1
|
Bhat TA, Dheeraj A, Nambiar DK, Singh SP, Yim DS, Singh RP. Decursin inhibits EGFR-ERK1/2 signaling axis in advanced human prostate carcinoma cells. Prostate 2023; 83:534-546. [PMID: 36597263 DOI: 10.1002/pros.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023]
Abstract
We have shown that decursin, a coumarin compound, induces cell cycle arrest and apoptosis in human prostate cancer cells (PCa); however, its molecular mechanisms are largely unexplored. We studied the mechanisms associated with its anticancer activity in advanced human prostate carcinoma cells. We found that decursin inhibited epidermal growth factor receptor (EGFR) signaling by inhibiting its activating phosphorylation at tyrosine 1068 residue in DU145 and 22Rv1 cells. This inhibition of EGFR was associated with the downregulation of ERK1/2 phosphorylation. Both EGFR and ERK1/2 are known to be deregulated/activated in many human malignancies. Consistent with our earlier study, decursin (25-100 µM) treatment for 24-72 h inhibited DU145 cell proliferation by 49%-87% (p < 0.001) which was associated with strong G1 phase arrest and cell death. It also decreased (p < 0.001) the number of surviving colonies. Decursin moderately increased the expression of Rb-related proteins p107 and p130 but decreased the levels of E2F family transcription factors including E2F-3, E2F-4 and E2F-5. Further, decursin strongly inhibited the growth of androgen-dependent prostate carcinoma 22Rv1 cells from 61% to 79% (p < 0.001) and arrested these cells at G1 phase via induction of cyclin-dependent kinase inhibitor p27/Kip1 and downregulation of CDK2 and CDK4 protein expression. Additionally, EGFR inhibitor erlotinib- and EGF ligand-modulated EGFR activation validated EGFR signaling as a target of decursin-mediated cell growth inhibition and cytotoxicity. Decursin decreased EGF ligand-induced phosphorylation of EGFR (Y-1068) as well as activation of its downstream mediator, ERK1/2. Furthermore, inhibitory targeting of EGFR-ERK1/2 axis by combinatorial treatment of decursin and erlotinib further sensitized DU145 cells for the decursin-induced growth inhibition and cell death. Overall, these findings strongly suggest that anticancer efficacy of decursin against human PCa involves inhibitory targeting of EGFR-ERK1/2 signaling axis, a pathway constitutively active in advanced PCa.
Collapse
Affiliation(s)
- Tariq A Bhat
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arpit Dheeraj
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dhanya K Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Surya Pratap Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dong Sool Yim
- Department of Pharmacy, Sahmyook University, Seoul, Korea
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Zhao Y, Tang X, Huang Y, Tang Q, Ma C, Zheng F, Wu W, Hann SS. Interaction Of c-Jun And HOTAIR- Increased Expression Of p21 Converge In Polyphyllin I-Inhibited Growth Of Human Lung Cancer Cells. Onco Targets Ther 2019; 12:10115-10127. [PMID: 31819506 PMCID: PMC6883933 DOI: 10.2147/ott.s226830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lung cancer is a leading cause of cancer-related death worldwide. Previously we demonstrated that polyphyllin I (PPI), a bioactive component extracted from Paris polyphylla, inhibited the growth of non-small cell lung cancer (NSCLC) cells through the SAPK/JNK-mediated suppressing p65, DNMT1 and EZH2 expressions. However, the molecular mechanism underlying anti-lung cancer effect by PPI still remain elusive. Purpose In this current study, we further explored the molecular mechanism underlying the anti-lung cancer effect of PPI. Methods MTT, Cell-LightTM EdU DNA cell proliferation and colony formation assays were used to measure cell growth. Western blot were used to examine protein levels of c-Jun and p21. The expression level of long non-codingth RNA HOX transcript antisense RNA (HOTAIR) was measured by qRT-PCR. The p21 promoter activity was measured by Dual-Luciferase Reporter Assay System. The transient transfection experiments were used to silence and overexpression of c-Jun, p21 and HOTAIR. Tumor xenograft and bioluminescent imaging experiments were carried out to confirm the in vitro findings. Results We showed that PPI suppressed growth of NSCLC cells. Mechanistically, we observed that PPI reduced expression of HOTAIR, while increased transcription factor c-Jun protein levels. Additionally, PPI also induced protein expression and promoter activity of p21, a cyclin-dependent kinase inhibitor. While exogenously expressed HOTAIR showed no effect on c-Jun levels, silencing of c-Jun significantly reversed the PPI-inhibited HOTAIR expression. Moreover, excessive expressed c-Jun further enhanced PPI-inhibited HOTAIR expression and PPI-induced p21 protein levels. Intriguingly, overexpression of HOTAIR and silencing of c-Jun overcame the PPI-induced p21 protein and promoter activity. Finally, silencing of p21 neutralized the PPI-inhibited cell proliferation. Similar results were also found in one xenograft mouse model. Conclusion Our results demonstrate that PPI inhibits growth of NSCLC cells through regulation of HOTAIR and c-Jun expressions, which lead to induction of p21 gene. The interactions among HOTAIR, c-Jun and p21 regulatory axis converge in the overall anti-lung cancer effect of PPI. This study unveils an additional new mechanism for the anti-lung cancer role of PPI.
Collapse
Affiliation(s)
- YueYang Zhao
- Laboratory of Tumor Biology.,Department of Hematology
| | | | | | | | | | | | - WanYin Wu
- Department of Medical Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | | |
Collapse
|
3
|
Deng H, Ikeda A, Cui H, Bartlett JD, Suzuki M. MDM2-Mediated p21 Proteasomal Degradation Promotes Fluoride Toxicity in Ameloblasts. Cells 2019; 8:E436. [PMID: 31083332 PMCID: PMC6562432 DOI: 10.3390/cells8050436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Fluoride overexposure is an environmental health hazard and can cause enamel and skeletal fluorosis. Previously we demonstrated that fluoride increased acetylated-p53 and its downstream target p21 in ameloblast-derived LS8 cells. However, p21 function in fluoride toxicity is not well characterized. This study seeks to gain a better understanding of how p53 down-stream mediators, p21 and MDM2, respond to fluoride toxicity. LS8 cells were treated with NaF with/without MG-132 (proteasome inhibitor) or Nutlin-3a (MDM2 antagonist). NaF treatment for 2-6 h increased phospho-p21, which can inhibit apoptosis. However, phospho-p21 and p21 were decreased by NaF at 24 h, even though p21 mRNA was significantly increased at this time point. MG-132 reversed the fluoride-mediated p21 decrease, indicating that fluoride facilitates p21 proteasomal degradation. MG-132 suppressed fluoride-induced caspase-3 cleavage, suggesting that the proteasome plays a pro-apoptotic role in fluoride toxicity. NaF increased phospho-MDM2 in vitro and in mouse ameloblasts in vivo. Nutlin-3a suppressed NaF-mediated MDM2-p21 binding to reverse p21 degradation which increased phospho-p21. This suppressed apoptosis after 24 h NaF treatment. These results suggest that MDM2-mediated p21 proteasomal degradation with subsequent phospho-p21 attenuation contributes to fluoride-induced apoptosis. Inhibition of MDM2-mediated p21 degradation may be a potential therapeutic target to mitigate fluoride toxicity.
Collapse
Affiliation(s)
- Huidan Deng
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
| | - Atsushi Ikeda
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.
| | - John D Bartlett
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Maiko Suzuki
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
4
|
Ma CH, Zhang YX, Tang LH, Yang XJ, Cui WM, Han CC, Ji WY. MicroRNA-1469, a p53-responsive microRNA promotes Genistein induced apoptosis by targeting Mcl1 in human laryngeal cancer cells. Biomed Pharmacother 2018; 106:665-671. [DOI: 10.1016/j.biopha.2018.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 01/22/2023] Open
|
5
|
Wang W, Ji HJ, Sun NB, Chang XT, Xu B, Wang Y, Cao M, Zhu Q, Zang Q, Jiang ZM. B-cell specific Moloney leukemia virus insert site 1 and peptidyl arginine deiminase IV positively regulate carcinogenesis and progression of esophageal squamous cell carcinoma. Oncol Lett 2017; 13:4349-4356. [PMID: 28599437 DOI: 10.3892/ol.2017.6001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
High expression of B-cell specific Moloney leukemia virus insert site 1 (Bmi-1) and peptidyl arginine deiminase IV (PADI4) is associated with esophageal carcinoma. However, few studies have investigated the association between the Bmi-1 and PADI4 genes. The aim of the present study was to evaluate the expression of Bmi-1 and PADI4 and identify the association between the Bmi-1 and PADI4 genes in esophageal squamous cell carcinoma (ESCC) tissues. Bmi-1 and PADI4 gene expression levels were measured using immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction in ESCC tissues from 86 patients who had not received pre-operative chemoradiation. The results revealed that the Bmi-1 and PADI4 genes had increased expression in carcinoma tissues compared with pericarcinous tissue (P<0.05). Bmi-1 gene expression was revealed to be associated with differentiation degree, clinical stage and lymph node metastasis (P<0.05), but had no association with gender, age or depth of invasion (P>0.05). The expression of PADI4 was associated with clinical stage, depth of invasion and lymph node metastasis (P<0.05), but was not associated with gender, age or differentiation degree (P>0.05). In addition, there was a positive association between Bmi-1 and PADI4 gene expression in ESCC (P<0.05). These results indicated that Bmi-1 and PADI4 positively regulate carcinogenesis and progression of ESCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Huai-Jun Ji
- Division of Surgery, Graduate Department, Weifang Medical College, Weifang, Shandong 261031, P.R. China
| | - Ning-Bo Sun
- Department of Thoracic Surgery, Shengli Oilfield Central Hospital, Dongying, Shandong 257034, P.R. China
| | - Xiao-Tian Chang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Bing Xu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yao Wang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Ming Cao
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qiang Zhu
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qi Zang
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zhong-Min Jiang
- Department of Thoracic Surgery, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
6
|
Du R, Liu Z, Hou X, Fu G, An N, Wang L. Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells. Mol Med Rep 2016; 13:5045-52. [PMID: 27121018 PMCID: PMC4878537 DOI: 10.3892/mmr.2016.5204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/04/2016] [Indexed: 11/26/2022] Open
Abstract
Genistein and trichostatin A (TSA) are two chemotherapeutic compounds with antitumor effects in different types of cancer cell. However, the effects of genistein and TSA on the HEp-2 laryngeal cancer cell line remain to be fully elucidated. In the present study, it was found that genistein and TSA inhibited cell growth and cell migration, and promoted apoptosis in the HEp-2 laryngeal cancer cell line. The HEp-2 cells were treated with genistein, TSA or the two compounds in combination. Cell proliferation and apoptosis were measured using an MTT assay, Annexin V/propidium iodide staining and a TUNEL assay. Cell invasion was determined using a Matrigel-based Transwell assay. Western blotting was used to examine the activation of the Akt pathway and the expression levels of pro-or anti-apoptotic proteins. Treatment with either genistein or TSA alone mildly inhibited cell viability, growth and invasion, and induced the apoptosis of the laryngeal cancer cells, whereas more marked effects were observed in the cells treated with the combination of the two compounds. In addition, genistein reversed endothelial growth factor-induced epithelial-mesenchymal transition (EMT) in the HEp-2 cells, the effect of which were was further increased by joint application with TSA. Treatment of the HEp-2 cells with genistein and TSA led to a significant reduction in the phosphorylation of Akt and activation of its downstream target, and resulted in peroxisome proliferator-activated receptor-γ cleavage, increased expression of B cell lymphoma-2 (Bcl-2)-associated X protein and reduced the expression of Bcl-2. In conclusion, the present study demonstrated that, with the involvement of TSA, genistein exhibited substantial advantages in inhibiting laryngeal carcinoma cell growth, invasion and EMT, and induced apoptosis, compared with genistein treatment alone, which occurred through the regulation of Akt activation and the apoptotic pathway.
Collapse
Affiliation(s)
- Ruixia Du
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhe Liu
- Department of Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuedong Hou
- Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang, Liaoning 110024, P.R. China
| | - Gongbi Fu
- Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang, Liaoning 110024, P.R. China
| | - Ning An
- Department of Otorhinolaryngology, Fengtian Hospital, Shenyang Medical University, Shenyang, Liaoning 110024, P.R. China
| | - Liping Wang
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
7
|
The role of peptidylarginine deiminase 4 in ovarian cancer cell tumorigenesis and invasion. Tumour Biol 2015; 37:5375-83. [DOI: 10.1007/s13277-015-4363-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/30/2015] [Indexed: 01/02/2023] Open
|
8
|
Abstract
Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.
Collapse
|
9
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
10
|
Galbiatti ALS, Castro R, Caldas HC, Padovani JA, Pavarino EC, Goloni-Bertollo EM. Alterations in the expression pattern of MTHFR, DHFR, TYMS, and SLC19A1 genes after treatment of laryngeal cancer cells with high and low doses of methotrexate. Tumour Biol 2013; 34:3765-71. [PMID: 23838799 DOI: 10.1007/s13277-013-0960-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022] Open
Abstract
Inter-individual variations to methotrexate (MTX) outcome have been attributed to different expression profiles of genes related to folate metabolism. To elucidate the mechanisms of variations to MTX outcome, we investigated MTHFR, DHFR, TYMS, and SLC19A1 gene expression profiles by quantifying the mRNA level of the genes involved in folate metabolism to MTX response in laryngeal cancer cell line (HEP-2). For this, three different concentrations of MTX (0.25, 25, and 75 μmol) were added separately in HEP-2 cell line for 24 h at 37 °C. Apoptotis quantification was evaluated with fluorescein isothiocyanate-labeled Bcl-2 by flow cytometry. Real-time quantitative PCR technique was performed by quantification of gene expression with TaqMan® Gene Expression Assay. ANOVA and Bonferroni's post hoc tests were utilized for statistical analysis. The results showed that the numbers of apoptotic HEP-2 cells with 0.25, 25.0, and 75.0 μmol of MTX were 14.57, 77.54, and 91.58%, respectively. We found that the expression levels for MTHFR, DHFR, TYMS, and SLC19A1 genes were increased in cells with 75.0 μmol of MTX (p < 0.05). Moreover, SLC19A1 gene presented lower expression in cells treated with 0.25 μmol of MTX (p < 0.05). In conclusion, our data suggest that MTHFR, DHFR, TYMS, and SLC19A1 genes present increased expression after the highest application of MTX dose in laryngeal cancer cell line. Furthermore, SLC19A1 gene also presents decreased expression after the lowest application of MTX dose in laryngeal cancer cell line. Significant alterations of expression of these studied genes in cell culture model may give support for studies in clinical practice and predict interesting and often novel mechanisms of resistance of MTX chemotherapy.
Collapse
Affiliation(s)
- Ana Lívia Silva Galbiatti
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, n.5416, São José do Rio Preto, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
11
|
Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 2013; 138:255-71. [PMID: 23356980 DOI: 10.1016/j.pharmthera.2013.01.011] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023]
Abstract
Cell proliferation is an essential mechanism for growth, development and regeneration of eukaryotic organisms; however, it is also the cause of one of the most devastating diseases of our era: cancer. Given the relevance of the processes in which cell proliferation is involved, its regulation is of paramount importance for multicellular organisms. Cell division is orchestrated by a complex network of interactions between proteins, metabolism and microenvironment including several signaling pathways and mechanisms of control aiming to enable cell proliferation only in response to specific stimuli and under adequate conditions. Three main players have been identified in the coordinated variation of the many molecules that play a role in cell cycle: i) The cell cycle protein machinery including cyclin-dependent kinases (CDK)-cyclin complexes and related kinases, ii) The metabolic enzymes and related metabolites and iii) The reactive-oxygen species (ROS) and cellular redox status. The role of these key players and the interaction between oscillatory and non-oscillatory species have proved essential for driving the cell cycle. Moreover, cancer development has been associated to defects in all of them. Here, we provide an overview on the role of CDK-cyclin complexes, metabolic adaptations and oxidative stress in regulating progression through each cell cycle phase and transitions between them. Thus, new approaches for the design of innovative cancer therapies targeting crosstalk between cell cycle simultaneous events are proposed.
Collapse
Affiliation(s)
- Santiago Diaz-Moralli
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
12
|
Russo A, Esposito D, Catillo M, Pietropaolo C, Crescenzi E, Russo G. Human rpL3 induces G₁/S arrest or apoptosis by modulating p21 (waf1/cip1) levels in a p53-independent manner. Cell Cycle 2012; 12:76-87. [PMID: 23255119 DOI: 10.4161/cc.22963] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is now largely accepted that ribosomal proteins may be implicated in a variety of biological functions besides that of components of the translation machinery. Many evidences show that a subset of ribosomal proteins are involved in the regulation of the cell cycle and apoptosis through modulation of p53 activity. In addition, p53-independent mechanisms of cell cycle arrest in response to alterations of ribosomal proteins availability have been described. Here, we identify human rpL3 as a new regulator of cell cycle and apoptosis through positive regulation of p21 expression in a p53-independent system. We demonstrate that the rpL3-mediated p21 upregulation requires the specific interaction between rpL3 and Sp1. Furthermore, in our experimental system, p21 overexpression leads to a dual outcome, activating the G₁/S arrest of the cell cycle or the apoptotic pathway through mitochondria, depending on its intracellular levels. It is noteworthy that depletion of p21 abrogates both effects. Taken together, our findings unravel a novel extraribosomal function of rpL3 and reinforce the proapoptotic role of p21 in addition to its widely reported ability as an inhibitor of cell proliferation.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche; Università Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Galectin-3 regulates p21 stability in human prostate cancer cells. Oncogene 2012; 32:5058-65. [PMID: 23160381 PMCID: PMC3910247 DOI: 10.1038/onc.2012.528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/14/2022]
Abstract
Galectin-3 (Gal-3) is a multifunctional protein involved in cancer through regulation of cell adhesion, cell growth, apoptosis and metastasis, while p21 (Cip1/WAF1) is a negative regulator of the cell cycle, involved in apoptosis, transcription, DNA repair and metastasis. The results presented here demonstrate for the first time that the level of Gal-3 protein is associated with the level of p21 protein expression in human prostate cancer cells and the effects of Gal-3 on cell growth and apoptosis were reversed by modulating p21 expression level. Furthermore, Gal-3 regulates p21 expression at the post-translational level by stabilizing p21 protein via the carbohydrate-recognition domain. This is the first report suggesting a molecular function not yet described for Gal-3 as the regulator of p21 protein stability. This study provides a unique insight into the relationship of these two molecules during prostate cancer progression, and may provide a novel therapeutic target.
Collapse
|
14
|
Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-Dependent G1/G2 Arrest in the Absence of DNA Damage as an Antiapoptotic Response to Metabolic Stress. Genes Cancer 2012; 2:889-99. [PMID: 22593801 DOI: 10.1177/1947601911432495] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/17/2011] [Indexed: 12/26/2022] Open
Abstract
The folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), a metabolic regulator of proliferation, activates p53-dependent G1 arrest and apoptosis in A549 cells. In the present study, we have demonstrated that FDH-induced apoptosis is abrogated upon siRNA knockdown of the p53 downstream target PUMA. Conversely, siRNA knockdown of p21 eliminated FDH-dependent G1 arrest and resulted in an early apoptosis onset. The acceleration of FDH-dependent apoptosis was even more profound in another cell line, HCT116, in which the p21 gene was silenced through homologous recombination (p21(-/-) cells). In contrast to A549 cells, FDH caused G2 instead of G1 arrest in HCT116 p21(+/+) cells; such an arrest was not seen in p21-deficient (HCT116 p21(-/-)) cells. In agreement with the cell cycle regulatory function of p21, its strong accumulation in nuclei was seen upon FDH expression. Interestingly, our study did not reveal DNA damage upon FDH elevation in either cell line, as judged by comet assay and the evaluation of histone H2AX phosphorylation. In both A549 and HCT116 cell lines, FDH induced a strong decrease in the intracellular ATP pool (2-fold and 30-fold, respectively), an indication of a decrease in de novo purine biosynthesis as we previously reported. The underlying mechanism for the drop in ATP was the strong decrease in intracellular 10-formyltetrahydrofolate, a substrate in two reactions of the de novo purine pathway. Overall, we have demonstrated that p21 can activate G1 or G2 arrest in the absence of DNA damage as a response to metabolite deprivation. In the case of FDH-related metabolic alterations, this response delays apoptosis but is not sufficient to prevent cell death.
Collapse
|
15
|
Chibber S, Hassan I, Farhan M, Naseem I. In vitro pro-oxidant action of Methotrexate in presence of white light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:387-93. [PMID: 21570314 DOI: 10.1016/j.jphotobiol.2011.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Methotrexate (MTX) an anti-cancer drug as well as a photosensitizer is able to generate reactive oxygen species (ROS). Cu (II) is present associated with chromatin in cancer cells and has been shown to be capable of mediating the action of several anti-cancer drugs through production of ROS. The objective of the present study is to determine Cu (II) mediated anti-cancer mechanism of MTX under photoilluminated condition as well as alone, using alkaline single cell gel electrophoresis (comet assay). We have shown that cellular DNA breakage was enhanced when Cu (II) is used with MTX as compared to MTX alone. It is also shown that MTX alone as well as in combination with Cu (II) is able to generate oxidative stress in lymphocyte which is inhibited by scavengers of ROS but the pattern of inhibition was differential as was also demonstrated by plasmid nicking assay. Thus, we can say that MTX exhibit pro-oxidant action in presence of white light which gets elevated in presence of Cu (II). Hence, we propose that the mobilization of endogenous copper is possibly involved in killing of cancer cells by MTX during chemo-radio therapy besides acting as antifolate.
Collapse
Affiliation(s)
- Sandesh Chibber
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslin University, Aligarh, UP 202 002, India
| | | | | | | |
Collapse
|
16
|
Kang N, Zhang JH, Qiu F, Chen S, Tashiro SI, Onodera S, Ikejima T. Induction of G(2)/M phase arrest and apoptosis by oridonin in human laryngeal carcinoma cells. JOURNAL OF NATURAL PRODUCTS 2010; 73:1058-1063. [PMID: 20496901 DOI: 10.1021/np9008199] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Oridonin (1), an active component isolated from the plant Rabdosia rubescens, has been reported to exhibit antitumor effects. In this study, the mechanism involved in 1-induced growth inhibition, including apoptosis and G(2)/M phase arrest, in human laryngeal carcinoma HEp-2 cells deficient in functional p53, was investigated for the first time. Compound 1 triggered the mitochondrial apoptotic pathway, as indicated by increased Bax/Bcl-2 ratios, reduction of mitochondrial membrane potential (DeltaPsi(m)), and substantial increase in apoptosis-inducing factor (AIF) and cytochrome c. Inhibition of caspase-9 in HEp-2 cells did not protect the cells from 1-induced apoptosis, and cleaved caspase-9 was not detected, indicating that apoptosis occurred via a caspase-9-independent pathway. The results also suggested that G(2)/M phase arrest and apoptosis mediated by 1 occurred via a p53-independent but in a p21/WAF1-dependent manner in HEp-2 cells. In addition, the generation of reactive oxygen species (ROS) was found to be a critical mediator in growth inhibition induced by 1. Taken together, the results indicate that oridonin (1) is a potentially effective agent for the treatment of laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ning Kang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Bergamaschi A, David A, Le Rouzic E, Nisole S, Barré-Sinoussi F, Pancino G. The CDK inhibitor p21Cip1/WAF1 is induced by FcgammaR activation and restricts the replication of human immunodeficiency virus type 1 and related primate lentiviruses in human macrophages. J Virol 2009; 83:12253-65. [PMID: 19759136 PMCID: PMC2786717 DOI: 10.1128/jvi.01395-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/10/2009] [Indexed: 12/26/2022] Open
Abstract
Macrophages are major targets of human immunodeficiency virus type 1 (HIV-1). We have previously shown that aggregation of activating immunoglobulin G Fc receptors (FcgammaR) by immune complexes inhibits reverse transcript accumulation and integration of HIV-1 and related lentiviruses in monocyte-derived macrophages. Here, we show that FcgammaR-mediated restriction of HIV-1 is not due to enhanced degradation of incoming viral proteins or cDNA and is associated to the induction of the cyclin-dependent kinase inhibitor p21(Cip1/WAF1) (p21). Small interfering RNA-mediated p21 knockdown rescued viral replication in FcgammaR-activated macrophages and enhanced HIV-1 infection in unstimulated macrophages by increasing reverse transcript and integrated DNA levels. p21 induction by other stimuli, such as phorbol myristate acetate and the histone deacetylase inhibitor MS-275, was also associated with preintegrative blocks of HIV-1 replication in macrophages. Binding of p21 to reverse transcription/preintegration complex-associated HIV-1 proteins was not detected in yeast two-hybrid, pulldown, or coimmunoprecipitation assays, suggesting that p21 may affect viral replication independently of a specific interaction with an HIV-1 component. Consistently, p21 silencing rescued viral replication from the FcgammaR-mediated restriction also in simian immunodeficiency virus SIV(mac)- and HIV-2-infected macrophages. Our results point to a role of p21 as an inhibitory factor of lentiviral infection in macrophages and to its implication in FcgammaR-mediated restriction.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Annie David
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Erwann Le Rouzic
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Sébastien Nisole
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Françoise Barré-Sinoussi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Gianfranco Pancino
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| |
Collapse
|
18
|
Kraljević Pavelić S, Marjanović M, Poznić M, Kralj M. Adenovirally mediated p53 overexpression diversely influence the cell cycle of HEp-2 and CAL 27 cell lines upon cisplatin and methotrexate treatment. J Cancer Res Clin Oncol 2009; 135:1747-61. [PMID: 19548002 DOI: 10.1007/s00432-009-0621-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE p53 gene plays a crucial role in the response to therapy. Since it is inactivated in the majority of human cancers, it is strongly believed that the p53 mutations confer resistance to therapeutics. In this paper we analyzed the influence of two mechanistically diverse antitumor agents--cisplatin and methotrexate on the proliferation and cell cycle of two head and neck squamous cancer cell lines HEp-2 (wild type p53 gene, but HPV 18/E6-inactivated protein) and CAL 27 (mutated p53 gene), along with the influence of adenovirally mediated p53 overexpression in modulation of cisplatin and methoterexate effects, whereby subtoxic vector/compound concentrations were employed. METHODS p53 gene was introduced into tumor cells using adenoviral vector (AdCMV-p53). The cell cycle perturbations were measured by two parameter flow cytometry. The expression of p53, p21(WAF1/CIP1) and cyclin B1 proteins was examined using immunocytochemistry and western blot methods. RESULTS In CAL 27 cells overexpression of p53 completely abrogated high S phase content observed in methotrexate-treated cells into a G1 and slight G2 arrest, while it sustained G2 arrest of the cells treated with cisplatin, along with the reduction of DNA synthesis and cyclin B1 expression. On the other hand, in HEp-2 cell line p53 overexpression slightly slowed down the progression through S phase in cells treated with methotrexate, decreased the cyclin B1 expression only after 24 h, and failed to sustain the G2 arrest after treatment with cisplatin alone. Instead, it increased the population of S phase cells that were not actively synthesizing DNA, sustained cyclin B1 expression and allowed the G2 cells to progress through mitosis. CONCLUSIONS This study demonstrates that adenovirally mediated p53 overexpression at sub-cytotoxic levels enhanced the activity of low doses of cisplatin and methotrexate in HEp-2 and CAL 27 cells through changes in the cell cycle. However, the mechanisms of these effects differ depending on the genetic context and on the chemotherapeutics' modality of action.
Collapse
Affiliation(s)
- Sandra Kraljević Pavelić
- Division of Molecular Medicine, Rudjer Bosković Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|