1
|
Zhang Y. SPATA33 affects the formation of cell adhesion complex by interacting with CTNNA3 in TM4 cells. Cell Tissue Res 2022; 389:145-157. [PMID: 35536443 DOI: 10.1007/s00441-022-03631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
Communication between Sertoli cell is essential during spermatogenesis and testicular development in mice, and the dynamic balance of this communication is regulated by some adhesion proteins. In this study, we found that SPATA33 and CTNNA3 were involved in this process. Quantitative real-time PCR and western blotting showed similar trend of expression of two proteins in the testis of mice of different ages. Subsequently, CRISPR-Cas9 technique was used to prepare Spata33 knockout cell lines with TM4 cells, cell wound scratch assay showed that Spata33 gene knockout affected cell migration, and flow cytometry assay showed that Spata33 knockout resulted in a decreased percentage of G1 phase cells in TM4 cell line. In addition, phalloidin staining assay showed that Spata33 gene knockout disrupted the formation of F-actin. Moreover, the protein immunoprecipitation experiment showed the interaction between SPATA33 and CTNNA3, which affected the interaction between CTNNA3 and CTNNB1. SPATA33 inhibits the formation of CDH1-CTNNB1-CTNNA3 complex through its interaction with CTNNA3, thus weakening adhesion between Sertoli cell and promoting cell migration.
Collapse
Affiliation(s)
- Ying Zhang
- Luoyang Normal University, Luoyang, 471934, Henan, China.
| |
Collapse
|
2
|
The two faces of autophagy in oral squamous cell carcinoma. Arch Oral Biol 2021; 134:105321. [PMID: 34923284 DOI: 10.1016/j.archoralbio.2021.105321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To undertake a comprehensive review of the current knowledge and understanding of autophagy in oral squamous cell carcinoma (OSCC), focusing on putative roles in tumour suppression and survival along with the influence of this cell death pathway on the development of resistance to chemotherapeutic treatment. DESIGN Several well utilised databases (PubMed, Medline, Google Scholar) were searched for the relevant literature using terms and keywords including but not limited too; autophagy and cancer, autophagy and OSCC, tumour survival, autophagy and oral microbiome, autophagy immunogenicity, OSCC chemoresistance. RESULTS Up-regulation of autophagy has been shown to promote tumour cell survival in the tumour microenvironment while in healthy cells, autophagy induction acts to prevent severe DNA mutations that can lead to cancer. Cancers utilise the autophagy pathway to promote survival during the stress of chemotherapeutic treatment and can induce resistance to chemotherapeutic drugs CONCLUSION: The ambiguous role of autophagy within cancers is still problematic in clinical fields. Within OSCC understanding whether autophagy plays a preventive or causative role is essential and may be beneficial in determining how modulation of this pathway may impact on OSSC and oral cancer patients.
Collapse
|
3
|
Kyriakakis E, Frismantiene A, Dasen B, Pfaff D, Rivero O, Lesch KP, Erne P, Resink TJ, Philippova M. T-cadherin promotes autophagy and survival in vascular smooth muscle cells through MEK1/2/Erk1/2 axis activation. Cell Signal 2017; 35:163-175. [DOI: 10.1016/j.cellsig.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/20/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
4
|
Zheng S, Eierhoff T, Aigal S, Brandel A, Thuenauer R, de Bentzmann S, Imberty A, Römer W. The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1236-1245. [PMID: 28428058 DOI: 10.1016/j.bbamcr.2017.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkIIY221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to CrkY221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkIIY221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes.
Collapse
Affiliation(s)
- Shuangshuang Zheng
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thorsten Eierhoff
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Sahaja Aigal
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Annette Brandel
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Roland Thuenauer
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales, UPR5301 CNRS and University of Grenoble Alpes, BP53, 38041 Grenoble cédex 09, France
| | - Winfried Römer
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
5
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
6
|
Nighot P, Ma T. Role of autophagy in the regulation of epithelial cell junctions. Tissue Barriers 2016; 4:e1171284. [PMID: 27583189 DOI: 10.1080/21688370.2016.1171284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, NM, USA
| | - Thomas Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA; Veterans Affairs Medical Center, Albuquerque, NM, USA
| |
Collapse
|