±152 when shaking for 15 min for the fully-cannulated pancreas. For both fully-cannulated and half-cannulated pancreas in the presence of rat DNAse inhibitor, the optimal shaking time was amended to 20 min with a further increased yield of 1,344±134 and 1,286±124 islets, respectively. Furthermore, the majority of the isolated islets were morphologically intact with a well-defined surface and almost no central necrotic zone, which suggested that the condition of islets obtained via the mechanical shaking method was consistent with the stationary method. Islet size distribution was also calculated and it was demonstrated that islets from the stationary method exhibited the same size distribution as the non-cannulated group, which had more larger islets than the fully-cannulated and half-cannulated groups isolated via the shaking method. In addition, the results of glucose challenge showed that the refraction index of each group was >2.5, which indicated the well-preserved function of isolated islets. Furthermore, the transplanted islets exhibited a therapeutic effect after 1 day of transplantation; however, they failed to control blood glucose levels after ~7 days of transplantation. In conclusion, these results demonstrated that the facile mechanical shaking method may markedly improve the yield of rat islet isolation, and in vitro and in vivo investigation demonstrated the well-preserved function of isolated islets in the control of blood glucose. Therefore, the facile mechanical shaking method may be an alternative improved procedure to obtain higher islet yield for islet preparation and transplantation in the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Nina Yin
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Tao Chen
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuling Yu
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yongming Han
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fei Yan
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhou Zheng
- Department of Anatomy, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zebin Chen
- Department of Acupuncture and Moxibustion, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
24
|
Egawa M, Tokunaga K, Hosoi J, Iwanaga S, Ozeki Y. In situ visualization of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:86017. [PMID: 27580366 PMCID: PMC5005979 DOI: 10.1117/1.jbo.21.8.086017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 05/04/2023]
Abstract
Visualization of epidermal cells is important because the differentiation patterns of keratinocytes (KCs) are considered to be related to the functions and condition of skin. Optical microscopy has been widely used to investigate epidermal cells, but its applicability is still limited because of the need for sample fixation and staining. Here, we report our staining-free observation of epidermal cells in both tissue and culture by stimulated Raman scattering (SRS) microscopy that provides molecular vibrational contrast. SRS allowed us to observe a variety of cellular morphologies in skin tissue, including ladder-like structures in the spinous layer, enucleation of KCs in the granular layer, and three-dimensional cell column structures in the stratum corneum. We noticed that some cells in the spinous layer had a brighter signal in the cytoplasm than KCs. To examine the relevance of the observation of epidermal layers, we also observed cultured epidermal cells, including KCs at various differentiation stages, melanocytes, and Langerhans cell-like cells. Their SRS images also demonstrated various morphologies, suggesting that the morphological differences observed in tissue corresponded to the cell lineage. These results indicate the possible application of SRS microscopy to dermatological investigation of cell lineages and types in the epidermis by cellular-level analysis.
Collapse
Affiliation(s)
- Mariko Egawa
- Shiseido Global Innovation Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama, Kanagawa 224-0025, Japan
- Address all correspondence to: Mariko Egawa, E-mail: ; Yasuyuki Ozeki, E-mail:
| | - Kyoya Tokunaga
- The University of Tokyo, Department of Electrical Engineering and Information Systems, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junichi Hosoi
- Shiseido Global Innovation Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama, Kanagawa 224-0025, Japan
| | - Shinya Iwanaga
- Shiseido Global Innovation Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama, Kanagawa 224-0025, Japan
| | - Yasuyuki Ozeki
- The University of Tokyo, Department of Electrical Engineering and Information Systems, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Address all correspondence to: Mariko Egawa, E-mail: ; Yasuyuki Ozeki, E-mail:
| |
Collapse
|
25
|
Strasser B, Mlitz V, Fischer H, Tschachler E, Eckhart L. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins. Exp Dermatol 2016; 24:365-9. [PMID: 25739514 PMCID: PMC4437054 DOI: 10.1111/exd.12681] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent.
Collapse
Affiliation(s)
- Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
26
|
Unsain N, Barker PA. New Views on the Misconstrued: Executioner Caspases and Their Diverse Non-apoptotic Roles. Neuron 2016; 88:461-74. [PMID: 26539888 DOI: 10.1016/j.neuron.2015.08.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine the roles of sublethal executioner caspase activity in nervous system development and maintenance, consider the mechanisms that locally activate and restrain these potential killers, and discuss how their activity be subverted in neurodegenerative disease.
Collapse
Affiliation(s)
- Nicolas Unsain
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Instituto Nacional de Investigación Médica Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Friuli 2434, Córdoba (5016), Argentina
| | - Philip A Barker
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
27
|
Giamboi-Miraglia A, Cianfarani F, Cattani C, Lena AM, Serra V, Campione E, Terrinoni A, Zambruno G, Odorisio T, Di Daniele N, Melino G, Candi E. The E3 ligase Itch knockout mice show hyperproliferation and wound healing alteration. FEBS J 2015; 282:4435-49. [PMID: 26361888 DOI: 10.1111/febs.13514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 12/16/2022]
Abstract
The HECT-type E3 ubiquitin ligase Itch is absent in the non-agouti-lethal 18H or Itchy mice, which develop a severe immunological disease. Several of the known Itch substrates are relevant for epidermal development and homeostasis, such as p63, Notch, c-Jun and JunB. By analysing Itchy mice before the onset of immunological alterations, we investigated the contribution of Itch in skin development and wound healing. Itchy newborn mice manifested hyperplastic epidermis, which is not present in adulthood. Itch(-/-) cultured keratinocytes showed overexpression of proliferating markers and increased capability to proliferate, migrate and to repair a scratch injury in vitro. These data correlated with improved in vivo wound healing in Itchy mice, at late time points of the repair process when Itch is physiologically upregulated. Despite healing acceleration, epidermal remodelling was delayed in the scars of Itch(-/-) mice, as indicated by enhanced epidermal thickening, keratinocyte proliferation and keratin 6 expression, and retarded keratin 14 polarization to the basal layer. Itch(-/-) keratinocyte prolonged activation was not associated with increased immune cell persistence in the scars. Our in vitro and in vivo results indicate that Itch plays a role in epidermal homeostasis and remodelling and this feature does not seem to depend on immunological alterations.
Collapse
Affiliation(s)
| | - Francesca Cianfarani
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Caterina Cattani
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy
| | - Valeria Serra
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy
| | - Elena Campione
- Department of Dermatology, University of 'Tor Vergata', Rome, Italy
| | - Alessandro Terrinoni
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Giovanna Zambruno
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Teresa Odorisio
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of 'Tor Vergata', Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy.,MRC Toxicology Unit, Leicester, UK
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy.,Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| |
Collapse
|
28
|
Pendaries V, Le Lamer M, Cau L, Hansmann B, Malaisse J, Kezic S, Serre G, Simon M. In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification. Cell Death Dis 2015; 6:e1656. [PMID: 25695608 PMCID: PMC4669814 DOI: 10.1038/cddis.2015.29] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/01/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease with defects in the epidermal barrier. In a cohort of African-American children, a FLG2 nonsense mutation has been associated with the disease. In the epidermis of European patients, the expression of filaggrin-2, the filaggrin-related protein encoded by FLG2, is decreased. To describe the function of filaggrin-2 and evaluate the impact of its deficiency, its expression was downregulated using lentivirus-mediated shRNA interference in a three-dimensional reconstructed human epidermis (RHE) model. This resulted in parakeratosis and a compact stratum corneum, presence of abnormal vesicles inside the corneocytes, increased pH and reduced amounts of free amino acids at the RHE surface, leading to increased sensitivity to UVB radiations. The expression of differentiation markers was slightly modified. However, we observed reduced proteolytic processing of corneodesmosin, hornerin and filaggrin in parallel with reduced amounts of caspase-14 and bleomycin hydrolase. Our data demonstrated that filaggrin-2 is important for a proper cornification and a functional stratum corneum. Its downregulation in atopic patients may be involved in the disease-associated epidermis impairment.
Collapse
Affiliation(s)
- V Pendaries
- 1] UMR5165 CNRS, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [2] U1056 INSERM, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [3] University of Toulouse, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France
| | - M Le Lamer
- 1] UMR5165 CNRS, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [2] U1056 INSERM, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [3] University of Toulouse, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France
| | - L Cau
- 1] UMR5165 CNRS, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [2] U1056 INSERM, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [3] University of Toulouse, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France
| | - B Hansmann
- Department of Dermatology, University Hospital of Schleswig-Holstein, Schittenhelmstrasse 7, 24105 Kiel, Germany
| | - J Malaisse
- Cell and Tissue Laboratory, URPHYM-NARILIS, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - S Kezic
- Academic Medical Center, Coronel Institute of Occupational Health, PO Box 22 700, 1100 DE Amsterdam, The Netherlands
| | - G Serre
- 1] UMR5165 CNRS, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [2] U1056 INSERM, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [3] University of Toulouse, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France
| | - M Simon
- 1] UMR5165 CNRS, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [2] U1056 INSERM, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France [3] University of Toulouse, CHU Purpan, Place du Dr Baylac TSA40031, 31059 Toulouse CEDEX 9, France
| |
Collapse
|