1
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Albarnaz JD, Kite J, Oliveira M, Li H, Di Y, Christensen MH, Paulo JA, Antrobus R, Gygi SP, Schmidt FI, Huttlin EL, Smith GL, Weekes MP. Quantitative proteomics defines mechanisms of antiviral defence and cell death during modified vaccinia Ankara infection. Nat Commun 2023; 14:8134. [PMID: 38065956 PMCID: PMC10709566 DOI: 10.1038/s41467-023-43299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Modified vaccinia Ankara (MVA) virus does not replicate in human cells and is the vaccine deployed to curb the current outbreak of mpox. Here, we conduct a multiplexed proteomic analysis to quantify >9000 cellular and ~80% of viral proteins throughout MVA infection of human fibroblasts and macrophages. >690 human proteins are down-regulated >2-fold by MVA, revealing a substantial remodelling of the host proteome. >25% of these MVA targets are not shared with replication-competent vaccinia. Viral intermediate/late gene expression is necessary for MVA antagonism of innate immunity, and suppression of interferon effectors such as ISG20 potentiates virus gene expression. Proteomic changes specific to infection of macrophages indicate modulation of the inflammatory response, including inflammasome activation. Our approach thus provides a global view of the impact of MVA on the human proteome and identifies mechanisms that may underpin its abortive infection. These discoveries will prove vital to design future generations of vaccines.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK.
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Hanqi Li
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Florian I Schmidt
- Institute of Innate Immunity, University of Bonn, 53127, Bonn, Germany
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
- Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
3
|
Rai AK, Satija NK. A comparative analysis of daunorubicin and its metabolite daunorubicinol interaction with apoptotic and drug resistance proteins using in silico approach. J Biomol Struct Dyn 2023; 41:10737-10749. [PMID: 36907598 DOI: 10.1080/07391102.2023.2187214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/07/2022] [Indexed: 03/13/2023]
Abstract
Daunorubicin (DNR) is a chemotherapeutic drug associated with multiple side effects, including drug resistance. As the molecular mechanism related to these side effects remain unclear and mostly hypothesized, this study addresses and compares the role of DNR and its metabolite Daunorubicinol (DAUNol) to induce apoptosis and drug resistance using molecular docking, Molecular Dynamics (MD) simulation, MM-PBSA and chemical pathway analysis. The results showed that DNR's interaction was stronger with Bax protein, Mcl-1:mNoxaB and Mcl-1:Bim protein complexes than DAUNol. On the other hand, contrasting results were obtained for drug resistance proteins where stronger interaction was obtained with DAUNol compared to DNR. Further, MD simulation performed for 100 ns provided the details of protein-ligand interaction. Most notable was the interaction of Bax protein with DNR, resulting in conformational changes at α-helices 5, 6 and 9, leading to Bax activation. Finally, the chemical signalling pathway analysis also revealed the regulation of different signalling pathways by DNR and DAUNol. It was observed that DNR majorly impacted the signalling associated with apoptosis while DAUNol mainly targeted pathways related to multidrug resistance and cardiotoxicity. Overall, the results highlight that DNR biotransformation reduces its capability to induce apoptosis while enhancing its ability to induce drug resistance and off-target toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Rai
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Neeraj Kumar Satija
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Speir M, Tye H, Gottschalk TA, Simpson DS, Djajawi TM, Deo P, Ambrose RL, Conos SA, Emery J, Abraham G, Pascoe A, Hughes SA, Weir A, Hawkins ED, Kong I, Herold MJ, Pearson JS, Lalaoui N, Naderer T, Vince JE, Lawlor KE. A1 is induced by pathogen ligands to limit myeloid cell death and NLRP3 inflammasome activation. EMBO Rep 2023; 24:e56865. [PMID: 37846472 PMCID: PMC10626451 DOI: 10.15252/embr.202356865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
Programmed cell death pathways play an important role in innate immune responses to infection. Activation of intrinsic apoptosis promotes infected cell clearance; however, comparatively little is known about how this mode of cell death is regulated during infections and whether it can induce inflammation. Here, we identify that the pro-survival BCL-2 family member, A1, controls activation of the essential intrinsic apoptotic effectors BAX/BAK in macrophages and monocytes following bacterial lipopolysaccharide (LPS) sensing. We show that, due to its tight transcriptional and post-translational regulation, A1 acts as a molecular rheostat to regulate BAX/BAK-dependent apoptosis and the subsequent NLRP3 inflammasome-dependent and inflammasome-independent maturation of the inflammatory cytokine IL-1β. Furthermore, induction of A1 expression in inflammatory monocytes limits cell death modalities and IL-1β activation triggered by Neisseria gonorrhoeae-derived outer membrane vesicles (NOMVs). Consequently, A1-deficient mice exhibit heightened IL-1β production in response to NOMV injection. These findings reveal that bacteria can induce A1 expression to delay myeloid cell death and inflammatory responses, which has implications for the development of host-directed antimicrobial therapeutics.
Collapse
|
5
|
Saghazadeh A, Rezaei N. Poxviruses and the immune system: Implications for monkeypox virus. Int Immunopharmacol 2022; 113:109364. [PMID: 36283221 PMCID: PMC9598838 DOI: 10.1016/j.intimp.2022.109364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Poxviruses (PXVs) are mostly known for the variola virus, being the cause of smallpox; however, re-emerging PXVs have also shown a great capacity to develop outbreaks of pox-like infections in humans. The situation is alarming; PXV outbreaks have been involving both endemic and non-endemic areas in recent decades. Stopped smallpox vaccination is a reason offered mainly for this changing epidemiology that implies the protective role of immunity in the pathology of PXV infections. The immune system recognizes PXVs and elicits responses, but PXVs can antagonize these responses. Here, we briefly review the immunology of PXV infections, with emphasis on the role of pattern-recognition receptors, macrophages, and natural killer cells in the early response to PXV infections and PXVs’ strategies influencing these responses, as well as taking a glance at other immune cells, which discussion over them mainly occurs in association with PXV immunization rather than PXV infection. Throughout the review, numerous evasion mechanisms are highlighted, which might have implications for designing specific immunotherapies for PXV in the future.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
6
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 2022; 13:637. [PMID: 35869043 PMCID: PMC9307826 DOI: 10.1038/s41419-022-05066-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Since the discovery of cell apoptosis, other gene-regulated cell deaths are gradually appreciated, including pyroptosis, ferroptosis, and necroptosis. Necroptosis is, so far, one of the best-characterized regulated necrosis. In response to diverse stimuli (death receptor or toll-like receptor stimulation, pathogenic infection, or other factors), necroptosis is initiated and precisely regulated by the receptor-interacting protein kinase 3 (RIPK3) with the involvement of its partners (RIPK1, TRIF, DAI, or others), ultimately leading to the activation of its downstream substrate, mixed lineage kinase domain-like (MLKL). Necroptosis plays a significant role in the host's defense against pathogenic infections. Although much has been recognized regarding modulatory mechanisms of necroptosis during pathogenic infection, the exact role of necroptosis at different stages of infectious diseases is still being unveiled, e.g., how and when pathogens utilize or evade necroptosis to facilitate their invasion and how hosts manipulate necroptosis to counteract these detrimental effects brought by pathogenic infections and further eliminate the encroaching pathogens. In this review, we summarize and discuss the recent progress in the role of necroptosis during a series of viral, bacterial, and parasitic infections with zoonotic potentials, aiming to provide references and directions for the prevention and control of infectious diseases of both human and animals.
Collapse
Affiliation(s)
- Guangzhi Zhang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinyong Wang
- grid.508381.70000 0004 0647 272XShenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, 518000 China ,grid.258164.c0000 0004 1790 3548Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020 Guangdong China
| | - Zhanran Zhao
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA
| | - Ting Xin
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuezheng Fan
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingchun Shen
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Abdul Raheem
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China ,grid.35155.370000 0004 1790 4137Present Address: Huazhong Agricultural University, Wuhan, China
| | - Chae Rhim Lee
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA ,grid.266093.80000 0001 0668 7243Present Address: University of California, Irvine, CA USA
| | - Hui Jiang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiabo Ding
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
7
|
Li T, Zhao G, Zhang T, Zhang Z, Chen X, Song J, Wang X, Li J, Huang L, Wen L, Li C, Zhao D, He X, Bu Z, Zheng J, Weng C. African Swine Fever Virus pE199L Induces Mitochondrial-Dependent Apoptosis. Viruses 2021; 13:2240. [PMID: 34835046 PMCID: PMC8617669 DOI: 10.3390/v13112240] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
African swine fever (ASF) is a severe hemorrhagic disease in swine characterized by massive lymphocyte depletion and cell death, with apoptosis and necrosis in infected lymphoid tissues. However, the molecular mechanism regarding ASFV-induced cell death remains largely unknown. In this study, 94 ASFV-encoded proteins were screened to determine the viral proteins involved in cell death in vitro, and pE199L showed the most significant effect. Ectopic expression of pE199L in porcine cells (CRL-2843) and human cells (HEK293T and HeLa cells) induced cell death remarkably, showing obvious shrinking, blistering, apoptotic bodies, and nuclear DNA fragments. Meanwhile, cell death was markedly alleviated when the expression of pE199L was knocked down during ASFV infection. Additionally, the expression of pE199L caused a loss of mitochondrial membrane potential, release of cytochrome C, and caspase-9 and -3/7 activation, indicating that the mitochondrial apoptotic pathway was involved in pE199L-induced apoptosis. Further investigations showed that pE199L interacted with several anti-apoptotic BCL-2 subfamily members (such as BCL-XL, MCL-1, BCL-W, and BCL-2A1) and competed with BAK for BCL-XL, which promoted BAK and BAX activation. Taken together, ASFV pE199L induces the mitochondrial-dependent apoptosis, which may provide clues for a comprehensive understanding of ASFV pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, China; (T.L.); (G.Z.); (T.Z.); (Z.Z.); (X.C.); (J.S.); (X.W.); (J.L.); (L.H.); (L.W.); (C.L.); (D.Z.); (X.H.); (Z.B.)
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin 150069, China; (T.L.); (G.Z.); (T.Z.); (Z.Z.); (X.C.); (J.S.); (X.W.); (J.L.); (L.H.); (L.W.); (C.L.); (D.Z.); (X.H.); (Z.B.)
| |
Collapse
|
8
|
Diversity of cell death signaling pathways in macrophages upon infection with modified vaccinia virus Ankara (MVA). Cell Death Dis 2021; 12:1011. [PMID: 34711816 PMCID: PMC8551665 DOI: 10.1038/s41419-021-04286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Regulated cell death frequently occurs upon infection by intracellular pathogens, and extent and regulation is often cell-type-specific. We aimed to identify the cell death-signaling pathways triggered in macrophages by infection with modified vaccinia virus Ankara (MVA), an attenuated strain of vaccinia virus used in vaccination. While most target cells seem to be protected by antiapoptotic proteins encoded in the MVA genome, macrophages die when infected with MVA. We targeted key signaling components of specific cell death-pathways and pattern recognition-pathways using genome editing and small molecule inhibitors in an in vitro murine macrophage differentiation model. Upon infection with MVA, we observed activation of mitochondrial and death-receptor-induced apoptosis-pathways as well as the necroptosis-pathway. Inhibition of individual pathways had a little protective effect but led to compensatory death through the other pathways. In the absence of mitochondrial apoptosis, autocrine/paracrine TNF-mediated apoptosis and, in the absence of caspase-activity, necroptosis occurred. TNF-induction depended on the signaling molecule STING, and MAVS and ZBP1 contributed to MVA-induced apoptosis. The mode of cell death had a substantial impact on the cytokine response of infected cells, indicating that the immunogenicity of a virus may depend not only on its PAMPs but also on its ability to modulate individual modalities of cell death. These findings provide insights into the diversity of cell death-pathways that an infection can trigger in professional immune cells and advance our understanding of the intracellular mechanisms that govern the immune response to a virus.
Collapse
|
9
|
Döring M, De Azevedo K, Blanco-Rodriguez G, Nadalin F, Satoh T, Gentili M, Lahaye X, De Silva NS, Conrad C, Jouve M, Centlivre M, Lévy Y, Manel N. Single-cell analysis reveals divergent responses of human dendritic cells to the MVA vaccine. Sci Signal 2021; 14:14/697/eabd9720. [PMID: 34429383 DOI: 10.1126/scisignal.abd9720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modified vaccinia Ankara (MVA) is a live, attenuated human smallpox vaccine and a vector for the development of new vaccines against infectious diseases and cancer. Efficient activation of the immune system by MVA partially relies on its encounter with dendritic cells (DCs). MVA infection of DCs leads to multiple outcomes, including cytokine production, activation of costimulatory molecules for T cell stimulation, and cell death. Here, we examined how these diverse responses are orchestrated in human DCs. Single-cell analyses revealed that the response to MVA infection in DCs was limited to early viral gene expression. In response to the early events in the viral cycle, we found that DCs grouped into three distinct clusters. A cluster of infected cells sensed the MVA genome by the intracellular innate immunity pathway mediated by cGAS, STING, TBK1, and IRF3 and subsequently produced inflammatory cytokines. In response to these cytokines, a cluster of noninfected bystander cells increased costimulatory molecule expression. A separate cluster of infected cells underwent caspase-dependent apoptosis. Induction of apoptosis persisted after inhibition of innate immunity pathway mediators independently of previously described IRF-dependent or replication-dependent pathways and was a response to early MVA gene expression. Together, our study identified multiple mechanisms that underlie the interactions of MVA with human DCs.
Collapse
Affiliation(s)
- Marius Döring
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.,Vaccine Research Institute (VRI), Créteil, Paris, France
| | - Kevin De Azevedo
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Guillermo Blanco-Rodriguez
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesca Nadalin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Takeshi Satoh
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.,Vaccine Research Institute (VRI), Créteil, Paris, France
| | - Matteo Gentili
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Nilushi S De Silva
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Cécile Conrad
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Mabel Jouve
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Mireille Centlivre
- Vaccine Research Institute (VRI), Créteil, Paris, France.,INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Yves Lévy
- Vaccine Research Institute (VRI), Créteil, Paris, France.,INSERM U955, Université Paris Est Créteil, Créteil, France.,AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France. .,Vaccine Research Institute (VRI), Créteil, Paris, France
| |
Collapse
|
10
|
Oxidative Stress Induces Chondrocyte Apoptosis through Caspase-Dependent and Caspase-Independent Mitochondrial Pathways and the Antioxidant Mechanism of Angelica Sinensis Polysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3240820. [PMID: 33224431 PMCID: PMC7669361 DOI: 10.1155/2020/3240820] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Abstract
Introduction Chondrocyte apoptosis is considered one of the pathogenic factors of osteoarthritis (OA), but its importance in the pathogenesis of OA remains unclear. Recent research adds progress to the knowledge that the mitochondrial signaling pathway mediates chondrocyte apoptosis in OA. Method Rat chondrocyte exposed to H2O2 was used as the experimental oxidative stress model. Chondrocyte viability was tested by cell counting kit-8 (CCK-8) assay. Cell apoptosis and ROS were tested by flow cytometry. Contents of malondialdehyde (MDA), catalase (CAT), caspase-3, caspase-9, cytochrome C, superoxide dismutase (SOD)-2, and adenosine triphosphate (ATP) were evaluated by biochemical detection. The expressions of related genes and proteins were assessed by quantitative polymerase chain reaction (qPCR) and western blot. Results H2O2 provokes oxidative stress and decreases the viability of chondrocyte, which leads to the release of cytochrome C and inhibition of SOD-2 activity. The damage of mitochondrion disturbs the energy metabolism of chondrocyte and eventually induces chondrocyte apoptosis through the mitochondrial pathway. Furthermore, pretreated with anglicasinensis polysaccharide (ASP) or caspase inhibitors increase the expression of Bcl-2 and Bcl-xL but do not work for the expression of Bax and Bad. Conclusion Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways. ASP protects chondrocyte from H2O2-induced oxidative stress and subsequent cell injury through its antioxidant effect by inhibiting the caspase pathway.
Collapse
|
11
|
Zortel T, Schmitt-Graeff A, Kirschnek S, Häcker G. Apoptosis Modulation in the Immune System Reveals a Role of Neutrophils in Tissue Damage in a Murine Model of Chlamydial Genital Infection. J Infect Dis 2019. [PMID: 29522221 DOI: 10.1093/infdis/jiy126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Chlamydial infection frequently causes damage to the female genital tract. The precise mechanisms of chlamydial clearance and tissue damage are unknown, but studies suggest immunopathology with a particular role of neutrophils. The goal of this study was to understand the contribution of the immune system, in particular neutrophils. Methods Using Chlamydia muridarum, we infected mice with a prolonged immune response due to expression of B-cell lymphoma 2 (Bcl-2) in hematopoietic cells (Bcl-2 mice), and mice where mature neutrophils are lacking due to the deletion of Myeloid cell leukemia 1 (Mcl-1) in myeloid cells (LysM-cre-mcl-1-flox mice; Mcl-1 mice). We monitored bacterial clearance, cellular infiltrate, and long-term tissue damage. Results Both mutant strains showed slightly delayed clearance of the acute infection. Bcl-2 mice had a strongly increased inflammatory infiltrate concerning almost all cell lineages. The infection of Bcl-2 mice caused increased tissue damage. The loss of neutrophils in Mcl-1 mice was associated with substantial quantitative and qualitative alterations of the inflammatory infiltrate. Mcl-1 mice had higher chlamydial burden and reduced tissue damage, including lower incidence of hydrosalpinx and less uterine dilation. Conclusions Inhibition of apoptosis in the hematopoietic system increases inflammation and tissue damage. Neutrophils have broad functions, including a role in chlamydial clearance and in tissue destruction.
Collapse
Affiliation(s)
- Tom Zortel
- Institute for Microbiology and Hygiene, Germany
| | - Annette Schmitt-Graeff
- Center for Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | | | | |
Collapse
|
12
|
Kim YJ, Cubitt B, Chen E, Hull MV, Chatterjee AK, Cai Y, Kuhn JH, de la Torre JC. The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Res 2019; 169:104558. [PMID: 31302150 DOI: 10.1016/j.antiviral.2019.104558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Several mammarenaviruses, chiefly Lassa virus (LASV) in Western Africa and Junín virus (JUNV) in the Argentine Pampas, cause severe disease in humans and pose important public health problems in their endemic regions. Moreover, mounting evidence indicates that the worldwide-distributed mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The lack of licensed mammarenavirus vaccines and partial efficacy of current anti-mammarenavirus therapy limited to an off-label use of the nucleoside analog ribavirin underscore an unmet need for novel therapeutics to combat human pathogenic mammarenavirus infections. This task can be facilitated by the implementation of "drug repurposing" strategies to reduce the time and resources required to advance identified antiviral drug candidates into the clinic. We screened a drug repurposing library of 11,968 compounds (Repurposing, Focused Rescue and Accelerated Medchem [ReFRAME]) and identified several potent inhibitors of LCMV multiplication that had also strong anti-viral activity against LASV and JUNV. Our findings indicate that enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis, the pro-viral MCL1 apoptosis regulator, BCL2 family member protein and the mitochondrial electron transport complex III, play critical roles in the completion of the mammarenavirus life cycle, suggesting they represent potential druggable targets to counter human pathogenic mammarenavirus infections.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | - Mitchell V Hull
- California Institute for Biomedical Research, La Jolla, CA, 92037, USA
| | | | - Yingyun Cai
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Juan C de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Naderer T, Fulcher MC. Targeting apoptosis pathways in infections. J Leukoc Biol 2019; 103:275-285. [PMID: 29372933 DOI: 10.1189/jlb.4mr0717-286r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022] Open
Abstract
The programmed cell death pathway of apoptosis is essential for mammalian development and immunity as it eliminates unwanted and dangerous cells. As part of the cellular immune response, apoptosis removes the replicative niche of intracellular pathogens and enables the resolution of infections. To subvert apoptosis, pathogens have evolved a diverse range of mechanisms. In some circumstances, however, pathogens express effector molecules that induce apoptotic cell death. In this review, we focus on selected host-pathogen interactions that affect apoptotic pathways. We discuss how pathogens control the fate of host cells and how this determines the outcome of infections. Finally, small molecule inhibitors that activate apoptosis in cancer cells can also induce apoptotic cell death of infected cells. This suggests that targeting host death factors to kill infected cells is a potential therapeutic option to treat infectious diseases.
Collapse
Affiliation(s)
- Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Maria Cecilia Fulcher
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
14
|
Abstract
Myeloid cell leukemia-1 (MCL-1), a member of antiapoptotic BCL-2 family proteins, is a key regulator of mitochondrial homeostasis. Frequent overexpression of MCL-1 in human primary and drug-resistant cancer cells makes it an attractive cancer therapeutic target. Significant progress has been made in the development of small-molecule MCL-1 inhibitors in recent years, and three MCL-1 selective inhibitors have advanced to clinical trials. This review briefly discusses recent advances in the development of small molecules targeting MCL-1 for cancer therapy.
Collapse
Affiliation(s)
- Weiguo Xiang
- Department of Internal Medicine, University of Michigan Medical School,
| | - Chao-Yie Yang
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan Medical School,
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA,
| |
Collapse
|
15
|
|
16
|
Naderer T. Towards re-purposing BH3-mimetics in Legionella and viral infections. Expert Rev Anti Infect Ther 2017; 15:1071-1073. [PMID: 29166790 DOI: 10.1080/14787210.2017.1409621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thomas Naderer
- a Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology , Monash University , Clayton , Australia
| |
Collapse
|
17
|
Pasquereau S, Al Moussawi F, Karam W, Diab Assaf M, Kumar A, Herbein G. Cytomegalovirus, Macrophages and Breast Cancer. Open Virol J 2017; 11:15-27. [PMID: 28567162 PMCID: PMC5420183 DOI: 10.2174/1874357901711010015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
The human cytomegalovirus (HCMV) is a betaherpesvirus that is highly host specific, infects among others epithelial cells and macrophages, and has been recently mentioned as having oncomodulatory properties. HCMV is detected in the breast tumor tissue where macrophages, especially tumor associated macrophages, are associated with a poor prognosis. In this review, we will discuss the potential implication of HCMV in breast cancer with emphasis on the role played by macrophages.
Collapse
Affiliation(s)
- S Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, Department of Virology, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - F Al Moussawi
- Pathogens & Inflammation/EPILAB Laboratory, Department of Virology, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - W Karam
- Université Libanaise, Beyrouth, Lebanon
| | | | - A Kumar
- Pathogens & Inflammation/EPILAB Laboratory, Department of Virology, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| | - G Herbein
- Pathogens & Inflammation/EPILAB Laboratory, Department of Virology, University of Franche-Comté, COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Besançon, France
| |
Collapse
|