1
|
Bhoopathi P, Mannangatti P, Pradhan AK, Kumar A, Maji S, Lang FF, Klibanov AL, Madan E, Cavenee WK, Keoprasert T, Sun D, Bjerkvig R, Thorsen F, Gogna R, Das SK, Emdad L, Fisher PB. Noninvasive therapy of brain cancer using a unique systemic delivery methodology with a cancer terminator virus. J Cell Physiol 2024; 239:e31302. [PMID: 38775127 DOI: 10.1002/jcp.31302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024]
Abstract
Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander L Klibanov
- Biomedical Engineering, Radiology and Medical Imaging, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Esha Madan
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of San Diego, La Jolla, California, USA
| | - Timothy Keoprasert
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rolf Bjerkvig
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Frits Thorsen
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Rajan Gogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Rahimi A, Esmaeili Y, Dana N, Dabiri A, Rahimmanesh I, Jandaghain S, Vaseghi G, Shariati L, Zarrabi A, Javanmard SH, Cordani M. A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. Eur J Pharm Sci 2023:106476. [PMID: 37236377 DOI: 10.1016/j.ejps.2023.106476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghain
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
3
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
4
|
Pradhan AK, Bhoopathi P, Maji S, Kumar A, Guo C, Mannangatti P, Li J, Wang XY, Sarkar D, Emdad L, Das SK, Fisher PB. Enhanced Cancer Therapy Using an Engineered Designer Cytokine Alone and in Combination With an Immune Checkpoint Inhibitor. Front Oncol 2022; 12:812560. [PMID: 35402258 PMCID: PMC8988683 DOI: 10.3389/fonc.2022.812560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
melanoma differentiation associated gene-7 or Interleukin-24 (mda-7, IL-24) displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented in vitro and in vivo in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects. M7S was engineered in a two-step process by first replacing the endogenous secretory motif with an alternate secretory motif to boost secretion. Among four different signaling peptides, the insulin secretory motif significantly enhanced the secretion of MDA-7 (IL-24) protein and was chosen for M7S. The second modification engineered in M7S was designed to enhance the stability of MDA-7 (IL-24), which was accomplished by replacing lysine at position K122 with arginine. This engineered "M7S Superkine" with increased secretion and stability retained cancer specificity. Compared to parental MDA-7 (IL-24), M7S (IL-24S) was superior in promoting anti-tumor and bystander effects leading to improved outcomes in multiple cancer xenograft models. Additionally, combinatorial therapy using MDA-7 (IL-24) or M7S (IL-24S) with an immune checkpoint inhibitor, anti-PD-L1, dramatically reduced tumor progression in murine B16 melanoma cells. These results portend that M7S (IL-24S) promotes the re-emergence of an immunosuppressive tumor microenvironment, providing a solid rationale for prospective translational applications of this therapeutic designer cytokine.
Collapse
Affiliation(s)
- Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Jiong Li
- Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Department of Medicinal Chemistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Pharmacy, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,*Correspondence: Swadesh K. Das, ; Paul B. Fisher,
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,*Correspondence: Swadesh K. Das, ; Paul B. Fisher,
| |
Collapse
|
5
|
Kooti W, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Jalali Kondori B, Bolandian M. Oncolytic Viruses and Cancer, Do You Know the Main Mechanism? Front Oncol 2022; 11:761015. [PMID: 35004284 PMCID: PMC8728693 DOI: 10.3389/fonc.2021.761015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
The global rate of cancer has increased in recent years, and cancer is still a threat to human health. Recent developments in cancer treatment have yielded the understanding that viruses have a high potential in cancer treatment. Using oncolytic viruses (OVs) is a promising approach in the treatment of malignant tumors. OVs can achieve their targeted treatment effects through selective cell death and induction of specific antitumor immunity. Targeting tumors and the mechanism for killing cancer cells are among the critical roles of OVs. Therefore, evaluating OVs and understanding their precise mechanisms of action can be beneficial in cancer therapy. This review study aimed to evaluate OVs and the mechanisms of their effects on cancer cells.
Collapse
Affiliation(s)
- Wesam Kooti
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
7
|
Bhoopathi P, Mannangatti P, Emdad L, Das SK, Fisher PB. The quest to develop an effective therapy for neuroblastoma. J Cell Physiol 2021; 236:7775-7791. [PMID: 33834508 DOI: 10.1002/jcp.30384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Neuroblastoma (NB) is a common solid extracranial tumor developing in pediatric populations. NB can spontaneously regress or grow and metastasize displaying resistance to therapy. This tumor is derived from primitive cells, mainly those of the neural crest, in the sympathetic nervous system and usually develops in the adrenal medulla and paraspinal ganglia. Our understanding of the molecular characteristics of human NBs continues to advance documenting abnormalities at the genome, epigenome, and transcriptome levels. The high-risk tumors have MYCN oncogene amplification, and the MYCN transcriptional regulator encoded by the MYCN oncogene is highly expressed in the neural crest. Studies on the biology of NB has enabled a more precise risk stratification strategy and a concomitant reduction in the required treatment in an expanding number of cases worldwide. However, newer treatment strategies are mandated to improve outcomes in pediatric patients who are at high-risk and display relapse. To improve outcomes and survival rates in such high-risk patients, it is necessary to use a multicomponent therapeutic approach. Accuracy in clinical staging of the disease and assessment of the associated risks based on biological, clinical, surgical, and pathological criteria are of paramount importance for prognosis and to effectively plan therapeutic approaches. This review discusses the staging of NB and the biological and genetic features of the disease and several current therapies including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy for NB.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
8
|
Bhoopathi P, Pradhan AK, Maji S, Das SK, Emdad L, Fisher PB. Theranostic Tripartite Cancer Terminator Virus for Cancer Therapy and Imaging. Cancers (Basel) 2021; 13:cancers13040857. [PMID: 33670594 PMCID: PMC7922065 DOI: 10.3390/cancers13040857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary An optimum cancer therapeutic virus should embody unique properties, including an ability to: Selectively procreate and kill tumor but not normal cells; produce a secreted therapeutic molecule (with broad-acting anti-cancer effects on primary and distant metastatic cells because of potent “bystander” activity); and monitor therapy non-invasively by imaging primary and distant metastatic cancers. We previously created a broad-spectrum, cancer-selective and replication competent therapeutic adenovirus that embodies two of these properties, i.e., specifically reproduces in cancer cells and produces a therapeutic cytokine, MDA-7/IL-24, a “cancer terminator virus” (CTV). We now expand on this concept and demonstrate the feasibility of producing a tripartite CTV (TCTV) selectively expressing three genes from three distinct promoters that replicate in the cancer cells while producing MDA-7/IL-24 and an imaging gene (i.e., luciferase). This novel first-in-class tripartite “theranostic” TCTV expands the utility of therapeutic viruses to non-invasively image and selectively destroy primary tumors and metastases. Abstract Combining cancer-selective viral replication and simultaneous production of a therapeutic cytokine, with potent “bystander” anti-tumor activity, are hallmarks of the cancer terminator virus (CTV). To expand on these attributes, we designed a next generation CTV that additionally enables simultaneous non-invasive imaging of tumors targeted for eradication. A unique tripartite CTV “theranostic” adenovirus (TCTV) has now been created that employs three distinct promoters to target virus replication, cytokine production and imaging capabilities uniquely in cancer cells. Conditional replication of the TCTV is regulated by a cancer-selective (truncated PEG-3) promoter, the therapeutic component, MDA-7/IL-24, is under a ubiquitous (CMV) promoter, and finally the imaging capabilities are synchronized through another cancer selective (truncated tCCN1) promoter. Using in vitro studies and clinically relevant in vivo models of breast and prostate cancer, we demonstrate that incorporating a reporter gene for imaging does not compromise the exceptional therapeutic efficacy of our previously reported bipartite CTV. This TCTV permits targeted treatment of tumors while monitoring tumor regression, with potential to simultaneously detect metastasis due to the cancer-selective activity of reporter gene expression. This “theranostic” virus provides a new genetic tool for distinguishing and treating localized and metastatic cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- Correspondence: (P.B.); (P.B.F.)
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Santanu Maji
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: (P.B.); (P.B.F.)
| |
Collapse
|
9
|
Menezes ME, Talukdar S, Wechman SL, Das SK, Emdad L, Sarkar D, Fisher PB. Prospects of Gene Therapy to Treat Melanoma. Adv Cancer Res 2019; 138:213-237. [PMID: 29551128 DOI: 10.1016/bs.acr.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incidence of melanoma has continued to increase over the past 30 years. Hence, developing effective therapies to treat both primary and metastatic melanoma are essential. While advances in targeted therapy and immunotherapy have provided novel therapeutic options to treat melanoma, gene therapy may provide additional strategies for the treatment of metastatic melanoma clinically. This review focuses upon the challenges and opportunities that gene therapy provides for targeting melanoma. We begin with a discussion of the various gene therapy targets which are relevant to melanoma. Next, we explore the gene therapy clinical trials that have been conducted for treating melanoma. Finally, challenges faced in gene therapy as well as combination therapies for targeting melanoma, which may circumvent these obstacles, will be discussed. Targeted combination gene therapy strategies hold significant promise for developing the most effective therapeutic outcomes, while reducing the toxicity to noncancerous cells, and would integrate the patient's immune system to diminish melanoma progression. Next-generation vectors designed to embody required safety profiles and "theranostic" attributes, combined with immunotherapeutic strategies would be critical in achieving beneficial management and therapeutic outcomes in melanoma patients.
Collapse
Affiliation(s)
- Mitchell E Menezes
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Sarmistha Talukdar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
10
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
11
|
Ongrádi J, Chatlynne LG, Tarcsai KR, Stercz B, Lakatos B, Pring-Åkerblom P, Gooss D, Nagy K, Ablashi DV. Adenovirus Isolated From a Cat Is Related to Human Adenovirus 1. Front Microbiol 2019; 10:1430. [PMID: 31293556 PMCID: PMC6603132 DOI: 10.3389/fmicb.2019.01430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/06/2019] [Indexed: 01/03/2023] Open
Abstract
An adenovirus (AdV) has been isolated from the rectal swab of a domestic cat (Felis catus) and named feline adenovirus (FeAdV) isolate. It replicates and causes cytopathological effects in many human, feline, other mammalian cell lines that have both Coxsackie-adenovirus-receptor and integrins. Its antigens cross-react with anti-human adenovirus antibodies in immunofluorescence and immunocytochemistry assays. Electron microscopy revealed typical extracellular icosahedral particles and pseudo arrays inside cells. Sequence analysis of hexon and fiber genes indicates that this virus might belong to human adenovirus (HAdV) C species and might be a variant of type 1. In the fiber protein, three altered amino acids occur in the shaft; four altered residues are found in the knob region as compared to a European HAdV might be type 1 isolate (strain 1038, D11). One alteration affects amino acid 442 forming an RGS motif in an alanine rich region that might be an alternative way to bind integrins with subsequent internalization. Substitutions in the hexon sequence are silent. As compared to published HAdV sequences, the fiber is related to the original American prototype and recently described Taiwanese HAdV 1 isolates, but the hexon sequences are related to adenovirus isolates from France, Germany, Japan, and Taiwan. Serology carried out on FeAdV infected M426 cells indicates a prevalence of IgG in 80% of domestic cats in Delaware, United States. FeAdV isolate seems to be a recently recognized virus with possible pathogenic effects and, simultaneous human and feline infections are possible. Further molecular and biological characterization of this feline adenovirus isolate, as well as studies on both human and feline epidemiology and pathomechanisms, especially in endangered big cats, are warranted. FeAdV might have further practical advantages. Namely, it could be utilized in both human and feline AIDS research, developed into diagnostic tools, and gene therapy vectors in the near future.
Collapse
Affiliation(s)
- Joseph Ongrádi
- Department of Medical Microbiology, Semmelweis University, Budapest, Hungary.,National Institute of Dermato-Venereology, Budapest, Hungary
| | | | | | - Balázs Stercz
- Department of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | | | | | - Donald Gooss
- Selbyville Animal Hospital, Selbyville, DE, United States
| | - Károly Nagy
- Department of Medical Microbiology, Semmelweis University, Budapest, Hungary.,National Institute of Dermato-Venereology, Budapest, Hungary
| | | |
Collapse
|
12
|
Rasoolian M, Kheirollahi M, Hosseini SY. MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expert Opin Biol Ther 2019; 19:211-223. [PMID: 30612497 DOI: 10.1080/14712598.2019.1566453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MDA-7/Interleukin-24 (IL-24), as a pleiotropic cytokine, exhibits a specific tumor suppression property that has attracted a great deal of attention. While its anti-tumor induction is mostly attributed to endogenous gene expression, attachment of secreted MDA-7/IL-24 to cognate receptors also triggers the death of cancerous cell via different pathways. Therefore, precise targeting of secreted MDA-7/IL-24 to tumor cells would render it more efficacy and specificity. AREAS COVERED In order to target soluble cytokines, particularly MDA-7/IL-24 to the neighbor tumor sites and enhance their therapeutic efficiency, fusing with cell penetrating peptides (CPPs) or Tumor homing peptides (THPs) seems logical due to the improvement of their bystander effects. Although the detailed anti-tumor mechanisms of endogenous mda-7/IL-24 have been largely investigated, the significance of the secreted form in these activities and methods of its improving by CPPs or THPs need more discussion. EXPERT OPINION While the employment of CPPs/THPs for the improvement of cytokine gene therapy is desirable, to create fusions of CPPs/THPs with MDA-7/IL-24, some hurdles are not avoidable. Regarding our expertise, herein, the importance of CPPs/THPs, needs for their elegant designing in a fusion structure, and their applications in cytokine gene therapy are discussed with a special focus on mda-7/IL-24.
Collapse
Affiliation(s)
- Mohammad Rasoolian
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Majid Kheirollahi
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran.,b Department of Genetics and Molecular Biology, Pediatrics Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Seyed Younes Hosseini
- c Bacteriology and Virology Department, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
13
|
Abstract
Subtraction hybridization identified genes displaying differential expression as metastatic human melanoma cells terminally differentiated and lost tumorigenic properties by treatment with recombinant fibroblast interferon and mezerein. This approach permitted cloning of multiple genes displaying enhanced expression when melanoma cells terminally differentiated, called melanoma differentiation associated (mda) genes. One mda gene, mda-7, has risen to the top of the list based on its relevance to cancer and now inflammation and other pathological states, which based on presence of a secretory sequence, chromosomal location, and an IL-10 signature motif has been named interleukin-24 (MDA-7/IL-24). Discovered in the early 1990s, MDA-7/IL-24 has proven to be a potent, near ubiquitous cancer suppressor gene capable of inducing cancer cell death through apoptosis and toxic autophagy in cancer cells in vitro and in preclinical animal models in vivo. In addition, MDA-7/IL-24 embodied profound anticancer activity in a Phase I/II clinical trial following direct injection with an adenovirus (Ad.mda-7; INGN-241) in tumors in patients with advanced cancers. In multiple independent studies, MDA-7/IL-24 has been implicated in many pathological states involving inflammation and may play a role in inflammatory bowel disease, psoriasis, cardiovascular disease, rheumatoid arthritis, tuberculosis, and viral infection. This review provides an up-to-date review on the multifunctional gene mda-7/IL-24, which may hold potential for the therapy of not only cancer, but also other pathological states.
Collapse
|
14
|
Emdad L, Das SK, Wang XY, Sarkar D, Fisher PB. Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer. J Cell Physiol 2018; 233:5684-5695. [PMID: 29278667 DOI: 10.1002/jcp.26421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Curiel DT. Combinatorial strategies based on CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis treatment for ovarian cancer. J Ovarian Res 2016; 9:38. [PMID: 27349517 PMCID: PMC4924320 DOI: 10.1186/s13048-016-0248-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Background A major hurdle incurrent to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy agents is their limited therapeutic efficacy. In this study we evaluated whether arming our previously reported Ad5/3Δ24 CRAd vector containing a 24-base pair deletion in the E1A conserved region 2, which allows selective replication within Rb-p16-deficient tumor cells, to express therapeutic genes could improve oncolytic virus potency in ovarian cancer cells. We choose to assess the therapeutic benefits achieved by virus-mediated expression of interleukin 24 (IL-24), a cytokine-like protein of the IL-10 family, and the inhibitor of growth 4 (ING4) tumor suppressor protein. Results The generated CRAd-IL24 and CRAd-ING4 vectors were tested in ovarian cancer cell lines in vitro to compare their replication, yield, and cytotoxic effects with control CRAd Ad5/3∆24 lacking the therapeutic gene. These studies showed that CRAd-IL24 infection resulted in significantly increased yield of infectious particles, which translated to a marked enhancement of virus-induced cytotoxic effects as compared to CRAd-ING4 and non-armed CRAd. Testing CRAd-IL24 and CRAd-ING4 vectors combined together did not revealed synergistic effects exceeding oncolytic potency of single CRAD-IL24 vector. Both CRAds were also tested along with anti-VEGF monoclonal antibody Avastin and showed no significant augmentation of viral cytolysis by anti-angiogenesis treatment in vitro. Conclusions Our studies validated that arming with these key immunomodulatory genes was not deleterious to virus-mediated oncolysis. These findings thus, warrant further preclinical studies of CRAd-IL24 tumoricidal efficacy in murine ovarian cancer models to establish its potential utility for the virotherapy of primary and advanced neoplastic diseases.
Collapse
Affiliation(s)
- Ahmad Mohammad Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Igor P Dmitriev
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Elena A Kashentseva
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - David T Curiel
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 2015; 6:36928-42. [PMID: 26474456 PMCID: PMC4741906 DOI: 10.18632/oncotarget.6047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.
Collapse
Affiliation(s)
- Mitchell E. Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Fang Yuan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Michael C. Archer
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Yaacov Ben-David
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Division of Biology, the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
17
|
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol 2015; 230:259-71. [PMID: 25196387 DOI: 10.1002/jcp.24791] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shilpa Bhatia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Minn I, Bar-Shir A, Yarlagadda K, Bulte JWM, Fisher PB, Wang H, Gilad AA, Pomper MG. Tumor-specific expression and detection of a CEST reporter gene. Magn Reson Med 2015; 74:544-9. [PMID: 25919119 DOI: 10.1002/mrm.25748] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop an imaging tool that enables the detection of malignant tissue with enhanced specificity using the exquisite spatial resolution of MRI. METHODS Two mammalian gene expression vectors were created for the expression of the lysine-rich protein (LRP) under the control of the cytomegalovirus (CMV) promoter and the progression elevated gene-3 promoter (PEG-3 promoter) for constitutive and tumor-specific expression of LRP, respectively. Using those vectors, stable cell lines of rat 9L glioma, 9L(CMV-LRP) and 9L(PEG-LRP) , were established and tested for CEST contrast in vitro and in vivo. RESULTS 9L(PEG-LRP) cells showed increased CEST contrast compared with 9L cells in vitro. Both 9L(CMV-LRP) and 9L(PEG-LRP) cells were capable of generating tumors in the brains of mice, with a similar growth rate to tumors derived from wild-type 9L cells. An increase in CEST contrast was clearly visible in tumors derived from both 9L(CMV-LRP) and 9L(PEG-LRP) cells at 3.4 ppm. CONCLUSION The PEG-3 promoter:LRP system can be used as a cancer-specific, molecular-genetic imaging reporter system in vivo. Because of the ubiquity of MR imaging in clinical practice, sensors of this class can be used to translate molecular-genetic imaging rapidly.
Collapse
Affiliation(s)
- Il Minn
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amnon Bar-Shir
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Keerthi Yarlagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Hill DS, Lovat PE, Haass NK. Induction of endoplasmic reticulum stress as a strategy for melanoma therapy: is there a future? Melanoma Manag 2014; 1:127-137. [PMID: 30190818 DOI: 10.2217/mmt.14.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanoma cells employ several survival strategies, including induction of the unfolded protein response, which mediates resistance to endoplasmic reticulum (ER) stress-induced apoptosis. Activation of oncogenes specifically suppresses ER stress-induced apoptosis, while upregulation of ER chaperone proteins and antiapoptotic BCL-2 family members increases the protein folding capacity of the cell and the threshold for the induction of ER stress-induced apoptosis, respectively. Modulation of unfolded protein response signaling, inhibition of the protein folding machinery and/or active induction of ER stress may thus represent potential strategies for the therapeutic management of melanoma. To this aim, the present article focuses on the current understanding of how melanoma cells avoid or overcome ER stress-induced apoptosis, as well as therapeutic strategies through which to harness ER stress for therapeutic benefit.
Collapse
Affiliation(s)
- David S Hill
- The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Penny E Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nikolas K Haass
- The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia.,The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
20
|
Sandey M, Bird RC, Das SK, Sarkar D, Curiel DT, Fisher PB, Smith BF. Characterization of the canine mda-7 gene, transcripts and expression patterns. Gene 2014; 547:23-33. [PMID: 24865935 DOI: 10.1016/j.gene.2014.05.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Human melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) displays potent growth suppressing and cell killing activity against a wide variety of human and rodent cancer cells. In this study, we identified a canine ortholog of the human mda-7/IL-24 gene located within a cluster of IL-10 family members on chromosome 7. The full-length mRNA sequence of canine mda-7 was determined, which encodes a 186-amino acid protein that has 66% similarity to human MDA-7/IL-24. Canine MDA-7 is constitutively expressed in cultured normal canine epidermal keratinocytes (NCEKs), and its expression levels are increased after lipopolysaccharide stimulation. In cultured NCEKs, the canine mda-7 pre-mRNA is differentially spliced, via exon skipping and alternate 5'-splice donor sites, to yield five splice variants (canine mda-7sv1, canine mda-7sv2, canine mda-7sv3, canine mda-7sv4 and canine mda-7sv5) that encode four protein isoforms of the canine MDA-7 protein. These protein isoforms have a conserved N-terminus (signal peptide sequence) and are dissimilar in amino acid sequences at their C-terminus. Canine MDA-7 is not expressed in primary canine tumor samples, and most tumor derived cancer cell lines tested, like its human counterpart. Unlike human MDA-7/IL-24, canine mda-7 mRNA is not expressed in unstimulated or lipopolysaccharide (LPS), concanavalin A (ConA) or phytohemagglutinin (PHA) stimulated canine peripheral blood mononuclear cells (PBMCs). Furthermore, in-silico analysis revealed that canonical canine MDA-7 has a potential 28 amino acid signal peptide sequence that can target it for active secretion. This data suggests that canine mda-7 is indeed an ortholog of human mda-7/IL-24, its protein product has high amino acid similarity to human MDA-7/IL-24 protein and it may possess similar biological properties to human MDA-7/IL-24, but its expression pattern is more restricted than its human ortholog.
Collapse
Affiliation(s)
- Maninder Sandey
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | - R Curtis Bird
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - David T Curiel
- Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA.
| |
Collapse
|
21
|
Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res (Phila) 2014; 7:973-92. [PMID: 25060262 DOI: 10.1158/1940-6207.capr-14-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherri L Patterson
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
22
|
MDA-7/IL-24: multifunctional cancer killing cytokine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:127-53. [PMID: 25001534 DOI: 10.1007/978-1-4471-6458-6_6] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
First identified almost two decades ago as a novel gene differentially expressed in human melanoma cells induced to terminally differentiate, MDA-7/IL-24 has since shown great potential as an anti-cancer gene. MDA-7/IL24, a secreted protein of the IL-10 family, functions as a cytokine at normal physiological levels and is expressed in tissues of the immune system. At supra-physiological levels, MDA-7/IL-24 plays a prominent role in inhibiting tumor growth, invasion, metastasis and angiogenesis and was recently shown to target tumor stem/initiating cells for death. Much of the attention focused on MDA-7/IL-24 originated from the fact that it can selectively induce cell death in cancer cells without affecting normal cells. Thus, this gene originally shown to be associated with melanoma cell differentiation has now proven to be a multi-functional protein affecting a broad array of cancers. Moreover, MDA-7/IL-24 has proven efficacious in a Phase I/II clinical trial in humans with multiple advanced cancers. As research in the field progresses, we will unravel more of the functions of MDA-7/IL-24 and define novel ways to utilize MDA-7/IL-24 in the treatment of cancer.
Collapse
|
23
|
Azab BM, Dash R, Das SK, Bhutia SK, Sarkar S, Shen XN, Quinn BA, Dent P, Dmitriev IP, Wang XY, Curiel DT, Pellecchia M, Reed JC, Sarkar D, Fisher PB. Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3-CTV). J Cell Physiol 2013; 229:34-43. [PMID: 23868767 DOI: 10.1002/jcp.24408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/14/2013] [Indexed: 12/27/2022]
Abstract
Few options are available for treating patients with advanced prostate cancer (PC). As PC is a slow growing disease and accessible by ultrasound, gene therapy could provide a viable option for this neoplasm. Conditionally replication-competent adenoviruses (CRCAs) represent potentially useful reagents for treating PC. We previously constructed a CRCA, cancer terminator virus (CTV), which showed efficacy both in vitro and in vivo for PC. The CTV was generated on a serotype 5-background (Ad.5-CTV) with infectivity depending on Coxsackie-Adenovirus Receptors (CARs). CARs are frequently reduced in many tumor types, including PCs thereby limiting effective Ad-mediated therapy. Using serotype chimerism, a novel CTV (Ad.5/3-CTV) was created by replacing the Ad.5 fiber knob with the Ad.3 fiber knob thereby facilitating infection in a CAR-independent manner. We evaluated Ad.5/3-CTV in comparison with Ad.5-CTV in low CAR human PC cells, demonstrating higher efficiency in inhibiting cell viability in vitro. Moreover, Ad.5/3-CTV potently suppressed in vivo tumor growth in a nude mouse xenograft model and in a spontaneously induced PC that develops in Hi-myc transgenic mice. Considering the significant responses in a Phase I clinical trial of a non-replicating Ad.5-mda-7 in advanced cancers, Ad.5/3-CTV may exert improved therapeutic benefit in a clinical setting.
Collapse
Affiliation(s)
- Belal M Azab
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hamed HA, Das SK, Sokhi UK, Park MA, Cruickshanks N, Archer K, Ogretmen B, Grant S, Sarkar D, Fisher PB, Dent P. Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells. Cancer Biol Ther 2013; 14:1039-49. [PMID: 24025359 PMCID: PMC3925659 DOI: 10.4161/cbt.26110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the present study we show that histone deacetylase inhibitors (HDACIs) enhance the anti-tumor effects of melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) in human renal carcinoma cells. Similar data were obtained in other GU tumor cells. Combination of these two agents resulted in increased autophagy that was dependent on expression of ceramide synthase 6, with HDACIs enhancing MDA-7/IL-24 toxicity by increasing generation of ROS and Ca2+. Knock down of CD95 protected cells from HDACI and MDA-7/IL-24 lethality. Sorafenib treatment further enhanced (HDACI + MDA-7/IL-24) lethality. Anoikis resistant renal carcinoma cells were more sensitive to MDA-7/IL-24 that correlated with elevated SRC activity and tyrosine phosphorylation of CD95. We employed a recently constructed serotype 5/3 adenovirus, which is more effective than a serotype 5 virus in delivering mda-7/IL-24 to renal carcinoma cells and which conditionally replicates (CR) in tumor cells expressing MDA-7/IL-24 by virtue of placing the adenoviral E1A gene under the control of the cancer-specific promoter progression elevated gene-3 (Ad.5/3-PEG-E1A-mda-7; CRAd.5/3-mda-7, Ad.5/3-CTV), to define efficacy in renal carcinoma cells. Ad.5/3-CTV decreased the growth of renal carcinoma tumors to a significantly greater extent than did a non-replicative virus Ad.5/3-mda-7. In contralateral uninfected renal carcinoma tumors Ad.5/3-CTV also decreased the growth of tumors to a greater extent than did Ad.5/3-mda-7. In summation, our data demonstrates that HDACIs enhance MDA-7/IL-24-mediated toxicity and tumor specific adenoviral delivery and viral replication of mda-7/IL-24 is an effective pre-clinical renal carcinoma therapeutic.
Collapse
Affiliation(s)
- Hossein A Hamed
- Department of Neurosurgery; Virginia Commonwealth University; Richmond, VA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hamed HA, Yacoub A, Park MA, Archer K, Das SK, Sarkar D, Grant S, Fisher PB, Dent P. Histone deacetylase inhibitors interact with melanoma differentiation associated-7/interleukin-24 to kill primary human glioblastoma cells. Mol Pharmacol 2013; 84:171-81. [PMID: 23661648 PMCID: PMC3716321 DOI: 10.1124/mol.113.086553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023] Open
Abstract
We presently demonstrate that histone deacetylase inhibitors (HDACIs) enhance toxicity of melanoma differentiation-associated gene-7/interleukin 24 (mda-7/IL-24) in invasive primary human glioblastoma multiforme (GBM) cells. Additionally, a method is described to augment the efficacy of adenoviral delivery of mda-7/IL-24 in these cells. HDACIs synergized with melanoma differentiation-associated (MDA)-7/IL-24 killing GBM cells. Enhanced lethality correlated with increased autophagy that was dependent on the expression of ceramide synthase 6. HDACIs interacted with MDA-7/IL-24 prolonging generation of reactive oxygen species and Ca(2+). Quenching of reactive oxygen species and Ca(2+) blocked HDACI and MDA-7/IL-24 killing. In vivo MDA-7/IL-24 prolonged the survival of animals carrying orthotopic tumors, and HDACIs enhanced survival further. A serotype 5/3 adenovirus more effectively delivers mda-7/IL-24 to GBM tumors than a serotype 5 virus. Hence, we constructed a serotype 5/3 adenovirus that conditionally replicates in tumor cells expressing MDA-7/IL-24, in which the adenoviral early region 1A (E1A) gene was driven by the cancer-specific promoter progression elevated gene-3 [Ad.5/3 (INGN 241)-PEG-E1A-mda-7; also called Ad.5/3-CTV (cancer terminator virus)]. Ad.5/3-CTV increased the survival of mice carrying GBM tumors to a significantly greater extent than did a nonreplicative virus Ad.5/3-mda-7. Ad.5/3-CTV exhibited no toxicity in the brains of Syrian hamsters. Collectively our data demonstrate that HDACIs enhance MDA-7/IL-24 lethality, and adenoviral delivery of mda-7/IL-24 combined with tumor-specific viral replication is an effective preclinical GBM therapeutic.
Collapse
Affiliation(s)
- Hossein A Hamed
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hedvat M, Emdad L, Das SK, Kim K, Dasgupta S, Thomas S, Hu B, Zhu S, Dash R, Quinn BA, Oyesanya RA, Kegelman TP, Sokhi UK, Sarkar S, Erdogan E, Menezes ME, Bhoopathi P, Wang XY, Pomper MG, Wei J, Wu B, Stebbins JL, Diaz PW, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Selected approaches for rational drug design and high throughput screening to identify anti-cancer molecules. Anticancer Agents Med Chem 2013; 12:1143-55. [PMID: 22931411 DOI: 10.2174/187152012803529709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 12/14/2022]
Abstract
Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.
Collapse
Affiliation(s)
- Michael Hedvat
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Interleukin-24 (IL-24), a member of the IL-10 cytokine family whose physiological function remains largely unknown, has been shown to induce apoptosis when expressed in an adenoviral background. It is yet little understood, why IL-24 alone induced apoptosis only in a limited number of tumor cell lines. Analyzing an influenza A virus vector expressing IL-24 for its oncolytic potential revealed enhanced pro-apoptotic activity of the chimeric virus compared with virus or IL-24 alone. Interestingly, IL-24-mediated enhancement of influenza-A-induced apoptosis did not require viral replication but critically depended on toll-like receptor 3 (TLR3) and caspase-8. Immunoprecipitation of TLR3 showed that infection by influenza A virus induced formation of a TLR3-associated signaling complex containing TRIF, RIP1, FADD, cFLIP and pro-caspase-8. Co-administration of IL-24 decreased the presence of cFLIP in the TLR3-associated complex, converting it into an atypical, TLR3-associated death-inducing signaling complex (TLR3 DISC) that induced apoptosis by enabling caspase-8 activation at this complex. The sensitizing effect of IL-24 on TLR3-induced apoptosis, mediated by influenza A virus or the TLR3-specific agonist poly(I:C), was also evident on tumor spheroids. In conclusion, rather than acting as an apoptosis inducer itself, IL-24 sensitizes cancer cells to TLR-mediated apoptosis by enabling the formation of an atypical DISC which, in the case of influenza A virus or poly(I:C), is associated with TLR3.
Collapse
|
28
|
Das SK, Sarkar S, Dash R, Dent P, Wang XY, Sarkar D, Fisher PB. Chapter One---Cancer terminator viruses and approaches for enhancing therapeutic outcomes. Adv Cancer Res 2013; 115:1-38. [PMID: 23021240 DOI: 10.1016/b978-0-12-398342-8.00001-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
No single or combinatorial therapeutic approach has proven effective in decreasing morbidity or engendering a cure of metastatic cancer. In principle, conditionally replication-competent adenoviruses that induce tumor oncolysis through cancer-specific replication hold promise for cancer therapy. However, a single-agent approach may not be adequate to completely eradicate cancer in a patient because most cancers arise from abnormalities in multiple genetic and signal transduction pathways and targeting disseminated metastases is difficult to achieve. Based on these considerations, a novel class of cancer destroying adenoviruses have been produced, cancer terminator viruses (CTVs), in which cancer-specific replication is controlled by the progression-elevated gene-3 promoter and replicating viruses produce a second transgene encoding an apoptosis-inducing and immunomodulatory cytokine, either melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) or interferon-γ. This review focuses on these viruses and ways to improve their delivery systemically and enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
30
|
Nande R, Di Benedetto A, Aimola P, De Carlo F, Carper M, Claudio CD, Denvir J, Valluri J, Duncan GC, Claudio PP. Targeting a newly established spontaneous feline fibrosarcoma cell line by gene transfer. PLoS One 2012; 7:e37743. [PMID: 22666387 PMCID: PMC3364269 DOI: 10.1371/journal.pone.0037743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/25/2012] [Indexed: 11/30/2022] Open
Abstract
Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas.
Collapse
Affiliation(s)
- Rounak Nande
- Department of Biochemistry and Microbiology, Joan C Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang CJ, Xiao CW, You TG, Zheng YX, Gao W, Zhou ZQ, Chen J, Xue XB, Fan J, Zhang H. Interferon-α enhances antitumor activities of oncolytic adenovirus-mediated IL-24 expression in hepatocellular carcinoma. Mol Cancer 2012; 11:31. [PMID: 22569271 PMCID: PMC3697897 DOI: 10.1186/1476-4598-11-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/08/2012] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has a dismal 5-year-survival rate of 10%, so
novel strategies are warranted. IL-24 mediates anti-tumor activity reducing
STAT3 expression, which suggests that interferon (IFN) alpha may augment
tumor cell lysis and reduce angiogenesis. We investigated the antitumor
activity of treatment with IFN-α, with the oncolytic adenovirus
SG600-IL-24, or the combination of both in HCC in vitro and in
vivo. Results RT-PCR, ELISA assay and Western-blot confirmed that the exogenous IL-24 gene
was highly expressed in HCC cells infected with SG600-IL-24. Treatment with
combined IFN-α and SG600-IL-24 suppressed growth and promoted apoptosis
of the HepG2, MHCC97L, and HCCLM3 cell lines compared with the normal cell
line L02. The combined therapy increased STAT1 and SOCS1 and apoptosis, but
decreased the expression of the metastatic and angiogenic proteins MMP-2,
XIAP, OPN, and VEGF, which are regulated by STAT3 in HCC cells in
vitro. To assess the effects in vivo, the HCC cell line
HCCLM3 was transplanted subcutaneously into the right flanks of nude mice.
Mice in the IFN-α group, the SG600-IL-24 group, or the combined therapy
group had significantly suppressed growth of the HCC xenografted tumors
compared to the PBS control group of mice. Among the mice treated with the
combination of IFN-α and SG600-IL-24, three of those eight mice had
long-term survival and no evidence of a tumor. These mice also had decreased
expression of the metastatic and angiogenic proteins MMP-2, XIAP, OPN, and
VEGF. Conclusions The present study demonstrated for the first time the potential antitumor
activity of IFN-α combined with the oncolytic adenovirus SG600-IL-24 in
HCC both in vitro and in vivo, and suggests its further
development as a potential candidate for HCC cancer gene therapy.
Collapse
Affiliation(s)
- Cong-Jun Wang
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jiang G, Zhang L, Xin Y, Pei DS, Wei ZP, Liu YQ, Zheng JN. Conditionally replicating adenoviruses carrying mda-7/IL-24 for cancer therapy. Acta Oncol 2012; 51:285-92. [PMID: 21995527 DOI: 10.3109/0284186x.2011.621447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) suppresses growth and induces apoptosis in a broad range of human cancers without significant cytotoxicity to normal cells. Conditionally replicating adenoviruses (CRAds) not only have the ability to destroy cancer cells but may also be potential vectors for the expression of therapeutic genes. METHODS This review provides an overview of specifications for a novel anti-tumor approach CRAds carrying IL-24, and discusses recent progress in this field. RESULTS Studies in multiple laboratories report that CRAds carrying IL-24 selectively induced apoptosis in some cancer cells, and enhanced selective toxicity to cancer cells when combined with chemotherapeutic agents. CONCLUSION CRAds carrying IL-24 may prove a novel and effective approach for the treatment of cancers.
Collapse
Affiliation(s)
- Guan Jiang
- Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
34
|
Day CP, Merlino G. Illuminating progression: tracking melanoma metastasis in a gene therapy setting. Pigment Cell Melanoma Res 2011; 24:260-1. [PMID: 21226857 DOI: 10.1111/j.1755-148x.2011.00826.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, Das SK, Kim K, Lee SG, Park MA, Yacoub A, Rahmani M, Emdad L, Dmitriev IP, Wang XY, Sarkar D, Grant S, Dent P, Curiel DT, Fisher PB. mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 2011; 21:381-91. [PMID: 20926331 DOI: 10.1016/j.cytogfr.2010.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
Collapse
Affiliation(s)
- Rupesh Dash
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bhang HEC, Gabrielson KL, Laterra J, Fisher PB, Pomper MG. Tumor-specific imaging through progression elevated gene-3 promoter-driven gene expression. Nat Med 2011; 17:123-9. [PMID: 21151140 PMCID: PMC3057477 DOI: 10.1038/nm.2269] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 08/11/2010] [Indexed: 02/06/2023]
Abstract
Molecular-genetic imaging is advancing from a valuable preclinical tool to a guide for patient management. The strategy involves pairing an imaging reporter gene with a complementary imaging agent in a system that can be used to measure gene expression or protein interaction or track gene-tagged cells in vivo. Tissue-specific promoters can be used to delineate gene expression in certain tissues, particularly when coupled with an appropriate amplification mechanism. Here we show that the progression elevated gene-3 (PEG-3) promoter, derived from a rodent gene mediating tumor progression and metastatic phenotypes, can be used to drive imaging reporters selectively to enable detection of micrometastatic disease in mouse models of human melanoma and breast cancer using bioluminescence and radionuclide-based molecular imaging techniques. Because of its strong promoter activity, tumor specificity and capacity for clinical translation, PEG-3 promoter-driven gene expression may represent a practical, new system for facilitating cancer imaging and therapy.
Collapse
Affiliation(s)
- Hyo-eun C. Bhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland, 21231, USA
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, 21231, USA
| | - John Laterra
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland, 21231, USA
- Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298, USA
| | - Martin G. Pomper
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland, 21231, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland, 21231, USA
| |
Collapse
|
37
|
Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Wang XY, Gupta P, Emdad L, Lebedeva IV, Sauane M, Su ZZ, Rahmani M, Broaddus WC, Young HF, Lesniak MS, Grant S, Curiel DT, Fisher PB. The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther 2010; 128:375-84. [PMID: 20732354 PMCID: PMC2947573 DOI: 10.1016/j.pharmthera.2010.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/02/2010] [Indexed: 02/09/2023]
Abstract
The cytokine melanoma differentiation associated gene 7 (mda-7) was identified by subtractive hybridization as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, was classified as a member of the interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and rapid cell death. In addition, MDA-7/IL-24 has been noted to radiosensitize tumor cells which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress and suppress protein translation. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, strongly arguing that MDA-7/IL-24 could have significant therapeutic value. This review describes what is presently known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
Collapse
Affiliation(s)
- Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xue XB, Xiao CW, Zhang H, Lu AG, Gao W, Zhou ZQ, Guo XL, Zhong MA, Yang Y, Wang CJ. Oncolytic adenovirus SG600-IL24 selectively kills hepatocellular carcinoma cell lines. World J Gastroenterol 2010; 16:4677-84. [PMID: 20872968 PMCID: PMC2951518 DOI: 10.3748/wjg.v16.i37.4677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of oncolytic adenovirus SG600-IL24 and replication-incompetent adenovirus Ad.IL-24 on hepatocellular carcinoma (HCC) cell lines and normal liver cell line.
METHODS: HCC cell lines (HepG2, Hep3B and MHCC97L) and normal liver cell line (L02) with a different p53 status were infected with SG600-IL24 and Ad.IL-24, respectively. Melanoma differentiation-associated (MDA)-7/interleukin (IL)-24 mRNA and protein expressions in infected cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blotting, respectively. Apoptosis of HCC cells and normal liver cells was detected by cytometric assay with Hoechst33258 staining. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to investigate proliferation of HCC cells and normal liver cells, and cell cycle was assayed by flow cytometry.
RESULTS: RT-PCR, ELISA and Western blotting showed that the exogenous MDA-7/IL-24 gene was highly expressed in cells infected with SG600-IL24. MTT indicated that SG600-IL24 could suppress the growth of HepG2, Hep3B, MHCC97L, with an inhibition rate of 75% ± 2.5%, 85% ± 2.0%, 72% ± 1.8%, respectively (P < 0.01), promote the apoptosis of HepG2, Hep3B, MHCC97L, with an apoptosis rate of 56.59% ± 4.0%, 78.36% ± 3.5%, 43.39% ± 2.5%, respectively (P < 0.01), and block the HCC cell lines in the G2/M phase with a blocking rate of 35.4% ± 4.2%, 47.3% ± 6.2%, 42% ± 5.0%, respectively (P < 0.01) but not the normal liver cell line in a p53-independent manner.
CONCLUSION: SG600-IL24 can selectively suppress the proliferation and apoptosis of HCC cell lines in vitro but not normal liver cell line L02 in a p53-independent manner. Compared with Ad.IL-24, SG600-IL24 can significantly enhance the antitumor activity in HCC cell lines.
Collapse
|
39
|
Differential Antitumor Effects of IgG and IgM Monoclonal Antibodies and Their Synthetic Complementarity-Determining Regions Directed to New Targets of B16F10-Nex2 Melanoma Cells. Transl Oncol 2010; 3:204-17. [PMID: 20689762 DOI: 10.1593/tlo.09316] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.
Collapse
|
40
|
Wei N, Fan JK, Gu JF, Liu XY. Double-Regulated Oncolytic Adenovirus-Mediated Interleukin-24 Overexpression Exhibits Potent Antitumor Activity on Gastric Adenocarcinoma. Hum Gene Ther 2010; 21:855-64. [DOI: 10.1089/hum.2009.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Na Wei
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Kai Fan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Fa Gu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Yuan Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
41
|
Yacoub A, Liu R, Park MA, Hamed HA, Dash R, Schramm DN, Sarkar D, Dimitriev IP, Bell JK, Grant S, Farrell NP, Curiel DT, Fisher PB, Dent P. Cisplatin enhances protein kinase R-like endoplasmic reticulum kinase- and CD95-dependent melanoma differentiation-associated gene-7/interleukin-24-induced killing in ovarian carcinoma cells. Mol Pharmacol 2010; 77:298-310. [PMID: 19910452 PMCID: PMC2812067 DOI: 10.1124/mol.109.061820] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/11/2009] [Indexed: 12/22/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a unique interleukin (IL)-10 family cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which recombinant adenoviral delivery of MDA-7/IL-24 inhibits cell survival of human ovarian carcinoma cells. Expression of MDA-7/IL-24 induced phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor2alpha (eIF2alpha). In a PERK-dependent fashion, MDA-7/IL-24 reduced ERK1/2 and AKT phosphorylation and activated c-Jun NH(2)-terminal kinase (JNK) 1/2 and p38 mitogen-activated protein kinase (MAPK). MDA-7/IL-24 reduced MCL-1 and BCL-XL and increased BAX levels via PERK signaling; cell-killing was mediated via the intrinsic pathway, and cell killing was primarily necrotic as judged using Annexin V/propidium iodide staining. Inhibition of p38 MAPK and JNK1/2 abolished MDA-7/IL-24 toxicity and blocked BAX and BAK activation, whereas activation of mitogen-activated extracellular-regulated kinase (MEK) 1/2 or AKT suppressed enhanced killing and JNK1/2 activation. MEK1/2 signaling increased expression of the MDA-7/IL-24 and PERK chaperone BiP/78-kDa glucose regulated protein (GRP78), and overexpression of BiP/GRP78 suppressed MDA-7/IL-24 toxicity. MDA-7/IL-24-induced LC3-green fluorescent protein vesicularization and processing of LC3; and knockdown of ATG5 suppressed MDA-7/IL-24-mediated toxicity. MDA-7/IL-24 and cisplatin interacted in a greater than additive fashion to kill tumor cells that was dependent on a further elevation of JNK1/2 activity and recruitment of the extrinsic CD95 pathway. MDA-7/IL-24 toxicity was enhanced in a weak additive fashion by paclitaxel; paclitaxel enhanced MDA-7/IL-24 + cisplatin lethality in a greater than additive fashion via BAX. Collectively, our data demonstrate that MDA-7/IL-24 induces an endoplasmic reticulum stress response that activates multiple proapoptotic pathways, culminating in decreased ovarian tumor cell survival.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kanda T, Raychoudhuri A, Steele R, Sagartz JE, West C, Ray RB. MBP-1 inhibits breast cancer growth and metastasis in immunocompetent mice. Cancer Res 2010; 69:9354-9. [PMID: 19934312 DOI: 10.1158/0008-5472.can-09-2974] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the leading cause of cancer death among women. We have shown previously an antiproliferative effect of MBP-1 on several human cancer cells. In this study, we have examined the potential of MBP-1 as a gene therapeutic candidate in regression of breast cancer growth and metastasis in an immunocompetent mouse model. For this, we have used a mouse breast cancer cell line (EO771) and syngeneic C57BL/6 mice. EO771 cells were implanted into the mammary fat pad of C57BL/6 mice. Replication-deficient recombinant adenovirus expressing MBP-1 was administered intratumorally to determine gene therapeutic potential. The results showed a significant regression of primary and distant (lung) tumor growth. Animals exhibited prolonged survival on treatment with MBP-1 compared with the control group (dl312). Subsequent studies suggested that MBP-1 inhibits matrix metalloproteinase expression in human breast cancer cells. Cells transduced with MBP-1 displayed inhibition of migration in a wound-healing assay. The conditioned medium from MBP-1-transduced cells blocked in vitro tube formation assay and inhibited expression of several angiogenic molecules. Taken together, our study shows that MBP-1 acts as a double-edged sword by inhibiting primary and metastatic tumor growth and modulating matrix metalloproteinase expression with a therapeutic potential against breast cancer progression.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Pathology, Saint Louis University, St. Louis, Missouri 63104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Greco A, Di Benedetto A, Howard CM, Kelly S, Nande R, Dementieva Y, Miranda M, Brunetti A, Salvatore M, Claudio L, Sarkar D, Dent P, Curiel DT, Fisher PB, Claudio PP. Eradication of therapy-resistant human prostate tumors using an ultrasound-guided site-specific cancer terminator virus delivery approach. Mol Ther 2009; 18:295-306. [PMID: 19888195 DOI: 10.1038/mt.2009.252] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intratumoral injections of a replication-incompetent adenovirus (Ad) expressing melanoma differentiation-associated gene-7/interleukin-24 (Ad.mda-7), a secreted cytokine displaying cancer-selective, apoptosis-inducing properties, profoundly inhibits prostate cancer (PC) growth in immune-incompetent animals. In contrast, Ad.mda-7 is ineffective in PCs overexpressing antiapoptotic proteins such as Bcl-2 or Bcl-x(L). However, intratumoral injections of a conditionally replication-competent Ad (CRCA) in which expression of the adenoviral E1A gene is driven by the cancer-specific promoter of progression-elevated gene-3 (PEG-3) and which simultaneously expresses mda-7/interleukin (IL)-24 in the E3 region of the Ad (Ad.PEG-E1A-mda-7), a cancer terminator virus (CTV), is highly active in these cells. A major challenge for gene therapy is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles-MBs) are viable candidates for gene delivery/therapy. Here, we show that MB/Ad.mda-7 complexes targeted to DU-145 cells using US dramatically reduced tumor burden in xenografted nude mice. Additionally, US-guided MB/CTV delivery completely eradicated not only targeted DU-145/Bcl-x(L)-therapy-resistant tumors, but also nontargeted distant tumors (established in the opposite flank), thereby implementing a cure. These findings highlight potential therapeutic applications of this novel image-guided gene therapy technology for advanced PC patients with metastatic disease.
Collapse
Affiliation(s)
- Adelaide Greco
- Department of Biochemistry and Microbiology, Joan C Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fecker LF, Schmude M, Jost S, Hossini AM, Picó AH, Wang X, Schwarz C, Fechner H, Eberle J. Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus. Exp Dermatol 2009; 19:e56-66. [DOI: 10.1111/j.1600-0625.2009.00977.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Dorer DE, Nettelbeck DM. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 2009; 61:554-71. [PMID: 19394376 DOI: 10.1016/j.addr.2009.03.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
Cancer-specificity is the key requirement for a drug or treatment regimen to be effective against malignant disease--and has rarely been achieved adequately to date. Therefore, targeting strategies need to be implemented for future therapies to ensure efficient activity at the site of patients' tumors or metastases without causing intolerable side-effects. Gene therapy and viral oncolysis represent treatment modalities that offer unique opportunities for tumor targeting. This is because both the transfer of genes with anti-cancer activity and viral replication-induced cell killing, respectively, facilitate the incorporation of multiple mechanisms restricting their activity to cancer. To this end, cellular mechanisms of gene regulation have been successfully exploited to direct therapeutic gene expression and viral cell lysis to cancer cells. Here, transcriptional targeting has been the role model and most widely investigated. This approach exploits cellular gene regulatory elements that mediate cell type-specific transcription to restrict the expression of therapeutic genes or essential viral genes, ideally to cancer cells. In this review, we first discuss the rationale for such promoter targeting and its limitations. We then give an overview how tissue-/tumor-specific promoters are being identified and characterized. Strategies to apply and optimize such promoters for the engineering of targeted viral gene transfer vectors and oncolytic viruses-with respect to promoter size, selectivity and activity in the context of viral genomes-are described. Finally, we discuss in more detail individual examples for transcriptionally targeted virus drugs. First highlighting oncolytic viruses targeted by prostate-specific promoters and by the telomerase promoter as representatives of tissue-targeted and pan-cancer-specific virus drugs respectively, and secondly recent developments of the last two years.
Collapse
Affiliation(s)
- Dominik E Dorer
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
46
|
Eager R, Harle L, Nemunaitis J. Ad-MDA-7; INGN 241: a review of preclinical and clinical experience. Expert Opin Biol Ther 2008; 8:1633-43. [DOI: 10.1517/14712598.8.10.1633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|