1
|
WANG XIAOXI, JIA YANFEI, LI QIANG, YANG QIANG, LIU YINGFENG, WEI BEIFENG, NIU XIANG, ZHANG YINJIE, LUO XIAODONG, ZHAO ZIYU, WANG PENG. miR-200b-3p accelerates progression of pituitary adenomas by negatively regulating expression of RECK. Oncol Res 2024; 32:933-941. [PMID: 38686051 PMCID: PMC11055999 DOI: 10.32604/or.2023.042581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/12/2023] [Indexed: 05/02/2024] Open
Abstract
MicroRNA (miR)-200b-3p has been associated with many tumors, but its involvement in pituitary adenoma is unclear. This study investigated the molecular mechanism underlying miR-200b-3p regulation in pituitary adenomas to provide a theoretical basis for treatment. Bioinformatics was used to analyze pituitary adenoma-related genes and screen new targets related to RECK and miRNA. As well, the relationship between miR-200b-3p and RECK protein was verified using a double-luciferase reporter gene assay. The expression of miR-200b-3p in clinical samples was analyzed by in situ hybridization. Transfection of the miR-200b-3p inhibitor and small interfering-RECK (si-RECK) was verified by qPCR. GH3 cell viability and proliferation were detected using CCK8 and EdU assays. Apoptosis was detected by flow cytometry and western blotting. Wound healing and Transwell assays were used to detect cell migration and invasion. The effects of miR-200b-3p and RECK on GH3 cells were verified using salvage experiments. miR-200b-3p was highly expressed in pituitary tumor tissue. Inhibitors of miR-200b-3p inhibited cell proliferation promoted cell apoptosis, inhibited invasion and migration, and inhibited the expression of matrix metalloproteinases. Interestingly, miR-200b-3p negatively regulated RECK. The expression of RECK in pituitary adenoma tissues was lower than that in neighboring tissues. Si-RECK rescued the function of miR-200b-3p inhibitors in the above cellular behaviors, and miR-200b-3p accelerated the development of pituitary adenoma by negatively regulating RECK expression. In summary, this study investigated the molecular mechanism by which miR-200b-3p regulates the progression of pituitary adenoma through the negative regulation of RECK. The findings provide a new target for the treatment of pituitary adenoma.
Collapse
Affiliation(s)
- XIAOXI WANG
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - YANFEI JIA
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - QIANG LI
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - QIANG YANG
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - YINGFENG LIU
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - BEIFENG WEI
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - XIANG NIU
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - YINJIE ZHANG
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - XIAODONG LUO
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - ZIYU ZHAO
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - PENG WANG
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| |
Collapse
|
2
|
Wang Z, Zeng H, Wang C, Wang J, Zhang J, Qu S, Han Y, Yang L, Ni Y, Peng W, Liu H, Tang H, Zhao Q, Zhang Y. Tim4 deficiency reduces CD301b + macrophage and aggravates periodontitis bone loss. Int J Oral Sci 2024; 16:20. [PMID: 38418808 PMCID: PMC10902347 DOI: 10.1038/s41368-023-00270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b+ macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b+ macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b+ macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b+ macrophages was significantly upregulated compared to CD301b- macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b+ macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+ macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b+ macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+ macrophages phenotype. In a word, Tim4 might regulate CD301b+ macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.
Collapse
Affiliation(s)
- Ziming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Can Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yue Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Liu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Tang
- Institute of Infection and Immunity, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Nassiri SM, Ahmadi Afshar N, Almasi P. Insight into microRNAs' involvement in hematopoiesis: current standing point of findings. Stem Cell Res Ther 2023; 14:282. [PMID: 37794439 PMCID: PMC10552299 DOI: 10.1186/s13287-023-03504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Hematopoiesis is a complex process in which hematopoietic stem cells are differentiated into all mature blood cells (red blood cells, white blood cells, and platelets). Different microRNAs (miRNAs) involve in several steps of this process. Indeed, miRNAs are small single-stranded non-coding RNA molecules, which control gene expression by translational inhibition and mRNA destabilization. Previous studies have revealed that increased or decreased expression of some of these miRNAs by targeting several proto-oncogenes could inhibit or stimulate the myeloid and erythroid lineage commitment, proliferation, and differentiation. During the last decades, the development of molecular and bioinformatics techniques has led to a comprehensive understanding of the role of various miRNAs in hematopoiesis. The critical roles of miRNAs in cell processes such as the cell cycle, apoptosis, and differentiation have been confirmed as well. However, the main contribution of some miRNAs is still unclear. Therefore, it seems undeniable that future studies are required to focus on miRNA activities during various hematopoietic stages and hematological malignancy.
Collapse
Affiliation(s)
- Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran.
| | - Neda Ahmadi Afshar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| | - Parsa Almasi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| |
Collapse
|
4
|
Wan M, Lu C, Liu Y, Luo F, Zhou J, Xu F. Mesenchymal stem cell-derived extracellular vesicles prevent the formation of pulmonary arterial hypertension through a microRNA-200b-dependent mechanism. Respir Res 2023; 24:233. [PMID: 37759281 PMCID: PMC10523762 DOI: 10.1186/s12931-023-02474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) have been highly studied with their critical roles as carriers of therapeutic targets such as microRNAs (miRNAs) in the treatment of human diseases, including pulmonary arterial hypertension (PAH). Herein, we tried to study the potential of BMSC-EVs to deliver miR-200b for the regulation of macrophage polarization in PAH. METHODS Rat models of PAH were induced with monocrotaline treatment, followed by miR-200b expression detection in lung tissues, pulmonary artery smooth muscle cells (PASMCs) and macrophages. miR-200b-containing BMSCs or miR-200b-deficient BMSCs were selected to extract EVs. Then, we assessed the changes in rats with PAH-associated disorders as well as in vitro macrophage polarization and the functions of PASMCs after treatment with BMSC-EVs. Moreover, the interaction between miR-200b, phosphodiesterase 1 A (PDE1A) was identified with a luciferase assay, followed by an exploration of the downstream pathway, cAMP-dependent protein kinase (PKA). RESULTS miR-200b was reduced in lung tissues, PASMCs and macrophages of rats with PAH-like pathology. BMSC-EVs transferred miR-200b into macrophages, and subsequently accelerated their switch to the M2 phenotype and reversed the PAH-associated disorders. Furthermore, miR-200b carried by BMSC-EVs induced PKA phosphorylation by targeting PDE1A, thereby expediting macrophage polarization. CONCLUSION Our current study highlighted the inhibitory role of BMSC-EV-miR-200b in PAH formation.
Collapse
Affiliation(s)
- Mengzhi Wan
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Caiju Lu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Yu Liu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Feng Luo
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Jing Zhou
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| | - Fei Xu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| |
Collapse
|
5
|
Zhao S, Wang Y, Yang N, Mu M, Wu Z, Li H, Tang X, Zhong K, Zhang Z, Huang C, Cao T, Zheng M, Wang G, Nie C, Yang H, Guo G, Zhou L, Zheng X, Tong A. Genome-scale CRISPR-Cas9 screen reveals novel regulators of B7-H3 in tumor cells. J Immunother Cancer 2022; 10:jitc-2022-004875. [PMID: 35768165 PMCID: PMC9244714 DOI: 10.1136/jitc-2022-004875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background Despite advances in B7 homolog 3 protein (B7-H3) based immunotherapy, the development of drug resistance remains a major clinical concern. The heterogeneity and emerging loss of B7-H3 expression are the main causes of drug resistance and treatment failure in targeted therapies, which reveals an urgent need to elucidate the mechanism underlying the regulation of B7-H3 expression. In this study, we identified and explored the crucial role of the transcription factor SPT20 homolog (SP20H) in B7-H3 expression and tumor progression. Methods Here, we performed CRISPR/Cas9-based genome scale loss-of-function screening to identify regulators of B7-H3 in human ovarian cancer cells. Signaling pathways altered by SP20H knockout were revealed by RNA sequencing. The regulatory role and mechanism of SP20H in B7-H3 expression were validated using loss-of-function and gain-of-function assays in vitro. The effects of inhibiting SP20H on tumor growth and efficacy of anti-B7-H3 treatment were evaluated in tumor-bearing mice. Results We identified SUPT20H (SP20H) as negative and eIF4E as positive regulators of B7-H3 expression in various cancer cells. Furthermore, we provided evidence that either SP20H loss or TNF-α stimulation in tumor cells constitutively activates p38 MAPK-eIF4E signaling, thereby upregulating B7-H3 expression. Loss of SP20H upregulated B7-H3 expression both in vitro and in vivo. Additionally, deletion of SP20H significantly suppressed tumor growth and increased immune cells infiltration in tumor microenvironment. More importantly, antibody–drug conjugates targeting B7-H3 exhibited superior antitumor performance against SP20H-deficient tumors relative to control groups. Conclusions Activation of p38 MAPK-eIF4E signaling serves as a key event in the transcription initiation and B7-H3 protein expression in tumor cells. Genetically targeting SP20H upregulates target antigen expression and sensitizes tumors to anti-B7-H3 treatment. Collectively, our findings provide new insight into the mechanisms underlying B7-H3 expression and introduce a potential synergistic target for existing antibody-based targeted therapy against B7-H3.
Collapse
Affiliation(s)
- Shasha Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiguo Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ting Cao
- Lab of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Li F, Liu Z, Zhang B, Jiang S, Wang Q, Du L, Xue H, Zhang Y, Jin M, Zhu X, Brown MA, Wu J, Wang X. Circular RNA sequencing indicates circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers of primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 59:2603-2615. [PMID: 32250392 DOI: 10.1093/rheumatology/keaa163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study aims to characterize the expression profiles of circRNAs in primary Sjogren's Syndrome (pSS) and examine the potential of noninvasive circular RNAs (circRNAs) as biomarkers of pSS. METHODS We performed RNA sequencing of minor salivary gland (MSG) biopsies from four pSS and four non-pSS individuals (subjects undergoing MSG biopsies but not meeting 2012 or 2016 ACR classification criteria for SS). Differentially expressed circRNAs were identified by DESeq2, and confirmed by quantitative real-time PCR in the MSGs as well as in plasma exosomes in 37 pSS and 14 non-pSS subjects. Discriminatory capacity testing using receiver operating characteristic analysis was used to evaluate the performance of circRNAs as diagnostic biomarkers for pSS. RESULTS Circ-IQGAP2 and circ-ZC3H6 had significantly upregulated expression in the MSGs of pSS patients, and this elevated expression was confirmed by quantitative real-time PCR of plasma exosome RNA. The expression of these circRNAs also showed significant correlation with both clinical features, serum IgG level and MSG focus scores. Receiver operating characteristic analysis showed that the indices comprised of both the two circRNAs and clinical features were better able to distinguish pSS from non-pSS subjects with high mean areas under the curve of 0.93 in the MSGs and 0.92 in the plasma exosomes. CONCLUSION This study indicated the potential roles of circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers for the diagnosis of pSS.
Collapse
Affiliation(s)
- Fengxia Li
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Bing Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Qiongdan Wang
- Institute of Genomic Medicine, Wenzhou Medical University.,Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Huangqi Xue
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Yu Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Mengmeng Jin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Matthew A Brown
- Guy's & St Thomas NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK.,Centre for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Lin W, Zhou L, Liu M, Zhang D, Yan Y, Chang YF, Zhang X, Xie Q, Luo Q. gga-miR-200b-3p Promotes Macrophage Activation and Differentiation via Targeting Monocyte to Macrophage Differentiation-Associated in HD11 Cells. Front Immunol 2020; 11:563143. [PMID: 33101281 PMCID: PMC7555432 DOI: 10.3389/fimmu.2020.563143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in various biological processes through regulation of gene expression post-transcriptionally. Although miRNAs are involved in cell proliferation and differentiation in mammals, few reports regarding the effects of host miRNAs on macrophage activation and differentiation are available in birds. Here, we reported that gga-miR-200b-3p acts as a positive regulator, enhancing macrophage activation and differentiation using an avian model. We found that ectopic expression of gga-miR-200b-3p in HD11 cells enhances the amount of MHC-II-positive cells and promotes the expression of pro-inflammatory cytokines and that gga-miR-200b-3p directly targets monocyte to macrophage differentiation-associated (MMD). The inhibition of MMD by gga-miR-200b-3p enhances the activation and differentiation of HD11 cells and increases the expression of pro-inflammatory cytokines. Collectively, these findings highlight a crucial role of gga-miR-200b-3p in macrophage activation and differentiation in birds.
Collapse
Affiliation(s)
- Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Lianghui Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Manqing Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danmeng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
8
|
Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194609. [PMID: 32730897 DOI: 10.1016/j.bbagrm.2020.194609] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
A wealth of biochemical and cellular data, accumulated over several years by multiple groups, has provided a great degree of insight into the molecular mechanisms of actions of GCN5 and PCAF in gene activation. Studies of these lysine acetyltransferases (KATs) in vitro, in cultured cells, have revealed general mechanisms for their recruitment by sequence-specific binding factors and their molecular functions as transcriptional co-activators. Genetic studies indicate that GCN5 and PCAF are involved in multiple developmental processes in vertebrates, yet our understanding of their molecular functions in these contexts remains somewhat rudimentary. Understanding the functions of GCN5/PCAF in developmental processes provides clues to the roles of these KATs in disease states. Here we will review what is currently known about the developmental roles of GCN5 and PCAF, as well as emerging role of these KATs in oncogenesis.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.
| |
Collapse
|
9
|
Nuño-Cabanes C, Rodríguez-Navarro S. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194607. [PMID: 32712338 DOI: 10.1016/j.bbagrm.2020.194607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain.
| |
Collapse
|
10
|
Guo L, Yang G, Kang Y, Li S, Duan R, Shen L, Jiang W, Qian B, Yin Z, Liang T. Construction and Analysis of a ceRNA Network Reveals Potential Prognostic Markers in Colorectal Cancer. Front Genet 2020; 11:418. [PMID: 32457800 PMCID: PMC7228005 DOI: 10.3389/fgene.2020.00418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/02/2020] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide and is derived from an accumulation of genetic and epigenetic changes. This study explored potential prognostic markers in CRC via the construction and in-depth analysis of a competing endogenous RNA (ceRNA) network, which was generated through a three-step process. First, we screened candidate hub genes in CRC as the primary gene markers to survey their related regulatory non-coding RNAs, miRNAs. Second, the interacting miRNAs were used to search for associated lncRNAs. Thus, candidate RNAs were first constructed into ceRNA networks based on close associations with miRNAs. Further analysis at the isomiR level was also performed for each miRNA locus to understand the detailed expression patterns of the multiple variants. Finally, RNAs were performed an in-depth analysis of expression correlations, which contributed to further screening and validation of potential RNAs with close correlations to each other. Using this approach, nine hub genes, 13 related miRNAs, and 29 candidate lncRNAs were collected and used to construct the ceRNA network. Further in-depth analysis identified the MFAP5-miR-200b-3p-AC005154.6 axis as a potential prognostic marker in CRC. MFAP5 and miR-200b-3p have previously been reported to play important roles in tumorigenesis. These RNAs showed potential prognostic values, and the combination of them may have more sensitivity than using them alone. In conclusion, MFAP5, miR-200b-3p, and AC005154.6 may have potential prognostic value in CRC and may provide a prognostic reference for this patient population.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Guowei Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yihao Kang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Sunjing Li
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Rui Duan
- School of Life Science, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Lulu Shen
- School of Life Science, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Wenwen Jiang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bowen Qian
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Tingming Liang
- School of Life Science, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China.,Changzhou Institute of Innovation & Development, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Wang XD, Zhao CS, Wang QL, Zeng Q, Feng XZ, Li L, Chen ZL, Gong Y, Han J, Li Y. The p38-interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1. EMBO Rep 2020; 21:e48035. [PMID: 32410369 DOI: 10.15252/embr.201948035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
Negative regulation of immunoreceptor signaling is required for preventing hyperimmune activation and maintaining immune homeostasis. The roles of p38IP in immunoreceptor signaling remain unclear. Here, we show that p38IP suppresses T-cell receptor (TCR)/LPS-activated NF-κB and p38 by targeting TAK1 kinase and that p38IP protein levels are downregulated in human PBMCs from rheumatoid arthritis (RA) patients, inversely correlating with the enhanced activity of NF-κB and p38. Mechanistically, p38IP interacts with TAK1 to disassemble the TAK1-TAB (TAK1-binding protein) complex. p38IP overexpression decreases TCR-induced binding of K63-linked polyubiquitin (polyUb) chains to TAK1 but increases that to TAB2, and p38IP knockdown shows the opposite effects, indicating unanchored K63-linked polyUb chain transfer from TAB2 to TAK1. p38IP dynamically interacts with TAK1 upon stimulation, because of the polyUb chain transfer and the higher binding affinity of TAK1 and p38IP for polyUb-bound TAB2 and TAK1, respectively. Moreover, p38IP scaffolds the deubiquitinase USP4 to deubiquitinate TAK1 once TAK1 is activated. These findings reveal a novel role and the mechanisms of p38IP in controlling TCR/LPS signaling and suggest that p38IP might participate in RA pathogenesis.
Collapse
Affiliation(s)
- Xu-Dong Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Zhi Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhi-Long Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Veyssiere M, Perea J, Michou L, Boland A, Caloustian C, Olaso R, Deleuze JF, Cornelis F, Petit-Teixeira E, Chaudru V. A novel nonsense variant in SUPT20H gene associated with Rheumatoid Arthritis identified by Whole Exome Sequencing of multiplex families. PLoS One 2019; 14:e0213387. [PMID: 30845214 PMCID: PMC6405192 DOI: 10.1371/journal.pone.0213387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/19/2019] [Indexed: 01/31/2023] Open
Abstract
The triggering and development of Rheumatoid Arthritis (RA) is conditioned by environmental and genetic factors. Despite the identification of more than one hundred genetic variants associated with the disease, not all the cases can be explained. Here, we performed Whole Exome Sequencing in 9 multiplex families (N = 30) to identify rare variants susceptible to play a role in the disease pathogenesis. We pre-selected 77 genes which carried rare variants with a complete segregation with RA in the studied families. Follow-up linkage and association analyses with pVAAST highlighted significant RA association of 43 genes (p-value < 0.05 after 106 permutations) and pinpointed their most likely causal variant. We re-sequenced the 10 most significant likely causal variants (p-value ≤ 3.78*10-3 after 106 permutations) in the extended pedigrees and 9 additional multiplex families (N = 110). Only one SNV in SUPT20H: c.73A>T (p.Lys25*), presented a complete segregation with RA in an extended pedigree with early-onset cases. In summary, we identified in this study a new variant associated with RA in SUPT20H gene. This gene belongs to several biological pathways like macro-autophagy and monocyte/macrophage differentiation, which contribute to RA pathogenesis. In addition, these results showed that analyzing rare variants using a family-based approach is a strategy that allows to identify RA risk loci, even with a small dataset.
Collapse
Affiliation(s)
- Maëva Veyssiere
- GenHotel—Univ Evry, University of Paris Saclay, Evry, France
- * E-mail:
| | - Javier Perea
- GenHotel—Univ Evry, University of Paris Saclay, Evry, France
| | - Laetitia Michou
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, QC, Québec, Canada
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine—François Jacob Institute, CEA, Evry, France
| | - Christophe Caloustian
- Centre National de Recherche en Génomique Humaine—François Jacob Institute, CEA, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine—François Jacob Institute, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine—François Jacob Institute, CEA, Evry, France
| | - François Cornelis
- GenHotel-Auvergne—Auvergne University, Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Valérie Chaudru
- GenHotel—Univ Evry, University of Paris Saclay, Evry, France
| |
Collapse
|
13
|
Wu Y, Jia K, Wu H, Sang A, Wang L, Shi L, Jiang K, Dong J. A comprehensive competitive endogenous RNA network pinpoints key molecules in diabetic retinopathy. Mol Med Rep 2018; 19:851-860. [PMID: 30535492 PMCID: PMC6323295 DOI: 10.3892/mmr.2018.9715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and the primary cause of vision loss in diabetic patients. Previous research has revealed that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play pivotal roles in the pathogenesis of DR. However, the roles of lncRNA-miRNA-mRNA interactions in DR are poorly understood. In the present study, we aimed to compute a global triple network of competitive endogenous RNAs (ceRNAs) in order to pinpoint essential molecules. We found that there were 802 nodes (121 lncRNA nodes, 17 miRNA nodes, and 664 mRNA nodes) and 949 edges in the ceRNA network. Further functional analysis suggested that some molecules were specifically related to DR. Surprisingly, these molecules were involved in visual perception, eye development, and lens development in camera-type eye. In summary, our study highlighted specific lncRNAs and miRNAs related to the pathogenesis of DR, which might be used as potential diagnostic biomarkers and therapeutic targets for DR.
Collapse
Affiliation(s)
- Yingcheng Wu
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Keren Jia
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huiqun Wu
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lei Wang
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lili Shi
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kui Jiang
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiancheng Dong
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
14
|
Huang R, Yu T, Li Y, Hu J. Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis. Toxicol Res (Camb) 2018; 7:415-422. [PMID: 30090591 PMCID: PMC6060724 DOI: 10.1039/c8tx00031j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Pulmonary fibrosis (PF) is a representative pathological change in patients with pneumoconiosis; however, due to the absence of reliable and early biomarkers, microRNAs have recently emerged as potential candidates for identification. Objectives: The aim of our study was to discover the potential of PF-specific circulating microRNAs as early biomarkers among patients with pneumoconiosis. Methods: Four dust-exposed patients with PF and four matched healthy individuals (not exposed to dust) were recruited for the study. microRNA profiling was identified by micro-array and bioinformatics methods. Gene Ontology (GO) analysis was used to identify the potential biological or molecular processes modulated by these miRNAs. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis was used to identify the potentially involved signaling pathways. miRNA-mRNA-binding network analysis was employed to identify genes potentially targeted by the miRNAs. Results: 1079 miRNAs were discovered, of which 406 were up-regulated and 117 were down-regulated in PF patients. 32 miRNAs were up-regulated by >4-fold and 17 miRNAs were down-regulated by >0.5 fold. GO analysis identified the biological processes affected by anatomical structure development, hemophilic cell adhesion and cell-cell adhesion via plasma membrane proteins. Target prediction software showed that serum has-miR-4516 targeted genes encoding basonuclin2, inhibitors of growth family member 4, the potassium voltage-gated channel, and "sha-1-related subfamily member 1" proteins. qRT-PCR revealed that has-miR-4516 was a potential biomarker of PF progression in patients with pneumoconiosis. Conclusions: Our findings suggest that the level of serum miR-4516 may be a potential biomarker for early diagnosis of PF in patients with pneumoconiosis. This is a pilot work that paves the way for a further functional study of the underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| | - Ting Yu
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| | - Ying Li
- Hunan Prevention and Treatment Center For Occupational Diseases , Changsha , China .
| | - Jianan Hu
- Department of occupational and environmental health , Xiangya school of public health , Central South University , 410078 , Changsha , Hunan Province , China . ; ;
| |
Collapse
|
15
|
Hypertonic saline regulates microglial M2 polarization via miR-200b/KLF4 in cerebral edema treatment. Biochem Biophys Res Commun 2018; 499:345-353. [PMID: 29577903 DOI: 10.1016/j.bbrc.2018.03.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hypertonic saline (HS) has been used clinically for treatment of cerebral edema for decades. Previously we have demonstrated that HS alleviates cerebral edema via regulating water/ion channel protein and attenuating neuroinflammation. However, whether HS treatment triggers microglia polarization and its regulatory mechanism during this process is unclear. METHODS AND RESULTS The Sprague-Dawley (SD) rats that underwent right-sided middle cerebral artery occlusion (MCAO) were used for assessment of neuroinflammation and microglia functions. Treatment of 10% HS not only significantly reduced infarct size and ipsilateral ischemic hemispheric brain water content (BWC) via attenuating ischemia-induction of TNF-α, IL-1β, microglia M1 markers (iNOS, CD86) and miR-200b, but also increased neurotrophic factors such as IL-10 and IL-4, microglia M2 markers (Arg1, CD206) and Krüppel-like factor 4 (KLF4). Similar changes were confirmed in primary microglial cells subjected to hypoxia with/without HS in vitro. Importantly, overexpression of miR-200b was able to induce microglia M1 polarization via directly targeting KLF4. Restoring KLF4 expression abolished this effect. On the contrary, miR-200b inhibitor or KLF4 overexpression led to microglia M2 polarization. Mechanistically, KLF4 directly binds to promoter region of Agr1, thus inducing its transcription. Similar to treatment of HS, experimental overexpression of KLF4 in vivo exerted significant beneficial effects on ischemia-induced cerebral edema. However, knockdown of KLF4 abrogated the benefits of HS. CONCLUSIONS Hypertonic saline regulates microglial M2 polarization via miR-200b/KLF4 during its treatment of cerebral edema. This study may provide new insights of HS-related therapy for cerebral edema.
Collapse
|
16
|
In silico identification of microRNAs predicted to regulate N-myristoyltransferase and Methionine Aminopeptidase 2 functions in cancer and infectious diseases. PLoS One 2018; 13:e0194612. [PMID: 29579063 PMCID: PMC5868815 DOI: 10.1371/journal.pone.0194612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/06/2018] [Indexed: 01/16/2023] Open
Abstract
Protein myristoylation is a key protein modification carried out by N-Myristoyltransferase (NMT) after Methionine aminopeptidase 2 (MetAP2) removes methionine from the amino-terminus of the target protein. Protein myristoylation by NMT augments several signaling pathways involved in a myriad of cellular processes, including developmental pathways and pathways that when dysregulated lead to cancer or immune dysfunction. The emerging evidence pointing to NMT-mediated myristoylation as a major cellular regulator underscores the importance of understanding the framework of this type of signaling event. Various studies have investigated the role that myristoylation plays in signaling dysfunction by examining differential gene or protein expression between normal and diseased states, such as cancers or following HIV-1 infection, however no study exists that addresses the role of microRNAs (miRNAs) in the regulation of myristoylation. By performing a large scale bioinformatics and functional analysis of the miRNAs that target key genes involved in myristoylation (NMT1, NMT2, MetAP2), we have narrowed down a list of promising candidates for further analysis. Our condensed panel of miRNAs identifies 35 miRNAs linked to cancer, 21 miRNAs linked to developmental and immune signaling pathways, and 14 miRNAs linked to infectious disease (primarily HIV). The miRNAs panel that was analyzed revealed several NMT-targeting mRNAs (messenger RNA) that are implicated in diseases associated with NMT signaling alteration, providing a link between the realms of miRNA and myristoylation signaling. These findings verify miRNA as an additional facet of myristoylation signaling that must be considered to gain a full perspective. This study provides the groundwork for future studies concerning NMT-transcript-binding miRNAs, and will potentially lead to the development of new diagnostic/prognostic biomarkers and therapeutic targets for several important diseases.
Collapse
|
17
|
Wu J, Tao Y, Shang A, Wang W, Zhang Y, Hu L, Wang J, Wang Y, Guo N. Effect of the interaction between MiR-200b-3p and DNMT3A on cartilage cells of osteoarthritis patients. J Cell Mol Med 2017; 21:2308-2316. [PMID: 28345813 PMCID: PMC5618679 DOI: 10.1111/jcmm.13152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this research is to explore the effect of miR-200b-3p targeting DNMT3A on the proliferation and apoptosis of osteoarthritis (OA) cartilage cells. Quantitative RT-PCR was performed to analyse the expression of miR-200b-3p, DNMT3A, MMP1, MMP3, MMP9, MMP13 and COL II in normal and OA cartilage tissues. The dual-luciferase reporter assay and Western blot assay were conducted to confirm the targeting relationship between miR-200b-3p and DNMT3A. We also constructed eukaryotic expression vector to overexpress miR-200b-3p and DNMT3A. We detected the expression level of MMPs and COL II in stable transfected cartilage cells using RT-PCR and Western blot. Cell proliferation and apoptosis were evaluated using the MTS, pellet culture and Hoechst 33342 staining method. Finally, we explored the effect of miR-200b-3p targeting DNMT3A on the proliferation and apoptosis of OA cartilage cells. The results of RT-PCR indicated that both miR-200b-3p and COL II were down-regulated in OA cartilage tissues, while the expression of DNMT3A and MMPs was up-regulated in OA cartilage tissues. The expressions of DNMT3A, MMPs and COL II detected by Western blot showed the same trend of the results of RT-PCR. The dual-luciferase reporter assay and Western blot assay confirmed the targeting relationship between miR-200b-3p and DNMT3A. In overexpressed miR-200b-3p cartilage cells, DNMT3A and MMPs were significantly down-regulated, COL II was significantly up-regulated, cell viability was enhanced and apoptosis rate was decreased (P < 0.05). In overexpressed DNM3T cartilage cells, MMPs were significantly up-regulated, COL II was significantly down-regulated, cell viability was weakened and apoptosis rate was increased (P < 0.05). MiR-200b-3p inhibited the secretion of MMPs, promoted the synthesis of COL II and enhanced the growth and proliferation of OA cartilage cells through inhibiting the expression of DNMT3A.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory MedicineThe First People's Hospital of Yancheng CityYanchengJiangsuChina
| | - Yunjuan Tao
- Yancheng TCM Hospital Affiliated To Nanjing University of Chinese MedicineYanchengJiangsuChina
| | - Anquan Shang
- Clinical Medicine SchoolNingxia Medical UniversityYinchuanNingxiaChina
- Department of Laboratory MedicineThe Sixth People's Hospital of Yancheng CityYanchengJiangsuChina
| | - Weiwei Wang
- Department of Laboratory MedicineThe Sixth People's Hospital of Yancheng CityYanchengJiangsuChina
| | - Yujie Zhang
- Clinical Medicine SchoolNingxia Medical UniversityYinchuanNingxiaChina
| | - Liqing Hu
- Department of Laboratory MedicineThe First Hospital of Ningbo CityNingboZhejiangChina
| | - Jun Wang
- Clinical Medicine SchoolNingxia Medical UniversityYinchuanNingxiaChina
| | - Yuan Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of Zhejiang Chinese Medicine UniversityHangzhouZhejiangChina
| | - Naizhou Guo
- Department of Laboratory MedicineThe First People's Hospital of Yancheng CityYanchengJiangsuChina
| |
Collapse
|
18
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
19
|
Li Y, Zhang Q, Du Z, Lu Z, Liu S, Zhang L, Ding N, Bao B, Yang Y, Xiong Q, Wang H, Zhang Z, Qu H, Jia H, Fang X. MicroRNA 200a inhibits erythroid differentiation by targetingPDCD4andTHRB. Br J Haematol 2016; 176:50-64. [DOI: 10.1111/bjh.14377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/05/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yanming Li
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Qian Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - Zhenglin Du
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - ZhiChao Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education; College of Life Science and Technology; Centre for Human Genome Research, Huazhong University of Science and Technology; Wuhan China
| | - Shuge Liu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Lu Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Nan Ding
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education; College of Life Science and Technology; Centre for Human Genome Research, Huazhong University of Science and Technology; Wuhan China
| | - Yadong Yang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Qian Xiong
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - Hai Wang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- China National Committee for Terms in Sciences and Technologies; Beijing China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education; College of Life Science and Technology; Centre for Human Genome Research, Huazhong University of Science and Technology; Wuhan China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|