1
|
Balian A, Hernandez FJ. Nucleases as molecular targets for cancer diagnosis. Biomark Res 2021; 9:86. [PMID: 34809722 PMCID: PMC8607607 DOI: 10.1186/s40364-021-00342-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Early cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.
Collapse
Affiliation(s)
- Alien Balian
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden.
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Maeda R, Kami D, Shikuma A, Suzuki Y, Taya T, Matoba S, Gojo S. RNA decay in processing bodies is indispensable for adipogenesis. Cell Death Dis 2021; 12:285. [PMID: 33731683 PMCID: PMC7969960 DOI: 10.1038/s41419-021-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
The RNA decay pathway plays key regulatory roles in cell identities and differentiation processes. Although adipogenesis is transcriptionally and epigenetically regulated and has been thoroughly investigated, how RNA metabolism that contributes to the stability of phenotype-shaping transcriptomes participates in differentiation remains elusive. In this study, we investigated Ddx6, an essential component of processing bodies (PBs) that executes RNA decay and translational repression in the cytoplasm and participates in the cellular transition of reprogramming. Upon adipogenic induction, Ddx6 dynamically accumulated to form PBs with a binding partner, 4E-T, at the early phase prior to emergence of intracellular lipid droplets. In contrast, preadipocytes with Ddx6 knockout (KO) or 4E-T knockdown (KD) failed to generate PBs, resulting in significant suppression of adipogenesis. Transcription factors related to preadipocytes and negative regulators of adipogenesis that were not expressed under adipogenic stimulation were maintained in Ddx6-KO and 4E-T-KD preadipocytes under adipogenic induction. Elimination of Dlk1, a major negative regulator of adipogenesis, in 3T3L1 Ddx6-KO cells did not restore adipogenic differentiation capacity to any extent. Similar to murine cells, human primary mesenchymal stem cells, which can differentiate into adipocytes upon stimulation with adipogenic cocktails, required DDX6 to maturate into adipocytes. Therefore, RNA decay of the entire parental transcriptome, rather than removal of a strong negative regulator, could be indispensable for adipogenesis.
Collapse
Affiliation(s)
- Ryotaro Maeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akira Shikuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
3
|
Hernandez LI, Araúzo-Bravo MJ, Gerovska D, Solaun RR, Machado I, Balian A, Botero J, Jiménez T, Zuriarrain Bergara O, Larburu Gurruchaga L, Urruticoechea A, Hernandez FJ. Discovery and Proof-of-Concept Study of Nuclease Activity as a Novel Biomarker for Breast Cancer Tumors. Cancers (Basel) 2021; 13:cancers13020276. [PMID: 33451046 PMCID: PMC7828568 DOI: 10.3390/cancers13020276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary A diagnostic biomarker for the detection of breast cancer remains an unmet clinical need despite decades of intensive research efforts. Herein, we describe, for the first time, the use of nuclease activity as a biomarker to discriminate between healthy and cancer biopsy samples. We have identified a panel of three nucleic acid probes able to target nucleases derived from breast cancer tumors with high sensitivity and specificity. These results are in good agreement with histopathological analysis as the diagnostic gold standard. Moreover, these findings support nuclease activity as a potential adjacent diagnostic tool and shed light on the use of nuclease activity as a detection biomarker in breast cancer. Abstract Breast cancer is one of the most common pathologies diagnosed in the clinical practice. Despite major advancements in diagnostic approaches, there is no widely accepted biomarker in the clinical practice that can diagnose breast malignancy. Confirmatory diagnosis still relies on the pathological assessment of tissue biopsies by expert pathologists. Thus, there is an unmet need for new types of biomarkers and novel platform technologies that can be easily and robustly integrated into the clinic and that can assist pathologists. Herein, we show that nuclease activity associated to malignant tumors can be used as a novel biomarker in breast cancer, which can be detected via specific degradation of nucleic acid probes. In this study we have identified a set of three chemically modified nucleic acid probes that can diagnose malignancy in biopsy samples with high accuracy (89%), sensitivity (82%) and specificity (94%). This work represents a breakthrough for the potential clinical use of nuclease activity as biomarker, which can be detected via nucleic acids probes, for the clinical diagnosis of malignancy in breast tissue biopsies. This platform technology could be readily implemented into the clinic as adjunct to histopathological diagnostic.
Collapse
Affiliation(s)
- Luiza I. Hernandez
- SOMAprobes S.L, Science and Technology Park of Gipuzkoa, 20009 San Sebastian, Spain; (L.I.H.); (I.M.); (J.B.); (T.J.)
| | - Marcos J. Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany;
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | | | - Isabel Machado
- SOMAprobes S.L, Science and Technology Park of Gipuzkoa, 20009 San Sebastian, Spain; (L.I.H.); (I.M.); (J.B.); (T.J.)
| | - Alien Balian
- Wallenberg Center for Molecular Medicine (WCMM), 58185 Linköping, Sweden;
- Department of Physics, Chemistry and Biology, Linköping University, 58185 Linköping, Sweden
| | - Juliana Botero
- SOMAprobes S.L, Science and Technology Park of Gipuzkoa, 20009 San Sebastian, Spain; (L.I.H.); (I.M.); (J.B.); (T.J.)
| | - Tania Jiménez
- SOMAprobes S.L, Science and Technology Park of Gipuzkoa, 20009 San Sebastian, Spain; (L.I.H.); (I.M.); (J.B.); (T.J.)
| | - Olaia Zuriarrain Bergara
- Department of Oncology, Onkologikoa Foundation, 20014 San Sebastián, Spain; (O.Z.B.); (L.L.G.); (A.U.)
| | - Lide Larburu Gurruchaga
- Department of Oncology, Onkologikoa Foundation, 20014 San Sebastián, Spain; (O.Z.B.); (L.L.G.); (A.U.)
| | - Ander Urruticoechea
- Department of Oncology, Onkologikoa Foundation, 20014 San Sebastián, Spain; (O.Z.B.); (L.L.G.); (A.U.)
| | - Frank J. Hernandez
- Wallenberg Center for Molecular Medicine (WCMM), 58185 Linköping, Sweden;
- Department of Physics, Chemistry and Biology, Linköping University, 58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-013-281-147
| |
Collapse
|
4
|
Cocci P, Moruzzi M, Martinelli I, Maggi F, Micioni Di Bonaventura MV, Cifani C, Mosconi G, Tayebati SK, Damiano S, Lupidi G, Amantini C, Tomassoni D, Palermo FA. Tart cherry (Prunus cerasus L.) dietary supplement modulates visceral adipose tissue CB1 mRNA levels along with other adipogenesis-related genes in rat models of diet-induced obesity. Eur J Nutr 2021; 60:2695-2707. [PMID: 33386893 DOI: 10.1007/s00394-020-02459-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE There is increasing evidence for the involvement of dietary bioactive compounds in the cross-talk modulation of endocannabinoid system and some of the key regulators of transcriptional control for adipogenesis. METHODS We aimed to characterize the expression of cannabinoid CB1/CB2 receptors and fatty acid amide hydrolase (FAAH) along with selected adipogenesis-related genes (PPARγ, SREBP-1c and PREF-1), adipocyte-secreted factors (leptin and adiponectin), mitochondrial bioenergetic modulators (PGC-1A and UCP-2), and transient receptor potential vanilloid subtype 1 (TRPV1) and 2 (TRPV2) channels in visceral adipose tissue of rats fed with a high-fat diet (HFD) containing either tart cherry seeds alone or tart cherry seeds and juice for 17 weeks. The visceral adipose tissue was weighed and checked the expression of different markers by qRT-PCR, Western blot and immunohistochemistry. RESULTS Tart cherry supplements were able to downregulate the HFD-induced mRNA expression of CB1 receptor, SREBP-1c, PPARγ, leptin, TRPV1 and TRPV2 resulting in potential anti-adipogenic effects. CONCLUSION The present study points out that the intake of bioactive constituents of tart cherry may attenuate the effect of adipogenesis by acting directly on the adipose tissue and modulating the interplay between CB1, PPARγ and TRPV channel gene transcription.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | - Michele Moruzzi
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Federica Maggi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | | | - Silvia Damiano
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
5
|
Retinoic Acid Sensitivity of Triple-Negative Breast Cancer Cells Characterized by Constitutive Activation of the notch1 Pathway: The Role of Rarβ. Cancers (Basel) 2020; 12:cancers12103027. [PMID: 33081033 PMCID: PMC7650753 DOI: 10.3390/cancers12103027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen TNBC cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (HCC-1599, MB-157 and MDA-MB-157) endowed with ATRA-sensitivity are characterized by genetic aberrations of the NOTCH1-gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD. N1ICD renders HCC-1599, MB-157 and MDA-MB-157 cells sensitive not only to ATRA, but also to γ-secretase inhibitors (DAPT; PF-03084014). Combinations of ATRA and γ-secretase inhibitors produce additive/synergistic effects in vitro and in vivo. RNA-sequencing studies of HCC-1599 and MB-157 cells exposed to ATRA and DAPT and ATRA+DAPT demonstrate that the two compounds act on common gene sets, some of which belong to the NOTCH1 pathway. ATRA inhibits the growth of HCC-1599, MB-157 and MDA-MB-157 cells via RARα, which up-regulates several retinoid target-genes, including RARβ. RARβ is a key determinant of ATRA anti-proliferative activity, as its silencing suppresses the effects exerted by the retinoid. In conclusion, we demonstrate that ATRA exerts a significant anti-tumor action only in TNBC cells showing constitutive NOTCH1 activation. Our results support the design of clinical trials involving combinations between ATRA and γ-secretase inhibitors for the treatment of this TNBC subtype.
Collapse
|
6
|
Breuker C, Amouzou C, Fabre O, Lambert K, Seyer P, Bourret A, Salehzada T, Mercier J, Sultan A, Bisbal C. Decreased RNF41 expression leads to insulin resistance in skeletal muscle of obese women. Metabolism 2018; 83:81-91. [PMID: 29410345 DOI: 10.1016/j.metabol.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 01/30/2023]
Abstract
CONTEXT Toll-like receptor 4 (TLR4) activation contributes to obesity-associated insulin resistance in skeletal muscles (SM). TLR4 signaling involves two pathways: the myeloid differentiation primary response gene 88 (MyD88) leading to inflammatory cytokines production and the toll/interleukin-1 receptor domain-containing adapter-inducing interferon (IFN) I (TRIF)-dependent pathways leading to type 1 interferon (IFNI) and interferon stimulated genes (ISG) expression. The E3 ubiquitin ligase RNF41 allows the preferential activation of the TRIF-IFNI pathway; however, its role in insulin response has not been reported. METHODS We measured RNF41 level and IFNI pathway activation (ISG expression) in SM biopsies of obese insulin sensitive (OIS) and obese insulin resistant (OIR) women. Then we isolated and differentiated in myotubes, primary human SM cell progenitors from OIS and OIR SM biopsies. We modulated RNF41 and ISG expression in these myotubes and investigated their effects on insulin response. RESULTS RNF41 expression is down-regulated in vivo in OIR SM and myotubes compared to OIS SM and myotubes. TLR4 activation with palmitate induces TRIF-IFNI pathway and ISG in OIS myotubes but not in OIR myotubes. Inhibition of RNF41 expression with siRNF41 in OIS myotubes treated with palmitate attenuates insulin response, IFNI pathway activation and ISG induction, mimicking OIR phenotype. Further, overexpression of RNF41 in OIR myotubes increases insulin response and ISG expression. Exposure to IFNI or to its inducer polyinosinic-polycytidylic acid, restores ISG expression and insulin sensitivity in OIR myotubes and OIS myotubes transfected with siRNF41. CONCLUSION Our results identify RNF41 as essential to IFNI pathway activation in order to maintain muscle insulin sensitivity during human obesity.
Collapse
Affiliation(s)
- Cyril Breuker
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France; Centre Hospitalier Universitaire (CHU) Montpellier, 34295 Montpellier, France
| | - Cacylde Amouzou
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Odile Fabre
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Karen Lambert
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Pascal Seyer
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Annick Bourret
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Tamim Salehzada
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France; Centre Hospitalier Universitaire (CHU) Montpellier, 34295 Montpellier, France
| | - Ariane Sultan
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France; Centre Hospitalier Universitaire (CHU) Montpellier, 34295 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France.
| |
Collapse
|
7
|
Metabolic profiling of visceral adipose tissue from obese subjects with or without metabolic syndrome. Biochem J 2018; 475:1019-1035. [PMID: 29437994 DOI: 10.1042/bcj20170604] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
Obesity represents one of the most complex public health challenges and has recently reached epidemic proportions. Obesity is also considered to be primarily responsible for the rising prevalence of metabolic syndrome, defined as the coexistence in the same individual of several risk factors for atherosclerosis, including dyslipidemia, hypertension and hyperglycemia, as well as for cancer. Additionally, the presence of three of the five risk factors (abdominal obesity, low high-density lipoprotein cholesterol, high triglycerides, high fasting glucose and high blood pressure) characterizes metabolic syndrome, which has serious clinical consequences. The current study was conducted in order to identify metabolic differences in visceral adipose tissue (VAT) collected from obese (body mass index 43-48) human subjects who were diagnosed with metabolic syndrome, obese individuals who were metabolically healthy and nonobese healthy controls. Extensive gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS/MS) analyses were used to obtain the untargeted VAT metabolomic profiles of 481 metabolites belonging to all biochemical pathways. Our results indicated consistent increases in oxidative stress markers from the pathologically obese samples in addition to subtle markers of elevated glucose levels that may be consistent with metabolic syndrome. In the tissue derived from the pathologically obese subjects, there were significantly elevated levels of plasmalogens, which may be increased in response to oxidative changes in addition to changes in glycerolphosphorylcholine, glycerolphosphorylethanolamine glycerolphosphorylserine, ceramides and sphingolipids. These data could be potentially helpful for recognizing new pathways that underlie the metabolic-vascular complications of obesity and may lead to the development of innovative targeted therapies.
Collapse
|
8
|
Wang YT, Tseng PH, Chen CL, Han DS, Chi YC, Tseng FY, Yang WS. Human serum RNase-L level is inversely associated with metabolic syndrome and age. Cardiovasc Diabetol 2017; 16:46. [PMID: 28399925 PMCID: PMC5387300 DOI: 10.1186/s12933-017-0522-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ribonuclease-L (RNase-L) was known to be a ubiquitous enzyme involved in several cellular functions, especially innate immunity. It was recently shown to participate in adipogenesis in rodents. Here, we developed a method to measure serum levels of RNase-L and analyzed the relationship between RNase-L and metabolic syndrome (MetS). METHODS A total of 396 subjects were recruited from a health check-up program. An in-house RNase-L immunoassay was developed. The serum RNase-L levels of these subjects were measured, and the association of MetS-related factors with RNase-L levels was assessed. RESULTS The mean serum level of RNase-L of the subjects with MetS were lower than those without (16.5 ± 6.4 vs. 18.4 ± 8.0 μg/ml, P = 0.018). The subjects with central obesity, elevated blood pressure, or impaired fasting glucose also had lower serum RNase-L levels in comparison to those without. In multivariate linear regression analysis, diastolic blood pressure (β = -0.129, P = 0.024) and high-density lipoprotein cholesterol (HDL-C) (β = 0.127, P = 0.036) were related to serum RNase-L. For every 5 μg/ml increase in serum RNase-L levels, it is associated with a reduced risk of MetS (OR 0.83, 95% CI 0.71-0.98, P = 0.028), central obesity (OR 0.82, 95% CI 0.71-0.94, P = 0.005), or low HDL-C (OR 0.86, 95% CI 0.74-1.00, P = 0.042). Moreover, age is inversely related to serum RNase-L levels in various analyses. CONCLUSIONS The serum RNase-L levels were inversely associated with MetS, unfavorable metabolic profiles, and age.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Ping-Huei Tseng
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002, Taiwan.,Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei, 10055, Taiwan
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Beihu Branch, No.87, Neijiang St., Taipei, 10800, Taiwan.,Community and Geriatric Medicine Research Center, National Taiwan University Hospital Beihu Branch, No.87, Neijiang St., Taipei, 10800, Taiwan
| | - Yu-Chiao Chi
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002, Taiwan.,Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Fen-Yu Tseng
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002, Taiwan. .,Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002, Taiwan. .,Center for Obesity, Lifestyle and Metabolic Surgery, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002, Taiwan. .,Graduate Institute of Medical Genomics & Proteomics, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,, No. 1, Chang-Teh St., Taipei, 10048, Taiwan.
| |
Collapse
|