1
|
Nasimi Shad A, Akhlaghipour I, Alshakarchi HI, Saburi E, Moghbeli M. Role of microRNA-363 during tumor progression and invasion. J Physiol Biochem 2024; 80:481-499. [PMID: 38691273 DOI: 10.1007/s13105-024-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Recent progresses in diagnostic and therapeutic methods have significantly improved prognosis in cancer patients. However, cancer is still considered as one of the main causes of human deaths in the world. Late diagnosis in advanced tumor stages can reduce the effectiveness of treatment methods and increase mortality rate of cancer patients. Therefore, investigating the molecular mechanisms of tumor progression can help to introduce the early diagnostic markers in these patients. MicroRNA (miRNAs) has an important role in regulation of pathophysiological cellular processes. Due to their high stability in body fluids, they are always used as the non-invasive markers in cancer patients. Since, miR-363 deregulation has been reported in a wide range of cancers, we discussed the role of miR-363 during tumor progression and metastasis. It has been reported that miR-363 has mainly a tumor suppressor function through the regulation of transcription factors, apoptosis, cell cycle, and structural proteins. MiR-363 also affected the tumor progression via regulation of various signaling pathways such as WNT, MAPK, TGF-β, NOTCH, and PI3K/AKT. Therefore, miR-363 can be introduced as a probable therapeutic target as well as a non-invasive diagnostic marker in cancer patients.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hawraa Ibrahim Alshakarchi
- Al-Zahra Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, Iraq
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zangouei AS, Alimardani M, Moghbeli M. MicroRNAs as the critical regulators of Doxorubicin resistance in breast tumor cells. Cancer Cell Int 2021; 21:213. [PMID: 33858435 PMCID: PMC8170947 DOI: 10.1186/s12935-021-01873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemotherapy is one of the most common treatment options for breast cancer (BC) patients. However, about half of the BC patients are chemotherapeutic resistant. Doxorubicin (DOX) is considered as one of the first line drugs in the treatment of BC patients whose function is negatively affected by multi drug resistance. Due to the severe side effects of DOX, it is very important to diagnose the DOX resistant BC patients. Therefore, assessment of molecular mechanisms involved in DOX resistance can improve the clinical outcomes in BC patients by introducing the novel therapeutic and diagnostic molecular markers. MicroRNAs (miRNAs) as members of the non-coding RNAs family have pivotal roles in various cellular processes including cell proliferation and apoptosis. Therefore, aberrant miRNAs functions and expressions can be associated with tumor progression, metastasis, and drug resistance. Moreover, due to miRNAs stability in body fluids, they can be considered as non-invasive diagnostic markers for the DOX response in BC patients. MAIN BODY In the present review, we have summarized all of the miRNAs that have been reported to be associated with DOX resistance in BC for the first time in the world. CONCLUSIONS Since, DOX has severe side effects; it is required to distinguish the non DOX-responders from responders to improve the clinical outcomes of BC patients. This review highlights the miRNAs as pivotal regulators of DOX resistance in breast tumor cells. Moreover, the present review paves the way of introducing a non-invasive panel of prediction markers for DOX response among BC patients.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Alimardani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Haasler L, Kondadi AK, Tsigaras T, von Montfort C, Graf P, Stahl W, Brenneisen P. The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells in vitro. Arch Toxicol 2021; 95:1349-1365. [PMID: 33523262 PMCID: PMC8032633 DOI: 10.1007/s00204-021-02987-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the “parent” compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.
Collapse
Affiliation(s)
- Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Graf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers (Basel) 2020; 13:cancers13010078. [PMID: 33396645 PMCID: PMC7795116 DOI: 10.3390/cancers13010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary BCL2L10 is the sixth and less studied protein from the group of Bcl-2 anti-apoptotic proteins. These proteins are important therapeutic targets since they convey resistance to anticancer regimens. We describe here for the first time the role of BCL2L10 in melanoma. We found that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. This increased expression is due to the activity of the transcription factor STAT3 that positively regulate BCL2L10 transcription. We describe that Bcl2l10 is a pro-survival factor in melanoma, being able to protect cells from the cytotoxic effect of different drugs, including cisplatin, dacarbazine, and ABT-737. BCL2L10 also inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma. Abstract The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.
Collapse
|
5
|
The X-linked trichothiodystrophy-causing gene RNF113A links the spliceosome to cell survival upon DNA damage. Nat Commun 2020; 11:1270. [PMID: 32152280 PMCID: PMC7062854 DOI: 10.1038/s41467-020-15003-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Prolonged cell survival occurs through the expression of specific protein isoforms generated by alternate splicing of mRNA precursors in cancer cells. How alternate splicing regulates tumor development and resistance to targeted therapies in cancer remain poorly understood. Here we show that RNF113A, whose loss-of-function causes the X-linked trichothiodystrophy, is overexpressed in lung cancer and protects from Cisplatin-dependent cell death. RNF113A is a RNA-binding protein which regulates the splicing of multiple candidates involved in cell survival. RNF113A deficiency triggers cell death upon DNA damage through multiple mechanisms, including apoptosis via the destabilization of the prosurvival protein MCL-1, ferroptosis due to enhanced SAT1 expression, and increased production of ROS due to altered Noxa1 expression. RNF113A deficiency circumvents the resistance to Cisplatin and to BCL-2 inhibitors through the destabilization of MCL-1, which thus defines spliceosome inhibitors as a therapeutic approach to treat tumors showing acquired resistance to specific drugs due to MCL-1 stabilization. Alternate splicing of mRNA precursors has been linked to tumor development. Here the authors reveal a role of the E3 ligase RNF113A in spliceosome regulation affecting cell survival upon DNA damage.
Collapse
|
6
|
Chiou JT, Lee YC, Huang CH, Shi YJ, Wang LJ, Chang LS. Autophagic HuR mRNA degradation induces survivin and MCL1 downregulation in YM155-treated human leukemia cells. Toxicol Appl Pharmacol 2020; 387:114857. [DOI: 10.1016/j.taap.2019.114857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|
7
|
Zhao J, Wozniak A, Adams A, Cox J, Vittal A, Voss J, Bridges B, Weinman SA, Li Z. SIRT7 regulates hepatocellular carcinoma response to therapy by altering the p53-dependent cell death pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:252. [PMID: 31196136 PMCID: PMC6567523 DOI: 10.1186/s13046-019-1246-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Background Optimal therapeutic strategies for hepatocellular carcinoma (HCC) patients are still challenging due to the high recurrence rate after surgical resection and chemotherapy resistance. Growing evidence shows that genetic and epigenetic alterations are involved in HCC progression and resistance to therapy, however the molecular mechanisms underlying resistance to therapy have not been fully understood. Methods Expression of SIRT7 in 17 paired paraffin-embedded HCC tissues and adjacent nontumoral liver tissues was examined by immunohistochemistry and Western blot. The mRNA expression of SIRT7 in 20 paired frozen HCC tissues and adjacent nontumoral liver tissues was analyzed by quantitative RT-PCR. The biologic consequences of overexpression and knockdown of SIRT7 in HCC therapy sensitivity were studied in vitro and in vivo. Interaction between SIRT7 and p53 were studied in HCC cell lines. Results SIRT7 expression was frequently upregulated in clinical HCC samples, and its expression was highly associated with TACE-resistance and poor survival (P = 0.008.) Depletion of SIRT7 from multiple liver cancer cell lines significantly increased doxorubicin toxicity while overexpression of SIRT7 largely abolished doxorubicin induced apoptosis. At the molecular level, we observed that SIRT7 interacts with and induces deacetylation of p53 at lysines 320 and 373. Deacetylated p53 showed significantly less affinity for the NOXA promoter and its transcription. In mouse xenografts, SIRT7 suppression increased doxorubicin induced p53 activation, inhibited tumor growth and induced apoptosis. Conclusion The newly identified SIRT7-p53-NOXA axis partially illustrates the molecular mechanism of HCC resistance to therapy and represents a novel potential therapeutic target for HCC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1246-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Ann Wozniak
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Abby Adams
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Josiah Cox
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Anusha Vittal
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Jordan Voss
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA
| | - Brian Bridges
- Liver Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Steven A Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA. .,Liver Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Zhuan Li
- Department of Internal Medicine, University of Kansas Medical Center, Mailstop 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
8
|
Chen YJ, Huang CH, Shi YJ, Lee YC, Wang LJ, Chang LS. The suppressive effect of arsenic trioxide on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 expression induces apoptosis in human leukemia cells. Toxicol Appl Pharmacol 2018; 358:43-55. [PMID: 30213730 DOI: 10.1016/j.taap.2018.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
Abstract
Arsenic trioxide (ATO) has been reported to inhibit the activity of Ten-eleven translocation methylcytosine dioxygenase (TET). TET modulates FOXP3 expression, while dysregulation of FOXP3 expression promotes the malignant progression of leukemia cells. We examined the role of TET-FOXP3 axis in the cytotoxic effects of ATO on the human acute myeloid leukemia cell line, U937. ATO-induced apoptosis in U937 cells was characterized by activation of caspase-3/-9, mitochondrial depolarization, and MCL1 downregulation. In addition, ATO-treated U937 cells showed ROS-mediated inhibition of TET2 transcription, leading to downregulation of FOXP3 expression and in turn, suppression of FOXP3-mediated activation of Lyn and Akt. Overexpression of FOXP3 or Lyn minimized the suppressive effect of ATO on Akt activation and MCL1 expression. Promoter luciferase activity and chromatin immunoprecipitation assays revealed the crucial role of Akt-mediated CREB phosphorylation in MCL1 transcription. Further, ATO-induced Akt inactivation promoted GSK3β-mediated degradation of MCL1. Transfection of constitutively active Akt expression abrogated ATO-induced MCL1 downregulation. MCL1 overexpression lessened the ATO-induced depolarization of mitochondrial membrane and increased the viability of ATO-treated cells. Thus, our data suggest that ATO induces mitochondria-mediated apoptosis in U937 cells through its suppressive effect on TET2-FOXP3-Lyn-Akt axis-modulated MCL1 transcription and protein stabilization. Our findings also indicate that the same pathway underlies ATO-induced death in human leukemia HL-60 cells.
Collapse
Affiliation(s)
- Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
9
|
Lee YC, Wang LJ, Huang CH, Shi YJ, Chang LS. ABT-263-induced MCL1 upregulation depends on autophagy-mediated 4EBP1 downregulation in human leukemia cells. Cancer Lett 2018; 432:191-204. [DOI: 10.1016/j.canlet.2018.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/14/2023]
|
10
|
Timucin AC, Basaga H, Kutuk O. Selective targeting of antiapoptotic BCL-2 proteins in cancer. Med Res Rev 2018; 39:146-175. [DOI: 10.1002/med.21516] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/05/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmet Can Timucin
- Faculty of Engineering and Natural Sciences, Department of Chemical and Biological Engineering; Uskudar University; Uskudar Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program; Sabanci University; Tuzla Istanbul Turkey
| | - Huveyda Basaga
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program; Sabanci University; Tuzla Istanbul Turkey
| | - Ozgur Kutuk
- Department of Medical Genetics; Adana Medical and Research Center; School of Medicine, Baskent University; Yuregir Adana Turkey
| |
Collapse
|
11
|
Mukherjee N, Almeida A, Partyka KA, Lu Y, Schwan JV, Lambert K, Rogers M, Robinson WA, Robinson SE, Applegate AJ, Amato CM, Luo Y, Fujita M, Norris DA, Shellman YG. Combining a GSI and BCL-2 inhibitor to overcome melanoma's resistance to current treatments. Oncotarget 2018; 7:84594-84607. [PMID: 27829238 PMCID: PMC5356684 DOI: 10.18632/oncotarget.13141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Major limitations of current melanoma treatments are for instances of relapse and the lack of therapeutic options for BRAF wild-type patients who do not respond to immunotherapy. Many studies therefore focus on killing resistant subpopulations, such as Melanoma Initiating Cells (MICs) to prevent relapse. Here we examined whether combining a GSI (γ-Secretase Inhibitor) with ABT-737 (a small molecule BCL-2/BCL-XL/BCL-W inhibitor) can kill both the non-MICs (bulk of melanoma) and MICs. To address the limitations of melanoma therapies, we included multiple tumor samples of patients relapsed from current treatments, with a diverse genetic background (with or without the common BRAF, NRAS or NF1 mutations) in these studies. Excitingly, the combination treatment reduced cell viability and induced apoptosis of the non-MICs; disrupted primary spheres, decreased the ALDH+ cells, and inhibited the self-renewability of the MICs in multiple melanoma cell lines and relapsed patient samples. Using a low-cell-number mouse xenograft model, we demonstrated that the combination significantly reduced the tumor initiating ability of MIC-enriched cultures from relapsed patient samples. Mechanistic studies also indicate that cell death is NOXA-dependent. In summary, this combination may be a promising strategy to address treatment relapse and for triple wild-type patients who do not respond to immunotherapy.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Adam Almeida
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Katie A Partyka
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Yan Lu
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Josianna V Schwan
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Karoline Lambert
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Madison Rogers
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Steven E Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Allison J Applegate
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Carol M Amato
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Yuchun Luo
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Mayumi Fujita
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - David A Norris
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA.,Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO 80220, USA
| | - Yiqun G Shellman
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Subramanian A, Andronache A, Li YC, Wade M. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA. Oncotarget 2017; 7:15986-6002. [PMID: 26910119 PMCID: PMC4941292 DOI: 10.18632/oncotarget.7558] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
BH3 mimetic compounds induce tumor cell death through targeted inhibition of anti-apoptotic BCL2 proteins. Resistance to one such compound, ABT-737, is due to increased levels of anti-apoptotic MCL1. Using chemical and genetic approaches, we show that resistance to ABT-737 is abrogated by inhibition of the mitochondrial RING E3 ligase, MARCH5. Mechanistically, this is due to increased expression of pro-apoptotic BCL2 family member, NOXA, and is associated with MARCH5 regulation of MCL1 ubiquitylation and stability in a NOXA-dependent manner. MARCH5 expression contributed to an 8-gene signature that correlates with sensitivity to the preclinical BH3 mimetic, navitoclax. Furthermore, we observed a synthetic lethal interaction between MCL1 and MARCH5 in MCL1-dependent breast cancer cells. Our data uncover a novel level at which the BCL2 family is regulated; furthermore, they suggest targeting MARCH5-dependent signaling will be an effective strategy for treatment of BH3 mimetic-resistant tumors, even in the presence of high MCL1.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Yao-Cheng Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
13
|
Torres-Adorno AM, Lee J, Kogawa T, Ordentlich P, Tripathy D, Lim B, Ueno NT. Histone Deacetylase Inhibitor Enhances the Efficacy of MEK Inhibitor through NOXA-Mediated MCL1 Degradation in Triple-Negative and Inflammatory Breast Cancer. Clin Cancer Res 2017; 23:4780-4792. [PMID: 28465444 DOI: 10.1158/1078-0432.ccr-16-2622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/26/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023]
Abstract
Purpose: Inflammatory breast cancer (IBC), diagnosed clinically, and triple-negative breast cancer (TNBC), diagnosed by molecular receptor status, are the two most aggressive forms of breast cancer, and both lack effective targeted therapies. We previously demonstrated involvement of histone deacetylase (HDAC) inhibitor entinostat in regulating apoptosis in IBC and TNBC cells; here, we aimed to identify novel combination therapy candidates.Experimental Design: Potential therapeutic targets were identified by mRNA expression profiling of TNBC and IBC cells treated with entinostat. Drug action and synergism were assessed by in vitro proliferation assays, tumor growth in vivo, and proteomic analyses. Gain/loss-of-expression studies were utilized to functionally validate the role of identified targets in sensitivity of TNBC and IBC cells to combination therapy.Results: Entinostat induced activity of the oncogenic ERK pathway and expression of proapoptotic NOXA. These are known to stabilize and degrade, respectively, MCL1, an antiapoptotic Bcl-2 protein. In breast cancer patients, high-MCL1/low-NOXA tumor expression correlated significantly with poor survival outcomes. Combination treatment of entinostat with MEK inhibitor pimasertib reduced the growth of TNBC and IBC cells in vitro and inhibited tumor growth in vivo The synergistic action of combination therapy was observed in TNBC and IBC cell lines in which NOXA expression was induced following entinostat treatment. The therapeutic activity depended on induction of mitochondrial cell death pathways initiated by NOXA-mediated MCL1 degradation.Conclusions: Our preclinical findings provide a rationale for the clinical testing of combination HDAC and MEK pathway inhibition for TNBC and IBC that exhibit elevated baseline tumor MCL1 expression. Clin Cancer Res; 23(16); 4780-92. ©2017 AACR.
Collapse
Affiliation(s)
- Angie M Torres-Adorno
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Takahiro Kogawa
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Debu Tripathy
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bora Lim
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
14
|
Witkiewicz AK, Balaji U, Eslinger C, McMillan E, Conway W, Posner B, Mills GB, O'Reilly EM, Knudsen ES. Integrated Patient-Derived Models Delineate Individualized Therapeutic Vulnerabilities of Pancreatic Cancer. Cell Rep 2016; 16:2017-31. [PMID: 27498862 DOI: 10.1016/j.celrep.2016.07.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) harbors the worst prognosis of any common solid tumor, and multiple failed clinical trials indicate therapeutic recalcitrance. Here, we use exome sequencing of patient tumors and find multiple conserved genetic alterations. However, the majority of tumors exhibit no clearly defined therapeutic target. High-throughput drug screens using patient-derived cell lines found rare examples of sensitivity to monotherapy, with most models requiring combination therapy. Using PDX models, we confirmed the effectiveness and selectivity of the identified treatment responses. Out of more than 500 single and combination drug regimens tested, no single treatment was effective for the majority of PDAC tumors, and each case had unique sensitivity profiles that could not be predicted using genetic analyses. These data indicate a shortcoming of reliance on genetic analysis to predict efficacy of currently available agents against PDAC and suggest that sensitivity profiling of patient-derived models could inform personalized therapy design for PDAC.
Collapse
Affiliation(s)
- Agnieszka K Witkiewicz
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pathology, University of Arizona, 1501 N. Campbell Street, Tucson, AZ 85724, USA; University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Street, Tucson, AZ 85724, USA.
| | - Uthra Balaji
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cody Eslinger
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Elizabeth McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - William Conway
- Department of Surgery, Ochsner Medical Center, 1514 Jefferson Highway, Jefferson, LA 70121, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, 1275 York Street, New York, NY 10065, USA
| | - Erik S Knudsen
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Street, Tucson, AZ 85724, USA; Department of Medicine, University of Arizona, 1515 N. Campbell Street, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Knockdown of miR-182 promotes apoptosis via regulating RIP1 deubiquitination in TNF-α-treated triple-negative breast cancer cells. Tumour Biol 2016; 37:13733-13742. [PMID: 27476169 DOI: 10.1007/s13277-016-5174-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
Overexpression of microRNA-182 (miR-182) is found in multiple cancers, but the association of miR-182 expression with the sensitivity of triple-negative breast cancer (TNBC) cells to tumor necrosis factor-alpha (TNF-α) remains unknown. In this study, up-regulation of miR-182 was validated in TNBC patients and cell lines. Knockdown of miR-182 was observed to hinder the proliferation of BT-549 cells. More importantly, knockdown of miR-182 significantly promoted the apoptosis induced by TNF-α treatment in BT-549. JC-1 staining and western blot assays revealed that the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed and the outer mitochondrial membrane potential (MMP) and permeability was altered upon combination of TNF-α with anti-miR-182. We then demonstrated that knockdown of miR-182 up-regulated the expression of cylindromatosis (CYLD) deubiquitinase, which promoted the formation of death-inducing signaling complex (DISC) and subsequent caspase-8 activation in TNF-α-treated BT-549 cells. Collectively, the results of the present study improve our understanding of the role of miR-182 in TNBC, knockdown of which facilitates the degradation of ubiquitin chains on RIP1, leading to the caspase-8 activation and apoptosis in TNF-α-treated TNBC cells. This may be valuable for the development of cancer therapy.
Collapse
|
16
|
Yu Q, Liu ZY, Chen Q, Lin JS. Mcl-1 as a potential therapeutic target for human hepatocelluar carcinoma. ACTA ACUST UNITED AC 2016; 36:494-500. [DOI: 10.1007/s11596-016-1614-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
|
17
|
Hiraki M, Suzuki Y, Alam M, Hinohara K, Hasegawa M, Jin C, Kharbanda S, Kufe D. MUC1-C Stabilizes MCL-1 in the Oxidative Stress Response of Triple-Negative Breast Cancer Cells to BCL-2 Inhibitors. Sci Rep 2016; 6:26643. [PMID: 27217294 PMCID: PMC4877578 DOI: 10.1038/srep26643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/06/2016] [Indexed: 01/15/2023] Open
Abstract
Aberrant expression of myeloid cell leukemia-1 (MCL-1) is a major cause of drug resistance in triple-negative breast cancer (TNBC) cells. Mucin 1 (MUC1) is a heterodimeric oncoprotein that is aberrantly overexpressed in most TNBC. The present studies show that targeting the oncogenic MUC1 C-terminal subunit (MUC1-C) in TNBC cells with silencing or pharmacologic inhibition with GO-203 is associated with downregulation of MCL-1 levels. Targeting MUC1-C suppresses the MEK → ERK and PI3K → AKT pathways, and in turn destabilizes MCL-1. The small molecules ABT-737 and ABT-263 target BCL-2, BCL-XL and BCL-w, but not MCL-1. We show that treatment with ABT-737 increases reactive oxygen species and thereby MUC1-C expression. In this way, MUC1-C is upregulated in TNBC cells resistant to ABT-737 or ABT-263. We also demonstrate that MUC1-C is necessary for the resistance-associated increases in MCL-1 levels. Significantly, combining GO-203 with ABT-737 is synergistic in inhibiting survival of parental and drug resistant TNBC cells. These findings indicate that targeting MUC1-C is a potential strategy for reversing MCL-1-mediated resistance in TNBC.
Collapse
Affiliation(s)
- Masayuki Hiraki
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Yozo Suzuki
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Maroof Alam
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Kunihiko Hinohara
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Masanori Hasegawa
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Caining Jin
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Surender Kharbanda
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| |
Collapse
|
18
|
Zheng Y, Lv X, Wang X, Wang B, Shao X, Huang Y, Shi L, Chen Z, Huang J, Huang P. MiR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncol Rep 2015; 35:683-90. [PMID: 26572075 DOI: 10.3892/or.2015.4417] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are emerging as critical regulators of the initiation and progression of multiple types of human cancers, including breast cancer. In the present study, the expression of miR-181b in breast cancer patient serum and breast cancer cell lines was evaluated. It was demonstrated that the miR-181b level was significantly upregulated in patient serum and breast cancer cell lines compared with that in normal controls. The results of in vitro 3H thymidine incorporation and Transwell migration assay indicated that miR-181b overexpression markedly promoted the proliferation and metastasis of breast cancer cells. These data suggest that miR-181b is a tumor promoter in breast cancer. Furthermore, miR-181b expression was found to be upregulated in doxorubicin (DOX)-resistant T-47D cells (T-47D-R) compared with that in the parental T-47D cells, and upregulation of miR-181b expression decreased the anticancer effect of DOX in the T-47D cells. Mechanistic studies demonstrated that the Bim gene, an essential initiator of apoptosis, was inhibited by miR-181b overexpression. We observed that knockdown of miR-181b by its specific inhibitors significantly re-sensitized the T-47D-R cells to the cytotoxicity of DOX. Importantly, we demonstrated that miR-181b inhibitors increased the level of Bim in the T-47D-R cells, resulting in the loss of mitochondrial membrane potential (MMP) and the activation of caspases caused by DOX. In summary, the results of the present study suggest that miR-181b functions as an oncogene during breast cancer development, and the miR-181b/Bim pathway may be a novel target used to overcome the chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Yabing Zheng
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaoai Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Shangcheng, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaojia Wang
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Bei Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Shangcheng, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiying Shao
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yuan Huang
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lei Shi
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhanhong Chen
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jian Huang
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Ping Huang
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
19
|
Giamboi-Miraglia A, Cianfarani F, Cattani C, Lena AM, Serra V, Campione E, Terrinoni A, Zambruno G, Odorisio T, Di Daniele N, Melino G, Candi E. The E3 ligase Itch knockout mice show hyperproliferation and wound healing alteration. FEBS J 2015; 282:4435-49. [PMID: 26361888 DOI: 10.1111/febs.13514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 12/16/2022]
Abstract
The HECT-type E3 ubiquitin ligase Itch is absent in the non-agouti-lethal 18H or Itchy mice, which develop a severe immunological disease. Several of the known Itch substrates are relevant for epidermal development and homeostasis, such as p63, Notch, c-Jun and JunB. By analysing Itchy mice before the onset of immunological alterations, we investigated the contribution of Itch in skin development and wound healing. Itchy newborn mice manifested hyperplastic epidermis, which is not present in adulthood. Itch(-/-) cultured keratinocytes showed overexpression of proliferating markers and increased capability to proliferate, migrate and to repair a scratch injury in vitro. These data correlated with improved in vivo wound healing in Itchy mice, at late time points of the repair process when Itch is physiologically upregulated. Despite healing acceleration, epidermal remodelling was delayed in the scars of Itch(-/-) mice, as indicated by enhanced epidermal thickening, keratinocyte proliferation and keratin 6 expression, and retarded keratin 14 polarization to the basal layer. Itch(-/-) keratinocyte prolonged activation was not associated with increased immune cell persistence in the scars. Our in vitro and in vivo results indicate that Itch plays a role in epidermal homeostasis and remodelling and this feature does not seem to depend on immunological alterations.
Collapse
Affiliation(s)
| | - Francesca Cianfarani
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Caterina Cattani
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy
| | - Valeria Serra
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy
| | - Elena Campione
- Department of Dermatology, University of 'Tor Vergata', Rome, Italy
| | - Alessandro Terrinoni
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Giovanna Zambruno
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Teresa Odorisio
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of 'Tor Vergata', Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy.,MRC Toxicology Unit, Leicester, UK
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy.,Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| |
Collapse
|
20
|
miR-193b Modulates Resistance to Doxorubicin in Human Breast Cancer Cells by Downregulating MCL-1. BIOMED RESEARCH INTERNATIONAL 2015; 2015:373574. [PMID: 26526790 PMCID: PMC4615858 DOI: 10.1155/2015/373574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/14/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) family, which is involved in cancer development, proliferation, apoptosis, and drug resistance, is a group of noncoding RNAs that modulate the expression of oncogenes and antioncogenes. Doxorubicin is an active cytotoxic agent for breast cancer treatment, but the acquisition of doxorubicin resistance is a common and critical limitation to cancer therapy. The aim of this study was to investigate whether miR-193b mediated the resistance of breast cancer cells to doxorubicin by targeting myeloid cell leukemia-1 (MCL-1). In this study, we found that miR-193b levels were significantly lower in doxorubicin-resistant MCF-7 (MCF-7/DOXR) cells than in the parental MCF-7 cells. We observed that exogenous miR-193b significantly suppressed the ability of MCF-7/DOXR cells to resist doxorubicin. It demonstrated that miR-193b directly targeted MCL-1 3'-UTR (3'-Untranslated Regions). Further studies indicated that miR-193b sensitized MCF-7/DOXR cells to doxorubicin through a mechanism involving the downregulation of MCL-1. Together, our findings provide evidence that the modulation of miR-193b may represent a novel therapeutic target for the treatment of breast cancer.
Collapse
|
21
|
Ou Y, Zhai D, Wu N, Li X. Downregulation of miR-363 increases drug resistance in cisplatin-treated HepG2 by dysregulating Mcl-1. Gene 2015; 572:116-122. [PMID: 26143754 DOI: 10.1016/j.gene.2015.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/05/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
Abstract
Systemic therapy with cytotoxic agents provides marginal benefit in hepatocellular carcinoma (HCC) treatment especially for patients with advanced HCC. Cisplatin is one of the most active cytotoxic agents for HCC treatment. However, acquisition of cisplatin resistance is common, and one important underlying mechanism of such resistance is apoptosis-resistance. In this study, we found that miR-363 levels were significantly decreased in HCC patients treated with cisplatin-based chemotherapy. MiR-363 levels were also lower in cisplatin-resistant HepG2 (HepG2-R) cells than in HepG2 cells. Exogenous miR-363 significantly overcame cisplatin resistance in HepG2-R cells, whereas miR-363 knockdown increased the cell viability during cisplatin treatment. We further demonstrated that miR-363 directly targeted to Mcl-1 3'-UTR (3'-Untranslated Regions). Downregulation of miR-363 resulted in upregulation of Mcl-1 which is a key member of anti-apoptotic Bcl-2 family and increased drug resistance. We finally demonstrated that miR-363 decreased cisplatin resistance of HCC cell, partly by targeting Mcl-1. These data suggest that the combination of miR-363 and cisplatin may represent a novel approach in treatment for HCC, thus offering a new target for chemotherapy of HCC.
Collapse
Affiliation(s)
- Yangyang Ou
- Xiangya Hospital of Central-South University, Changsha, Hunan 410008, PR China
| | - Denggao Zhai
- Xiangya Hospital of Central-South University, Changsha, Hunan 410008, PR China
| | - Nan Wu
- Xiangya Hospital of Central-South University, Changsha, Hunan 410008, PR China
| | - Xiaoli Li
- Xiangya Hospital of Central-South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
22
|
Busacca S, Law EWP, Powley IR, Proia DA, Sequeira M, Le Quesne J, Klabatsa A, Edwards JM, Matchett KB, Luo JL, Pringle JH, El-Tanani M, MacFarlane M, Fennell DA. Resistance to HSP90 inhibition involving loss of MCL1 addiction. Oncogene 2015; 35:1483-92. [PMID: 26096930 PMCID: PMC4819782 DOI: 10.1038/onc.2015.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
Abstract
Inhibition of the chaperone heat-shock protein 90 (HSP90) induces apoptosis, and it is a promising anti-cancer strategy. The mechanisms underpinning apoptosis activation following HSP90 inhibition and how they are modified during acquired drug resistance are unknown. We show for the first time that, to induce apoptosis, HSP90 inhibition requires the cooperation of multi BH3-only proteins (BID, BIK, PUMA) and the reciprocal suppression of the pro-survival BCL-2 family member MCL1, which occurs via inhibition of STAT5A. A subset of tumour cell lines exhibit dependence on MCL1 expression for survival and this dependence is also associated with tumour response to HSP90 inhibition. In the acquired resistance setting, MCL1 suppression in response to HSP90 inhibitors is maintained; however, a switch in MCL1 dependence occurs. This can be exploited by the BH3 peptidomimetic ABT737, through non-BCL-2-dependent synthetic lethality.
Collapse
Affiliation(s)
- S Busacca
- Department of Cancer Studies, Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | - E W P Law
- Department of Cancer Studies, Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | | | - D A Proia
- Synta Pharmaceuticals Corp., Lexington, MA, USA
| | - M Sequeira
- Synta Pharmaceuticals Corp., Lexington, MA, USA
| | - J Le Quesne
- Department of Cancer Studies, Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK.,MRC Toxicology Unit, Leicester, UK
| | - A Klabatsa
- Division of Cancer Studies, King's College London, London, UK
| | | | - K B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - J L Luo
- Department of Cancer Studies, Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | - J H Pringle
- Department of Cancer Studies, Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| | - M El-Tanani
- Institute of Cancer Therapeutics, School of Life Sciences, University of Bradford, Bradford, UK
| | | | - D A Fennell
- Department of Cancer Studies, Cancer Research UK Leicester Centre, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Yin W, Nie Y, Zhang Z, Xie L, He X. miR-193b acts as a cisplatin sensitizer via the caspase-3-dependent pathway in HCC chemotherapy. Oncol Rep 2015; 34:368-74. [PMID: 25997995 DOI: 10.3892/or.2015.3996] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Mounting evidence suggests that microRNAs (miRNAs) play important roles in the development of cancer by targeting expression of tumor-related genes. In the present study, downregulation of miR-193b was observed in hepatocellular carcinoma (HCC) tissues and HCC cell lines by quantitative RT-PCR analyses, suggesting that miR-193b is a tumor-suppressor in HCC. More importantly, miR-193b significantly enhanced the cytotoxicity of cisplatin in HepG2 cells by targeting Mcl-1. Knockdown of the Mcl-1 gene by specific siRNA exhibited a function similar to miR-193b on sensitizing HepG2 cells to cisplatin-inducing cytotoxicity. Furthermore, the miR-193b-induced sensitization of HepG2 cells to cisplatin cytotoxicity was abolished by the transfection of Mcl-1 expression plasmid that lacked the 3'-untranslated region (3'-UTR). In addition, activation of caspase-3 was needed for sensitization by miR-193b to cisplatin-mediated cell death. Thus, the present study revealed the downregulation of miR-193b in HCC cells and illustrated a synergistic effect on cisplatin-induced apoptosis by targeting Mcl-1.
Collapse
Affiliation(s)
- Wenjun Yin
- Cancer Research Institute of Medical College, University of Southern China, University Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yuehua Nie
- Department of Radiation Oncology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhiwei Zhang
- Cancer Research Institute of Medical College, University of Southern China, University Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Liming Xie
- Department of Chemotherapy Oncology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiusheng He
- Cancer Research Institute of Medical College, University of Southern China, University Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
24
|
Immunotherapy with liposome-bound TRAIL overcomes partial protection to soluble TRAIL-induced apoptosis offered by down-regulation of Bim in leukemic cells. Clin Transl Oncol 2015; 17:657-67. [PMID: 25967100 DOI: 10.1007/s12094-015-1295-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/30/2015] [Indexed: 01/02/2023]
Abstract
PURPOSE Human Apo2-Ligand/TRAIL secreted by natural killer cells and cytotoxic T lymphocytes plays an important role immunosurveillance controlling tumor growth and metastasis. Moreover, the fact that Apo2L/TRAIL is capable of inducing cell death in tumor cells but not in normal cells makes this death ligand a promising anti-tumor agent. Previous data from our group demonstrated that Apo2L/TRAIL was physiologically released as transmembrane protein inserted in lipid vesicles, called exosomes. Recently, we demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) resembling the natural exosomes, greatly improved Apo2L/TRAIL activity and were able to induce apoptosis in hematological malignancies. In this study, we have deepened in the underlying mechanism of action of LUV-TRAIL in hematologic cells. METHODS/PATIENTS Cytotoxic ability of LUV-TRAIL was assessed on Jurkat cells either over-expressing the anti-apoptotic protein Mcl1 or down-regulating the pro-apoptotic protein Bim previously generated in our laboratory. We also tested LUV-TRAIL cytotoxic ability against primary human leukemic cells from T-cell ALL patient. RESULTS Silencing Bim but not Mcl-1 over-expression partially protects Jurkat cells from apoptosis induced by sTRAIL. LUV-TRAIL induced caspase-8 and caspase-3 activation and killed Jurkat-Mcl1 and Jurkat-shBim more efficiently than sTRAIL independently of the mitochondrial pathway. On the other hand, LUV-TRAIL were clearly more cytotoxic against primary leukemic cells from a T-cell ALL patient than sTRAIL. CONCLUSION Tethering Apo2L/TRAIL to the surface of lipid nanoparticles greatly increases its bioactivity and could be of potential use in anti-tumor therapeutics.
Collapse
|
25
|
The role of miR-125b-mitochondria-caspase-3 pathway in doxorubicin resistance and therapy in human breast cancer. Tumour Biol 2015; 36:7185-94. [PMID: 25894378 DOI: 10.1007/s13277-015-3438-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of naturally occurring, small, non-coding RNAs which play important roles in diverse biological processes and are acting as key regulators of tumorigenesis and chemotherapy resistance. In this study, a downregulation of miR-125b was observed in breast cancer cell lines, suggesting miR-125b is a tumor suppressor in breast cancer. Moreover, the miR-125b levels were significantly decreased in doxorubicin-resistant MCF-7 (MCF-7/DR) cells compared with MCF-7 cells. Transfection of miR-125b significantly enhanced the cytotoxicity of doxorubicin to MCF-7/DR cells. However, the overexpression of miR-125b did not influence the doxorubicin accumulation but downregulated the myeloid cell leukemia-1 (Mcl-1) levels, which may be the mechanism of apoptosis induction caused by doxorubicin combining with miR-125b in MCF-7/DR cells. Furthermore, luciferase reporter assay proved that Mcl-1 is the target of miR-125b. Importantly, we found that the sensitization of miR-125b to doxorubicin cytotoxicity is caspase-dependent in MCF-7/DR cells, which can be inhibited by zVAD-fmk. Finally, we indicated that the treatment of miR-125b plus doxorubicin leads to loss of mitochondrial membrane potential (MMP) and mitochondria outer membrane permeability (MOMP), which were interacted with the activation of caspases. Thus, this study revealed the role of miR-125b in doxorubicin resistance and therapy, which may provide novel approaches for the treatment of breast cancer.
Collapse
|
26
|
Rickard JA, Anderton H, Etemadi N, Nachbur U, Darding M, Peltzer N, Lalaoui N, Lawlor KE, Vanyai H, Hall C, Bankovacki A, Gangoda L, Wong WWL, Corbin J, Huang C, Mocarski ES, Murphy JM, Alexander WS, Voss AK, Vaux DL, Kaiser WJ, Walczak H, Silke J. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 2014; 3. [PMID: 25443632 PMCID: PMC4270099 DOI: 10.7554/elife.03464] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/26/2014] [Indexed: 12/04/2022] Open
Abstract
SHARPIN regulates immune signaling and contributes to full transcriptional activity and prevention of cell death in response to TNF in vitro. The inactivating mouse Sharpin cpdm mutation causes TNF-dependent multi-organ inflammation, characterized by dermatitis, liver inflammation, splenomegaly, and loss of Peyer's patches. TNF-dependent cell death has been proposed to cause the inflammatory phenotype and consistent with this we show Tnfr1, but not Tnfr2, deficiency suppresses the phenotype (and it does so more efficiently than Il1r1 loss). TNFR1-induced apoptosis can proceed through caspase-8 and BID, but reduction in or loss of these players generally did not suppress inflammation, although Casp8 heterozygosity significantly delayed dermatitis. Ripk3 or Mlkl deficiency partially ameliorated the multi-organ phenotype, and combined Ripk3 deletion and Casp8 heterozygosity almost completely suppressed it, even restoring Peyer's patches. Unexpectedly, Sharpin, Ripk3 and Casp8 triple deficiency caused perinatal lethality. These results provide unexpected insights into the developmental importance of SHARPIN. DOI:http://dx.doi.org/10.7554/eLife.03464.001 In response to an injury or infection, areas of the body can become inflamed as the immune system attempts to repair the damage and/or destroy any microbes or toxins that have entered the body. At the level of individual cells inflammation can involve cells being programmed to die in one of two ways: apoptosis and necroptosis. Apoptosis is a highly controlled process during which the contents of the cell are safely destroyed in order to prevent damage to surrounding cells. Necroptosis, on the other hand, is not controlled: the cell bursts and releases its contents into the surroundings. Inflammation is activated by a protein called TNFR1, which is controlled by a complex that includes a protein called SHARPIN. Mice that lack the SHARPIN protein develop inflammation on the skin and internal organs, even in the absence of injury or infection. However, it is not clear how SHARPIN controls TNFR1 to prevent inflammation. Rickard et al. and, independently Kumari et al. have now studied this process in detail. Rickard et al. cross bred mice that lack SHARPIN with mice lacking other proteins involved in inflammation and cell death. The experiments show that apoptosis is the main form of cell death in skin inflammation, but necroptosis has a bigger role in the inflammation of internal organs. Mice that lack both the apoptotic and necroptotic cell-death pathways can develop relatively normally, but they die shortly after birth if they also lack SHARPIN. Experiments on these mice could help us to understand how SHARPIN works. DOI:http://dx.doi.org/10.7554/eLife.03464.002
Collapse
Affiliation(s)
- James A Rickard
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Holly Anderton
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nima Etemadi
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Ueli Nachbur
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Maurice Darding
- Centre for Cell Death, Cancer, and Inflammation, University College London, London, United Kingdom
| | - Nieves Peltzer
- Centre for Cell Death, Cancer, and Inflammation, University College London, London, United Kingdom
| | - Najoua Lalaoui
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Kate E Lawlor
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Hannah Vanyai
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cathrine Hall
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Aleks Bankovacki
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Lahiru Gangoda
- Department of Biochemistry, La Trobe University, Bundoora, Australia
| | - Wendy Wei-Lynn Wong
- Department of Immunology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jason Corbin
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Chunzi Huang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, United States
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, United States
| | - James M Murphy
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Warren S Alexander
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Anne K Voss
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David L Vaux
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, United States
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation, University College London, London, United Kingdom
| | - John Silke
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| |
Collapse
|