1
|
Kakraba S, Ayyadevara S, Mainali N, Balasubramaniam M, Bowroju S, Penthala NR, Atluri R, Barger SW, Griffin ST, Crooks PA, Shmookler Reis RJ. Thiadiazolidinone (TDZD) Analogs Inhibit Aggregation-Mediated Pathology in Diverse Neurodegeneration Models, and Extend C. elegans Life- and Healthspan. Pharmaceuticals (Basel) 2023; 16:1498. [PMID: 37895969 PMCID: PMC10610358 DOI: 10.3390/ph16101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic, low-grade inflammation has been implicated in aging and age-dependent conditions, including Alzheimer's disease, cardiomyopathy, and cancer. One of the age-associated processes underlying chronic inflammation is protein aggregation, which is implicated in neuroinflammation and a broad spectrum of neurodegenerative diseases such as Alzheimer's, Huntington's, and Parkinson's diseases. We screened a panel of bioactive thiadiazolidinones (TDZDs) from our in-house library for rescue of protein aggregation in human-cell and C. elegans models of neurodegeneration. Among the tested TDZD analogs, PNR886 and PNR962 were most effective, significantly reducing both the number and intensity of Alzheimer-like tau and amyloid aggregates in human cell-culture models of pathogenic aggregation. A C. elegans strain expressing human Aβ1-42 in muscle, leading to AD-like amyloidopathy, developed fewer and smaller aggregates after PNR886 or PNR962 treatment. Moreover, age-progressive paralysis was reduced 90% by PNR886 and 75% by PNR962, and "healthspan" (the median duration of spontaneous motility) was extended 29% and 62%, respectively. These TDZD analogs also extended wild-type C. elegans lifespan by 15-30% (p < 0.001), placing them among the most effective life-extension drugs. Because the lead drug in this family, TDZD-8, inhibits GSK3β, we used molecular-dynamic tools to assess whether these analogs may also target GSK3β. In silico modeling predicted that PNR886 or PNR962 would bind to the same allosteric pocket of inactive GSK3β as TDZD-8, employing the same pharmacophore but attaching with greater avidity. PNR886 and PNR962 are thus compelling candidate drugs for treatment of tau- and amyloid-associated neurodegenerative diseases such as AD, potentially also reducing all-cause mortality.
Collapse
Affiliation(s)
- Samuel Kakraba
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Nirjal Mainali
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Meenakshisundaram Balasubramaniam
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Suresh Bowroju
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.B.); (N.R.P.); (P.A.C.)
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.B.); (N.R.P.); (P.A.C.)
| | - Ramani Atluri
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.B.); (N.R.P.); (P.A.C.)
| | - Robert J. Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (M.B.); (R.A.); (S.W.B.); (S.T.G.)
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
García-Costela M, Escudero-Feliú J, Puentes-Pardo JD, San Juán SM, Morales-Santana S, Ríos-Arrabal S, Carazo Á, León J. Circadian Genes as Therapeutic Targets in Pancreatic Cancer. Front Endocrinol (Lausanne) 2020; 11:638. [PMID: 33042011 PMCID: PMC7516350 DOI: 10.3389/fendo.2020.00638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most lethal cancers worldwide due to its symptoms, early metastasis, and chemoresistance. Thus, the mechanisms contributing to pancreatic cancer progression require further exploration. Circadian rhythms are the daily oscillations of multiple biological processes regulated by an endogenous clock. Several evidences suggest that the circadian clock may play an important role in the cell cycle, cell proliferation and apoptosis. In addition, timing of chemotherapy or radiation treatment can influence the efficacy and toxicity treatment. Here, we revisit the studies on circadian clock as an emerging target for therapy in pancreatic cancer. We highlight those potential circadian genes regulators that are commonly affected in pancreatic cancer according to most recent reports.
Collapse
Affiliation(s)
- María García-Costela
- Research Unit, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
| | - Julia Escudero-Feliú
- Research Unit, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
| | - Jose D. Puentes-Pardo
- Research Unit, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
- Jose D. Puentes-Pardo
| | - Sara Moreno San Juán
- Cytometry and Michroscopy Research Service, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
| | - Sonia Morales-Santana
- Proteomic Research Service, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
- Endocrinology Unit, Endocrinology Division, CIBER of Fragility and Healthy Aging (CIBERFES), San Cecilio University Hospital, Granada, Spain
| | - Sandra Ríos-Arrabal
- Research Unit, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
- *Correspondence: Sandra Ríos-Arrabal
| | - Ángel Carazo
- Genomic Research Service, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
| | - Josefa León
- Research Unit, Biosanitary Research Institute of Granada, ibs.GRANADA, Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
3
|
GATA-4 regulates neuronal apoptosis after intracerebral hemorrhage via the NF-κB/Bax/Caspase-3 pathway both in vivo and in vitro. Exp Neurol 2019; 315:21-31. [PMID: 30710529 DOI: 10.1016/j.expneurol.2019.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/25/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
GATA-binding protein 4 (GATA-4),a member of the GATA family of transcription factors, is expressed in the normal brain and participates in the neural inflammatory response and senescence. However, few studies have investigated whether GATA-4 is involved in the brain damage induced by intracerebral hemorrhage (ICH). The aim of this study was to investigate in vivo and in vitro the role of GATA-4 in ICH-induced secondary brain injury (SBI) and its potential underlying mechanisms. A rat model of ICH was established by autologous blood injection in vivo. In vitro, oxidized hemoglobin was applied to mimic the effects of ICH in neuronal culture. The function of GATA-4 and its mechanism of action after ICH were investigated using siRNA-mediated knockdown and plasmid-mediated overexpression techniques combined with immunofluorescence, western blot, and other molecular methods. It was found that the expression of GATA-4 was increased in the brain of rats after ICH, and its phosphorylation also increased correspondingly. Furthermore, knocking down the expression of GATA-4 led to a significant decrease in neurobehavioral scores and neuronal apoptosis, indicating that secondary brain damage was improved. Conversely, the overexpression of GATA-4 aggravated brain damage. Blockade of a critical phosphorylation site on the GATA-4 overexpression plasmid alleviated the exacerbated damage in vitro and in vivo. Moreover, GATA-4 promoted the activation of NF-κB, and increased the expression of Bax, and cysteine aspartate-specific protease 3 (caspase-3) in its cleaved form, causing neuronal apoptosis. In conclusion, the expression of GATA-4 was increased in the brain of rats after ICH. GATA-4 phosphorylation mediates the function of the protein in ICH-induced SBI. Neuronal apoptosis after ICH was mainly induced by NF-κB activation, which was promoted by GATA-4.
Collapse
|
4
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Mao ZJ, Li GQ, Huang J, 南 华. Role of GSK-3β in triptolide induced apoptosis of pancreatic cancer cells. Shijie Huaren Xiaohua Zazhi 2015; 23:256-260. [DOI: 10.11569/wcjd.v23.i2.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of glycogen synthase kinase 3β (GSK-3β) in triptolide induced apoptosis of pancreatic cancer cells.
METHODS: Pancreatic cancer AsPC-1 cells were treated with triptolide in the presence or absence of GSK-3β inhibitor LiCl. Cell apoptosis was assessed using flow cytometry. The expression of GSK-3β, p-glycogen synthase kinase-3β (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) proteins was detected by Western blot.
RESULTS: Treatment with triptolide (TPL) at 6.54 ng/mL and 15.51 ng/mL significantly reduced the growth of AsPC-1 cells, and the rates of reduced growth were 39.64% and 52.19%, respectively. LiCl pretreatment reduced the rates of reduced growth to 27.36% and 41.94%, respectively. LiCl pretreatment significantly reduced the apoptosis rate of AsPC-1 cells. Triptolide treatment significantly increased the level of p-GSK-3β in AsPC-1 cells, but had no significant impact on GSK-3β expression; LiCl pretreatment significantly increased the expression level of p-GSK-3β in AsPC-1 cells, had no significant impact on GSK-3β expression, and significantly reduced the expression of apoptosis-related factors Bcl-2, B-cell lymphoma-xl (Bcl-xl) and myeloid cell leukemia-1 (Mcl-1).
CONCLUSION: The increased level of p-GSK-3βcan inhibit triptolide induced pancreatic cancer cell apoptosis.
Collapse
|