1
|
Fujiki K, Tanabe K, Suzuki S, Mochizuki A, Mochizuki-Kashio M, Sugaya T, Mizoguchi T, Itoh M, Nakamura-Ishizu A, Inamura H, Matsuoka M. Blockage of Akt activation suppresses cadmium-induced renal tubular cellular damages through aggrephagy in HK-2 cells. Sci Rep 2024; 14:14552. [PMID: 38914593 PMCID: PMC11196260 DOI: 10.1038/s41598-024-64579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
We have reported that an environmental pollutant, cadmium, promotes cell death in the human renal tubular cells (RTCs) through hyperactivation of a serine/threonine kinase Akt. However, the molecular mechanisms downstream of Akt in this process have not been elucidated. Cadmium has a potential to accumulate misfolded proteins, and proteotoxicity is involved in cadmium toxicity. To clear the roles of Akt in cadmium exposure-induced RTCs death, we investigated the possibility that Akt could regulate proteotoxicity through autophagy in cadmium chloride (CdCl2)-exposed HK-2 human renal proximal tubular cells. CdCl2 exposure promoted the accumulation of misfolded or damaged proteins, the formation of aggresomes (pericentriolar cytoplasmic inclusions), and aggrephagy (selective autophagy to degrade aggresome). Pharmacological inhibition of Akt using MK2206 or Akti-1/2 enhanced aggrephagy by promoting dephosphorylation and nuclear translocation of transcription factor EB (TFEB)/transcription factor E3 (TFE3), lysosomal transcription factors. TFEB or TFE3 knockdown by siRNAs attenuated the protective effects of MK2206 against cadmium toxicity. These results suggested that aberrant activation of Akt attenuates aggrephagy via TFEB or TFE3 to facilitate CdCl2-induced cell death. Furthermore, these roles of Akt/TFEB/TFE3 were conserved in CdCl2-exposed primary human RTCs. The present study shows the molecular mechanisms underlying Akt activation that promotes cadmium-induced RTCs death.
Collapse
Affiliation(s)
- Kota Fujiki
- Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - K Tanabe
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - S Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - A Mochizuki
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Kanagawa, 259-1143, Japan
| | - M Mochizuki-Kashio
- Department of Microanatomy and Development Biology, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - T Sugaya
- Division of Nephrology and Hypertension, St. Marianna University School of Medicine, Kanagawa, 216-8511, Japan
| | - T Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - M Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - A Nakamura-Ishizu
- Department of Microanatomy and Development Biology, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - H Inamura
- Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - M Matsuoka
- Department of Hygiene and Public Health, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
2
|
Chou X, Li X, Ma K, Shen Y, Min Z, Xiao W, Zhang J, Wu Q, Sun D. N-methyl-d-aspartate receptor 1 activation mediates cadmium-induced epithelial-mesenchymal transition in proximal tubular cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166955. [PMID: 37704144 DOI: 10.1016/j.scitotenv.2023.166955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) is a commonly found environmental pollutant and is known to damage multiple organs with kidneys being the most common one. N-methyl-d-aspartate receptor 1 (NMDAR1) is a ligand-gated ion channel that is highly permeable to calcium ion (Ca2+). Because Cd2+ and Ca2+ have structural and physicochemical similarities, whether and how Cd could interfere NMDAR1 function to cause renal epithelial cells dysfunction remains unknown. In this study, we investigated the role of NMDAR1 in Cd-induced renal damage and found that Cd treatment upregulated NMDAR1 expression and promoted epithelial-mesenchymal transition (EMT) in mouse kidneys in vivo and human proximal tubular epithelial HK-2 cells in vitro, which were accompanied with activation of the inositol-requiring enzyme 1 (IRE-1α) / spliced X box binding protein-1 (XBP-1s) pathway, an indicative of endoplasmic reticulum (ER) stress. Mechanistically, NMDAR1 upregulation by Cd promoted Ca2+ channel opening and Ca2+ influx, resulting in ER stress and subsequently EMT in HK-2 cells. Inhibition of NMDAR1 by pharmacological antagonist MK-801 significantly attenuated Cd-induced Ca2+ influx, ER stress, and EMT. Pretreatment with the IRE-1α/XBP-1s pathway inhibitor STF-083010 also restored the epithelial phenotype of Cd-treated HK-2 cells. Therefore, our findings suggest that NMDAR1 activation mediates Cd-induced EMT in proximal epithelial cells likely through the IRE-1α/XBP-1s pathway, supporting the idea that NMDAR1 could be a potential therapeutic target for Cd-induced renal damage.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Xiaohu Li
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Zhen Min
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jingbo Zhang
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Qing Wu
- Department of Toxicology, School of Public Health, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Daoyuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China.
| |
Collapse
|
3
|
Feng X, Jin X, Zhou R, Jiang Q, Wang Y, Zhang X, Shang K, Zhang J, Yu C, Shou J. Deep learning approach identified a gene signature predictive of the severity of renal damage caused by chronic cadmium accumulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128795. [PMID: 35405588 DOI: 10.1016/j.jhazmat.2022.128795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Epidemiology studies have indicated that environmental cadmium exposure, even at low levels, will result in chronic cadmium accumulation in the kidney with profound adverse consequences and that the diabetic population is more susceptible. However, the underlying mechanisms are yet not fully understood. In the present study, we applied an animal model to study chronic cadmium exposure-induced renal injury and performed whole transcriptome profiling studies. Repetitive CdCl2 exposure resulted in cadmium accumulation and remarkable renal injuries in the animals. The diabetic ob/ob mice manifested increased severity of renal injury compared with the wild type C57BL/6 J littermate controls. RNA-Seq data showed that cadmium treatment induced dramatic gene expression changes in a dose-dependent manner. Among the differentially expressed genes include the apoptosis hallmark genes which significantly demarcated the treatment effects. Pathway enrichment and network analyses revealed biological oxidation (mainly glucuronidation) as one of the major stress responses induced by cadmium treatment. We next implemented a deep learning algorithm in conjunction with cloud computing and discovered a gene signature that can predict the degree of renal injury induced by cadmium treatment. The present study provided, for the first time, a comprehensive mechanistic understanding of chronic cadmium-induced nephrotoxicity in normal and diabetic populations at the whole genome level.
Collapse
Affiliation(s)
- Xuefang Feng
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xian Jin
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qian Jiang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Yanan Wang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xing Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China
| | - Ke Shang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Jianhua Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jianyong Shou
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China.
| |
Collapse
|
4
|
The role of autophagy in cadmium-induced acute toxicity in glomerular mesangial cells and tracking polyubiquitination of cytoplasmic p53 as a biomarker. Exp Mol Med 2022; 54:685-696. [PMID: 35624155 PMCID: PMC9166781 DOI: 10.1038/s12276-022-00782-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant that can severely damage the kidneys. Here, we show that Cd-induced apoptosis is promoted by the cytoplasmic polyubiquitination of p53 (polyUb-p53), which is regulated by the polyubiquitination of SQSTM1/p62 (polyUb-p62) and autophagy in mouse kidney mesangial cells (MES13E cells). p53 was detected in monomeric and different high-molecular-weight (HMW) forms after Cd exposure. Monomeric p53 levels decreased in a concentration- and time-dependent manner. HMW-p53 transiently accumulated in the cytoplasm independent of proteasome inhibition. The expression patterns of p53 were similar to those of p62 upon Cd exposure, and the interactions between polyUb-p53 and polyUb-p62 were observed using immunoprecipitation. P62 knockdown reduced polyUb-p53 and upregulated nuclear monomeric p53, whereas p53 knockdown reduced polyUb-p62. Autophagy inhibition induced by ATG5 knockdown reduced Cd-induced polyUb-p62 and polyUb-p53 but upregulated the levels of nuclear p53. Pharmacological inhibition of autophagy by bafilomycin A1 increased polyUb-p62 and polyUb-p53 in the cytoplasm, indicating that p53 protein levels and subcellular localization were regulated by polyUb-p62 and autophagy. Immunoprecipitation and immunofluorescence revealed an interaction between p53 and LC3B, indicating that p53 was taken up by autophagosomes. Cd-resistant RMES13E cells and kidney tissues from mice continuously injected with Cd had reduced polyUb-p53, polyUb-p62, and autophagy levels. Similar results were observed in renal cell carcinoma cell lines. These results indicate that cytoplasmic polyUb-p53 is a potential biomarker for Cd-induced acute toxicity in mesangial cells. In addition, upregulation of nuclear p53 may protect cells against Cd cytotoxicity, but abnormal p53 accumulation may contribute to tumor development. The cellular localization and chemical modification of a protein that acts as a critical safeguard against cellular damage may directly contribute to the toxic effects of cadmium. P53 is an essential tumor suppressor that is also involved in numerous other important biological functions. Ki-Tae Jung and Seon-Hee Oh of Chosun University, Gwangju, South Korea have now demonstrated that this protein also undergoes rapid changes in response to the environmental pollutant cadmium. P53 normally manages gene expression in the nucleus, but the authors found that it is rapidly shuttled to the cytoplasm and subjected to extensive chemical modification in cadmium-treated cultured kidney cells. This relocation appears to contribute directly to subsequent cell death, and the authors suggest that this P53 response could be an important biomarker for diagnosing human cadmium exposure.![]()
Collapse
|
5
|
Olsvik PA, Azad AM, Yadetie F. Bioaccumulation of mercury and transcriptional responses in tusk (Brosme brosme), a deep-water fish from a Norwegian fjord. CHEMOSPHERE 2021; 279:130588. [PMID: 33901891 DOI: 10.1016/j.chemosphere.2021.130588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
High concentrations of mercury (Hg) have been documented in deep-water fish species from some Norwegian fjords. In this study, tusk (Brosme brosme) was sampled from four locations in the innermost parts of Sognefjorden in Western Norway. Total Hg and methylmercury (MeHg) levels were measured in liver tissue. To search for potential sublethal effects of Hg, we characterized the hepatic transcriptome in tusk with high and low levels of Hg bioaccumulation using global transcriptomics analysis (RNA-seq). The results showed that there was a significant correlation between fish weight and accumulated concentrations of MeHg but not total Hg. MeHg accounted for 30-40% of total Hg in liver of most of the fish, although at concentrations above 2-3 mg Hg/kg wet weight the percentage of MeHg dropped considerably. Transcriptome analysis resulted in hundreds of differentially expressed genes in the liver of tusk with high Hg levels. Functional enrichment analysis suggested that the top affected pathways are associated with protein folding, adipogenesis, notch signaling, and lipid metabolism (beta-oxidation and phospholipids). Based on transcriptional responses pointing to well-known effects of Hg compounds in fish, the study suggests that tusk in Sognefjorden could be negatively impacted by Hg bioaccumulation.
Collapse
Affiliation(s)
- Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research, Nordnes, Bergen, Norway.
| | - Atabak M Azad
- Institute of Marine Research, Nordnes, Bergen, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Fujiki K. [Involvement of Notch1 and ALK4/5 Signaling Pathways in Renal Tubular Cell Death: Their Application to Clarification of Cadmium Toxicity]. Nihon Eiseigaku Zasshi 2021; 75. [PMID: 33342936 DOI: 10.1265/jjh.20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal tubular cell death is caused by various extracellular stresses including toxic amounts of cadmium, an occupational and environmental pollutant metal, and is responsible for renal dysfunction. While cadmium exposure disrupts many intracellular signaling pathways, the molecular mechanism underlying cadmium-induced renal tubular cell death has not yet been fully elucidated. We have recently identified two important intracellular signaling pathways that promote cadmium-induced renal tubular cell death: the Notch1 signaling and activin receptor-like kinase (ALK) 4/5 signaling (also known as the activin-transforming growth factor β receptor pathways). In this review paper, we introduce our previous experimental findings, focusing on Notch1 and ALK4/5 signaling pathways, which may uncover the molecular mechanisms involved in cadmium-induced renal tubular cell death.
Collapse
Affiliation(s)
- Kota Fujiki
- Department of Hygiene and Public Health, Tokyo Women's Medical University
| |
Collapse
|
7
|
Lemaire J, Van der Hauwaert C, Savary G, Dewaeles E, Perrais M, Lo Guidice JM, Pottier N, Glowacki F, Cauffiez C. Cadmium-Induced Renal Cell Toxicity Is Associated With MicroRNA Deregulation. Int J Toxicol 2020; 39:103-114. [DOI: 10.1177/1091581819899039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cadmium is an environmental pollutant well known for its nephrotoxic effects. Nevertheless, mechanisms underlying nephrotoxicity continue to be elucidated. MicroRNAs (miRNAs) have emerged in recent years as modulators of xenobiotic-induced toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in renal proximal tubular toxicity induced by cadmium exposure. We showed that cadmium exposure, in 2 distinct renal proximal tubular cell models (renal proximal tubular epithelial cell [RPTEC]/human telomerase reverse transcriptase [hTERT] and human kidney-2), resulted in cytotoxicity associated with morphological changes, overexpression of renal injury markers, and induction of apoptosis and inflammation processes. Cadmium exposure also resulted in miRNA modulation, including the significant upregulation of 38 miRNAs in RPTEC/hTERT cells. Most of these miRNAs are known to target genes whose coding proteins are involved in oxidative stress, inflammation, and apoptosis, leading to tissue remodeling. In conclusion, this study provides a list of dysregulated miRNAs which may play a role in the pathophysiology of cadmium-induced kidney damages and highlights promising cadmium molecular biomarkers that warrants to be further evaluated.
Collapse
Affiliation(s)
- J. Lemaire
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - C. Van der Hauwaert
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Département de la Recherche en Santé, CHU Lille, Lille, France
| | - G. Savary
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - E. Dewaeles
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - M. Perrais
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Université de Lille, Lille, France
| | - J. M. Lo Guidice
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - N. Pottier
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - F. Glowacki
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Néphrologie, CHU Lille, Lille, France
| | - C. Cauffiez
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| |
Collapse
|
8
|
Tokumoto M, Lee JY, Satoh M. Transcription Factors and Downstream Genes in Cadmium Toxicity. Biol Pharm Bull 2019; 42:1083-1088. [PMID: 31257284 DOI: 10.1248/bpb.b19-00204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cadmium (Cd) is a harmful heavy metal widely present in the environment which can cause severe kidney damage. The proximal tubular cells are the main target of renal Cd toxicity. The consequences of Cd cytotoxicity involve apoptosis and necrosis. Recently, we and others have focused on how Cd affects transcription factors and the regulation of their target genes. Those studies showed that transcription factors initiate numerous pathways upon Cd exposure, leading to apoptosis, autophagic cell death, disruption of cell-cell adhesion, and generation of mitochondrial reactive oxygen species. Of particular note, Cd induces endoplasmic reticulum stress, resulting in not only apoptosis but also autophagic dysregulation, which can trigger cell damage. In some cases, however, Cd-regulated transcription factors can induce cell survival signaling. This review centers on our own research to elucidate the transcription factor-downstream gene cascades that are central to Cd-induced renal toxicity.
Collapse
|
9
|
Abstract
Motivation Network propagation has been widely used to aggregate and amplify the effects of tumor mutations using knowledge of molecular interaction networks. However, propagating mutations through interactions irrelevant to cancer leads to erosion of pathway signals and complicates the identification of cancer subtypes. Results To address this problem we introduce a propagation algorithm, Network-Based Supervised Stratification (NBS2), which learns the mutated subnetworks underlying tumor subtypes using a supervised approach. Given an annotated molecular network and reference tumor mutation profiles for which subtypes have been predefined, NBS2 is trained by adjusting the weights on interaction features such that network propagation best recovers the provided subtypes. After training, weights are fixed such that mutation profiles of new tumors can be accurately classified. We evaluate NBS2 on breast and glioblastoma tumors, demonstrating that it outperforms the best network-based approaches in classifying tumors to known subtypes for these diseases. By interpreting the interaction weights, we highlight characteristic molecular pathways driving selected subtypes. Availability and implementation The NBS2 package is freely available at: https://github.com/wzhang1984/NBSS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jianzhu Ma
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Fujiki K, Inamura H, Sugaya T, Matsuoka M. Blockade of ALK4/5 signaling suppresses cadmium- and erastin-induced cell death in renal proximal tubular epithelial cells via distinct signaling mechanisms. Cell Death Differ 2019; 26:2371-2385. [PMID: 30804470 DOI: 10.1038/s41418-019-0307-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 01/22/2019] [Accepted: 02/08/2019] [Indexed: 12/30/2022] Open
Abstract
Various types of cell death, including apoptosis, necrosis, necroptosis, and ferroptosis, are induced in renal tubular epithelial cells following exposure to environmental stresses and toxicants such as osmotic stress, ischemia/reperfusion injury, cisplatin, and cadmium. This is known to cause renal dysfunction, but the cellular events preceding stress-induced cell death in renal tubules are not fully elucidated. The activin receptor-like kinase (ALK) 4/5, also known as activin-transforming growth factor (TGF) β receptor, is involved in stress-induced renal injury. We, therefore, studied the role of ALK4/5 signaling in HK-2 human proximal tubular epithelial cell death induced by cisplatin, cadmium, hyperosmotic stress inducer, sorbitol, and the ferroptosis activator, erastin. We found that ALK4/5 signaling is involved in cadmium- and erastin-induced cell death, but not sorbitol- or cisplatin-induced apoptotic cell death. Cadmium exposure elevated the level of phosphorylated Smad3, and treatment with the ALK4/5 kinase inhibitors, SB431542 or SB505124, suppressed cadmium-induced HK-2 cell death. Cadmium-induced cell death was attenuated by siRNA-mediated ALK4 or Smad3 silencing, or by treatment with SIS3, a selective inhibitor of TGFβ1-dependent Smad3 phosphorylation. Furthermore, ALK4/5 signaling activated Akt signaling to promote cadmium-induced HK-2 cell death. In contrast, siRNA-mediated Inhibin-bA silencing or treatment with TGFβ1 or activin A had little effect on cadmium-induced HK-2 cell death. On the other hand, treatment with SB431542 or SB505124 attenuated erastin-induced ferroptosis by hyperactivating Nrf2 signaling in HK-2 cells. These results suggest that blockade of ALK4/5 signaling protects against cadmium- and erastin-induced HK-2 cell death via Akt and Nrf2 signaling pathways, respectively.
Collapse
Affiliation(s)
- Kota Fujiki
- Department of Hygiene and Public Health, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| | - Hisako Inamura
- Department of Hygiene and Public Health, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, St. Marianna University School of Medicine, Kanagawa, 216-8511, Japan
| | - Masato Matsuoka
- Department of Hygiene and Public Health, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| |
Collapse
|
11
|
Lee JY, Tokumoto M, Satoh M. Novel Mechanisms of Cadmium-Induced Toxicity in Renal Cells. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2019. [DOI: 10.1007/978-981-13-3630-0_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Soni H, Matthews AT, Pallikkuth S, Gangaraju R, Adebiyi A. γ-secretase inhibitor DAPT mitigates cisplatin-induced acute kidney injury by suppressing Notch1 signaling. J Cell Mol Med 2018; 23:260-270. [PMID: 30407728 PMCID: PMC6307805 DOI: 10.1111/jcmm.13926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Organ toxicity, including kidney injury, limits the use of cisplatin for the treatment of multiple human cancers. Hence, interventions to alleviate cisplatin-induced nephropathy are of benefit to cancer patients. Recent studies have demonstrated that pharmacological inhibition of the Notch signaling pathway enhances cisplatin efficacy against several cancer cells. However, whether augmentation of the anti-cancer effect of cisplatin by Notch inhibition comes at the cost of increased kidney injury is unclear. We show here that treatment of mice with cisplatin resulted in a significant increase in Notch ligand Delta-like 1 (Dll1) and Notch1 intracellular domain (N1ICD) protein expression levels in the kidneys. N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor reversed cisplatin-induced increase in renal N1ICD expression and plasma or urinary levels of predictive biomarkers of acute kidney injury (AKI). DAPT also mitigated cisplatin-induced tubular injury and reduction in glomerular filtration rate. Real-time multiphoton microscopy revealed marked necrosis and peritubular vascular dysfunction in the kidneys of cisplatin-treated mice which were abrogated by DAPT. Cisplatin-induced Dll1/Notch1 signaling was recapitulated in a human proximal tubule epithelial cell line (HK-2). siRNA-mediated Dll1 knockdown and DAPT attenuated cisplatin-induced Notch1 cleavage and cytotoxicity in HK-2 cells. These data suggest that Dll1-mediated Notch1 signaling contributes to cisplatin-induced AKI. Hence, the Notch signaling pathway could be a potential therapeutic target to alleviate renal complications associated with cisplatin chemotherapy.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anberitha T Matthews
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sandeep Pallikkuth
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
13
|
Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells. Toxicol Appl Pharmacol 2018; 356:36-43. [PMID: 30030096 DOI: 10.1016/j.taap.2018.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
Abstract
Cadmium (Cd) has been linked to a variety of cancers, including breast cancer; however, the molecular mechanism of its carcinogenic activity is not fully understood. To this end, the present study investigated the roles of ferroportin (FPN), a prognostic marker of breast cancer, in Cd-induced stimulation of cell proliferation and cell migration. Triple-negative MDA-MB-231 cells were treated with 1-3 μM Cd. The cells exhibited significant reduction in FPN expression and concomitant increase in iron concentration. Cells treated with Cd for 8 weeks displayed elevated proliferative and migratory activities which were inversely related with FPN expression. Reduced FPN expression also resulted in EMT as indicated by an increase in the expression of E-cadherin, and a decrease in the expression of N-cadherin, Twist and Slug. Further investigation revealed that Cd suppressed FPN expression at least partially by activating TGF-β, a known regulator of FPN expression. Taken together, these results indicate that Cd-induced stimulation of MDA-MB-231 cell proliferation, EMT, and migration is brought about by suppression of FPN expression and associated disruption of iron homeostasis.
Collapse
Affiliation(s)
- Zhongguo Shan
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zhengxi Wei
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zahir A Shaikh
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
14
|
Polysaccharides from Phormidium versicolor (NCC466) protecting HepG2 human hepatocellular carcinoma cells and rat liver tissues from cadmium toxicity: Evidence from in vitro and in vivo tests. Int J Biol Macromol 2018; 113:813-820. [DOI: 10.1016/j.ijbiomac.2018.02.152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 01/01/2023]
|
15
|
Simon-Tillaux N, Hertig A. Snail and kidney fibrosis. Nephrol Dial Transplant 2018; 32:224-233. [PMID: 28186539 DOI: 10.1093/ndt/gfw333] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022] Open
Abstract
Snail family zinc finger 1 (SNAI1) is a transcription factor expressed during renal embryogenesis, and re-expressed in various settings of acute kidney injury (AKI). Subjected to tight regulation, SNAI1 controls major biological processes responsible for renal fibrogenesis, including mesenchymal reprogramming of tubular epithelial cells, shutdown of fatty acid metabolism, cell cycle arrest and inflammation of the microenvironment surrounding tubular epithelial cells. The present review describes in detail the interactions of SNAI1 with AKI-associated signalling pathways. We also discuss how this central factor has been iteratively (and promisingly) targeted in a number of animal models in order to prevent or slow down renal fibrogenesis.
Collapse
Affiliation(s)
- Noémie Simon-Tillaux
- French National Institute of Health and Medical Research (INSERM), UMR_S1155, Remodeling and Repair of Renal Tissue, Hôpital Tenon, Paris, France
| | - Alexandre Hertig
- French National Institute of Health and Medical Research (INSERM), UMR_S1155, Remodeling and Repair of Renal Tissue, Hôpital Tenon, Paris, France.,Sorbonne Universités, UPMC Paris 06, UMR S_1155, Paris, France
| |
Collapse
|
16
|
Shen R, Liu D, Hou C, Liu D, Zhao L, Cheng J, Wang D, Bai D. Protective effect of Potentilla anserina polysaccharide on cadmium-induced nephrotoxicity in vitro and in vivo. Food Funct 2018; 8:3636-3646. [PMID: 28905953 DOI: 10.1039/c7fo00495h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this research was to investigate the antioxidant and anti-apoptotic activities of Potentilla anserina polysaccharide (PAP) on kidney damage induced by cadmium (Cd) in vitro and in vivo. PAP has been suggested to have anti-oxidation, anti-apoptosis, immunoregulation, antimicrobial, antitussive, and expectorant abilities. In this study, PAP was extracted and the major components of PAP were analyzed. It was shown that PAP pretreatment remarkably improved redox homeostasis, both in human embryonic kidney 293 (HEK293) cells and in BALB/c mice. Administration of PAP attenuated the mitochondrial dysfunction, degeneration, and fibrosis of kidney induced by Cd. Furthermore, PAP exhibited anti-apoptotic activity, which involved regulating both the mitochondria-mediated intrinsic apoptotic pathway and the death receptor-initiated extrinsic pathway. These results suggest that PAP is a potential therapeutic agent for Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rong Shen
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wei Z, Shan Z, Shaikh ZA. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail. Toxicol Appl Pharmacol 2018; 344:46-55. [PMID: 29501589 DOI: 10.1016/j.taap.2018.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 11/25/2022]
Abstract
Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail.
Collapse
Affiliation(s)
- Zhengxi Wei
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zhongguo Shan
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zahir A Shaikh
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
18
|
Identification of ARNT-regulated BIRC3 as the target factor in cadmium renal toxicity. Sci Rep 2017; 7:17287. [PMID: 29229987 PMCID: PMC5725491 DOI: 10.1038/s41598-017-17494-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023] Open
Abstract
Cadmium (Cd) is an environmental contaminant that exhibits renal toxicity. The target transcription factors involved in Cd renal toxicity are still unknown. In this study, we demonstrated that Cd decreased the activity of the ARNT transcription factor, and knockdown of ARNT significantly decreased the viability of human proximal tubular HK-2 cells. Microarray analysis in ARNT knockdown cells revealed a decrease in the expression of a number of genes, including a known apoptosis inhibitor, BIRC3, whose gene and protein expression level was also decreased by Cd treatment. Although the BIRC family consists of 8 members, Cd suppressed only BIRC3 gene expression. BIRC3 is known to suppress apoptosis through the inhibition effect on caspase-3. Knockdown of BIRC3 by siRNA as well as Cd treatment increased the level of active caspase-3. Moreover, knockdown of BIRC3 not only triggered cell toxicity and apoptosis but also strengthened Cd toxicity in HK-2 cells. Meanwhile, the activation of caspase-3 by suppression of BIRC3 gene expression was mostly specific to Cd and to proximal tubular cells. These results suggest that Cd induces apoptosis through the inhibition of ARNT-regulated BIRC3 in human proximal tubular cells.
Collapse
|
19
|
Wang XY, Wang ZY, Zhu YS, Zhu SM, Fan RF, Wang L. Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-Keap1 signaling pathway in primary rat proximal tubular cells. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Xin-Yu Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Yi-Song Zhu
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Si-Ming Zhu
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| |
Collapse
|
20
|
Fujiki K, Inamura H, Miyayama T, Matsuoka M. Involvement of Notch1 signaling in malignant progression of A549 cells subjected to prolonged cadmium exposure. J Biol Chem 2017; 292:7942-7953. [PMID: 28302721 PMCID: PMC5427272 DOI: 10.1074/jbc.m116.759134] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Cadmium exposure is known to increase lung cancer risk, but the underlying molecular mechanisms in cadmium-stimulated progression of malignancy are unclear. Here, we examined the effects of prolonged cadmium exposure on the malignant progression of A549 human lung adenocarcinoma cells and the roles of Notch1, hypoxia-inducible factor 1α (HIF-1α), and insulin-like growth factor 1 receptor (IGF-1R)/Akt/extracellular signal-regulated kinase (ERK)/p70 S6 kinase 1 (S6K1) signaling pathways. Exposing A549 cells to 10 or 20 μm cadmium chloride (CdCl2) for 9-15 weeks induced a high proliferative potential, the epithelial-mesenchymal transition (EMT), stress fiber formation, high cell motility, and resistance to antitumor drugs. Of note, the CdCl2 exposure increased the levels of the Notch1 intracellular domain and of the downstream Notch1 target genes Snail and Slug. Strikingly, siRNA-mediated Notch1 silencing partially suppressed the CdCl2-induced EMT, stress fiber formation, high cell motility, and antitumor drug resistance. In addition, we found that prolonged CdCl2 exposure induced reduction of E-cadherin in BEAS-2B human bronchial epithelial cells and antitumor drug resistance in H1975 human tumor-derived non-small-cell lung cancer cells depending on Notch1 signaling. Moreover, Notch1, HIF-1α, and IGF-1R/Akt/ERK/S6K1 activated each other to induce EMT in the CdCl2-exposed A549 cells. These results suggest that Notch1, along with HIF-1α and IGF-1R/Akt/ERK/S6K1 signaling pathways, promotes malignant progression stimulated by prolonged cadmium exposure in this lung adenocarcinoma model.
Collapse
Affiliation(s)
- Kota Fujiki
- From the Department of Hygiene and Public Health I, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Hisako Inamura
- From the Department of Hygiene and Public Health I, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Takamitsu Miyayama
- From the Department of Hygiene and Public Health I, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Masato Matsuoka
- From the Department of Hygiene and Public Health I, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| |
Collapse
|
21
|
Effect of exogenous TGF-β1 on the cadmium-induced nephrotoxicity by inhibiting apoptosis of proximal tubular cells through PI3K-AKT-mTOR signaling pathway. Chem Biol Interact 2017; 269:25-32. [DOI: 10.1016/j.cbi.2017.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
|
22
|
Probing the PI3K/Akt/mTor pathway using 31P-NMR spectroscopy: routes to glycogen synthase kinase 3. Sci Rep 2016; 6:36544. [PMID: 27811956 PMCID: PMC5109916 DOI: 10.1038/srep36544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023] Open
Abstract
Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently up-regulated in cancer due to overexpression of receptors such as the epidermal growth factor receptor, or mutation of signalling pathway kinases resulting in inappropriate survival and proliferation. Consequently anticancer drugs have been developed that target this pathway. MDA-MB-468 breast and HCT8 colorectal cancer cells were treated with inhibitors including LY294002, MK2206, rapamycin, AZD8055 targeting key kinases in/associated with Akt pathway and the consistency of changes in 31P-NMR-detecatable metabolite content of tumour cells was examined. Treatment with the Akt inhibitor MK2206 reduced phosphocholine levels in MDA-MB-468 cells. Treatment with either the phosphoinositide-3-kinase inhibitor, LY294002 and pan-mTOR inhibitor, AZD8055 but not pan-Akt inhibitor MK2206 increased uridine-5′-diphosphate-hexose cell content which was suppressed by co-treatment with glycogen synthase kinase 3 inhibitor SB216763. This suggests that there is an Akt-independent link between phosphoinositol-3-kinase and glycogen synthase kinase3 and demonstrates the potential of 31P-NMR to probe intracellular signalling pathways.
Collapse
|
23
|
Luo B, Lin Y, Jiang S, Huang L, Yao H, Zhuang Q, Zhao R, Liu H, He C, Lin Z. Endoplasmic reticulum stress eIF2α-ATF4 pathway-mediated cyclooxygenase-2 induction regulates cadmium-induced autophagy in kidney. Cell Death Dis 2016; 7:e2251. [PMID: 27253415 PMCID: PMC5143407 DOI: 10.1038/cddis.2016.78] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
The heavy metal cadmium (Cd) is nephrotoxic. Recent studies show that autophagy plays an essential role in Cd-induced kidney injury. However, the mechanisms of Cd-induced kidney injury accompanied by autophagy are still obscure. In the present study, we first confirmed that Cd induced kidney damage and dysfunction, along with autophagy, both in vivo and in vitro. Then, we observed that cyclooxygenase-2 (COX-2) and the eIF2α-ATF4 pathway of endoplasmic reticulum (ER) stress were induced by Cd in both kidney tissues and cultured cells. Further studies showed that inhibition of COX-2 with celecoxib or RNA interference (RNAi) inhibited the Cd-induced autophagy in kidney cells. In addition, blocking ER stress with 4-phenylbutyrate or RNAi partially counteracted COX-2 overexpression and autophagy induced by Cd, which suggested that ER stress was required for Cd-induced kidney autophagy. Significantly, our results showed that Cd activated ATF4 and induced its translocation to the nucleus. Knockdown of ATF4 inhibited Cd-induced COX-2 overexpression. While COX-2 overexpression is involved in renal dysfunction, there is no prior report on the role of COX-2 in autophagy regulation. The results of the current study suggest a novel molecular mechanism that the ER stress eIF2α-ATF4 pathway-mediated COX-2 overexpression contributes to Cd-induced kidney autophagy and injury. The present study implies that COX-2 may be a potential target for therapy against Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- B Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Y Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - S Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - L Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - H Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Q Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - R Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - H Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - C He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Z Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
An RNA interference screen identifies new avenues for nephroprotection. Cell Death Differ 2015; 23:608-15. [PMID: 26564400 DOI: 10.1038/cdd.2015.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 01/28/2023] Open
Abstract
Acute kidney injury is a major public health problem, which is commonly caused by renal ischemia and is associated with a high risk of mortality and long-term disability. Efforts to develop a treatment for this condition have met with very limited success. We used an RNA interference screen to identify genes (BCL2L14, BLOC1S2, C2ORF42, CPT1A, FBP1, GCNT3, RHOB, SCIN, TACR1, and TNFAIP6) whose suppression improves survival of kidney epithelial cells in in vitro models of oxygen and glucose deprivation. Some of the genes also modulate the toxicity of cisplatin, an anticancer agent whose use is currently limited by nephrotoxicity. Furthermore, pharmacological inhibition of TACR1 product NK1R was protective in a model of mouse renal ischemia, attesting to the in vivo relevance of our findings. These data shed new light on the mechanisms of stress response in mammalian cells, and open new avenues to reduce the morbidity and mortality associated with renal injury.
Collapse
|
25
|
Xiao W, Gao Z, Duan Y, Yuan W, Ke Y. Downregulation of miR-19a exhibits inhibitory effects on metastatic renal cell carcinoma by targeting PIK3CA and inactivating Notch signaling in vitro. Oncol Rep 2015; 34:739-46. [PMID: 26058752 DOI: 10.3892/or.2015.4041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/28/2015] [Indexed: 11/05/2022] Open
Abstract
Metastasis seriously affects the clinical outcome of renal cell carcinoma patients. Despite the approval of several targeted therapies that have led to an improvement in the progression-free survival rate for these patients, advanced and metastatic renal cell carcinoma remains difficult to treat. Recently, microRNAs have been found to play a critical role in the metastatic dissemination of renal cell carcinoma cells. In the present study, we found that miR-19a expression was significantly upregulated in metastatic clear cell renal carcinoma than that in adjacent and primary carcinoma tissues using qPCR and in situ hybridization experiments. In addition, the results were confirmed in renal carcinoma cell lines. miR-19a expression in the cell lines derived from a metastatic site was higher than that in cell lines derived from a primary site. By gain- and loss-of-function experiments, we found that miR-19a acted as an oncogenic miRNA regulating renal cancer cell proliferation, migration and invasion by directly targeting PIK3CA. Furthermore, we also explored the downstream molecules of miR-19a/PIK3CA signaling. We found that Notch signaling was induced by upregulation of miR-19a, and inactivation of Notch signaling attenuated the cell proliferation, migration and invasion promoted by miR-19a. Thus, we provide evidence demonstrating that downregulation of miR-19a may be therapeutically beneficial for metastatic renal carcinoma.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Urology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Zhiyong Gao
- Department of Urology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Yixing Duan
- Department of Urology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Wuxiong Yuan
- Department of Urology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Yang Ke
- Department of Urology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|