1
|
Pan Q, Luo P, Shi C. PC4-mediated Ku complex PARylation facilitates NHEJ-dependent DNA damage repair. J Biol Chem 2023; 299:105032. [PMID: 37437887 PMCID: PMC10406618 DOI: 10.1016/j.jbc.2023.105032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Radiotherapy is one of the mainstay treatments for hepatocellular carcinoma (HCC). However, a substantial number of patients with HCC develop radioresistance and eventually suffer from tumor progression or relapse, which is a major impediment to the use of radiotherapy. Therefore, elucidating the mechanisms underlying radioresistance and identifying novel therapeutic targets to improve patient prognosis are important in HCC management. In this study, using in vitro and in vivo models, laser microirradiation and live cell imaging methods, and coimmunoprecipitation assays, we report that a DNA repair enhancer, human positive cofactor 4 (PC4), promotes nonhomologous end joining-based DNA repair and renders HCC cells resistant to radiation. Mechanistically, PC4 interacts with poly (ADP-ribose) polymerase 1 and directs Ku complex PARylation, resulting in the successful recruitment of the Ku complex to damaged chromatin and increasing the efficiency of nonhomologous end joining repair. Clinically, PC4 is highly expressed in tumor tissues and is correlated with poor prognosis in patients with HCC. Taken together, our data suggest that PC4 is a DNA repair driver that can be targeted to radiosensitize HCC cells.
Collapse
Affiliation(s)
- Qimei Pan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
2
|
Ma L, Gong Q, Chen Y, Luo P, Chen J, Shi C. Targeting positive cofactor 4 induces autophagic cell death in MYC-expressing diffuse large B-cell lymphoma. Exp Hematol 2023; 119-120:42-57.e4. [PMID: 36642374 DOI: 10.1016/j.exphem.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
MYC-expressing diffuse large B-cell lymphoma (DLBCL) is one of the refractory lymphomas. Currently, the pathogenesis of MYC-expressing DLBCL is still unclear, and there is a lack of effective therapy. We characterized positive cofactor 4 (PC4) as an upstream regulator of c-Myc, and PC4 is overexpressed in DLBCL and is closely related to clinical staging, prognosis, and c-Myc expression. Furthermore, our in vivo and in vitro studies revealed that PC4 knockdown can induce autophagic cell death and enhance the therapeutic effect of doxorubicin in MYC-expressing DLBCL. Inhibition of c-Myc-mediated aerobic glycolysis and activation of the AMPK/mTOR signaling pathway are responsible for the autophagic cell death induced by PC4 knockdown in MYC-expressing DLBCL. Using dual-luciferase reporter assay and electrophoretic mobility shift assay assays, we also found that PC4 exerts its oncogenic functions by directly binding to c-Myc promoters. To sum up, our study provides novel insights into the functions and mechanisms of PC4 in MYC-expressing DLBCL and suggests that PC4 may be a promising therapeutic target for MYC-expressing DLBCL.
Collapse
Affiliation(s)
- Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
3
|
Liu A, Hou X, Zhang J, Wang W, Dong X, Li J, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Tissue-Specific and Time-Dependent Expressions of PC4s in Bay Scallop ( Argopecten irradians irradians) Reveal Function Allocation in Thermal Response. Genes (Basel) 2022; 13:genes13061057. [PMID: 35741819 PMCID: PMC9223095 DOI: 10.3390/genes13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Transcriptional coactivator p15 (PC4) encodes a structurally conserved but functionally diverse protein that plays crucial roles in RNAP-II-mediated transcription, DNA replication and damage repair. Although structures and functions of PC4 have been reported in most vertebrates and some invertebrates, the PC4 genes were less systematically identified and characterized in the bay scallop Argopecten irradians irradians. In this study, five PC4 genes (AiPC4s) were successfully identified in bay scallops via whole-genome scanning through in silico analysis. Protein structure and phylogenetic analyses of AiPC4s were conducted to determine the identities and evolutionary relationships of these genes. Expression levels of AiPC4s were assessed in embryos/larvae at all developmental stages, in healthy adult tissues and in different tissues (mantles, gills, hemocytes and hearts) being processed under 32 °C stress with different time durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Spatiotemporal expression profiles of AiPC4s suggested the functional roles of the genes in embryos/larvae at all developmental stages and in healthy adult tissues in bay scallop. Expression regulations (up- and down-) of AiPC4s under high-temperature stress displayed both tissue-specific and time-dependent patterns with function allocations, revealing that AiPC4s performed differentiated functions in response to thermal stress. This work provides clues of molecular function allocation of PC4 in scallops in response to thermal stress and helps in illustrating how marine bivalves resist elevated seawater temperature.
Collapse
Affiliation(s)
- Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Jianshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82031969
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Ma L, Gong Q, Liu G, Chen J, Wang Y, luo P, Shi C. Positive Cofactor 4 as a Potential Radiation Biodosimeter for Early Assessment. Dose Response 2022; 20:15593258221081317. [PMID: 35221823 PMCID: PMC8874181 DOI: 10.1177/15593258221081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During a major radiation event, a large number of people need to be rapidly assessed for radiation damage to ensure effective medical treatment and efficient use of medical resources. However, current techniques cannot meet the requirement of rapid detection of large quantities of samples in an emergency. It is essential to develop rapid and accurate radiation biodosimeters in peripheral blood. Here, we identified radiation sensitive genes in mice by RNA sequencing and evaluated their utility as radiation biodosimeters in human cell lines. Mice were subjected to gamma-irradiation with different doses (0–8 Gy, .85 Gy/min), and the tail venous blood was analyzed by RNA sequencing. We have identified 5 genes with significantly differential expression after radiation exposure. We found that positive cofactor 4(PC4) had well correlation with radiation dose in human lymphoblastoid cell line after irradiation. The relative expression of PC4 gene showed a good linear correlation with the radiation dose after 1–5 Gy irradiation (.85 Gy/min). PC4 gene can be rapidly recruited to the DNA damage sites faster than γ-H2AX after radiation in immunofluorescence detection. In conclusion, PC4 may be represented as new radiation biological dosimeter for early assessment.
Collapse
Affiliation(s)
- Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Gaoyu Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peng luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Wang Q, Ma L, Chen L, Chen H, Luo M, Yang W, Liao F, Gong Q, Wang Y, Yang Z, Wu J, Zhang C, Zheng J, Han S, Leng Y, Luo P, Shi C. Knockdown of PC4 increases chemosensitivity of Oxaliplatin in triple negative breast cancer by suppressing mTOR pathway. Biochem Biophys Res Commun 2021; 544:65-72. [PMID: 33524870 DOI: 10.1016/j.bbrc.2021.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
As a multifunctional nuclear protein, the human positive cofactor 4 (PC4) is highly expressed in various tumors including breast cancer and has potential roles in cancer development and progression. However, the functional signatures and molecular mechanisms of PC4 in triple negative breast cancer (TNBC) progression and chemotherapeutic response are still unknown. In this study, we found that PC4 is significantly upregulated in TNBC cells compared with non-TNBC cells, implying its potential role in TNBC. Then, in vivo and in vitro studies revealed that knockdown of PC4 increased chemosensitivity of Oxaliplation (Oxa) in TNBC by suppressing mTOR pathway. Therefore, our findings demonstrated the signatures and molecular mechanisms of PC4 in TNBC chemotherapeutic response, and indicated that PC4 might be a promising therapeutic target for TNBC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China; Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401121, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Wei Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401121, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shiqian Han
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yu Leng
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Su X, Yang Y, Ma L, Luo P, Shen K, Dai H, Jiang Y, Shuai L, Liu Z, You J, Min K, Shi C, Chen Z. Human Positive Coactivator 4 Affects the Progression and Prognosis of Pancreatic Ductal Adenocarcinoma via the mTOR/P70s6k Signaling Pathway. Onco Targets Ther 2020; 13:12213-12223. [PMID: 33273827 PMCID: PMC7705283 DOI: 10.2147/ott.s284219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Pancreatic cancer is one of the deadliest cancers in the world, and pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all cases. Human positive coactivator 4 (PC4) is a transcriptional coactivator that has been associated with the development and progression of several tumors. However, no studies investigated the potential role of PC4 in PDAC. Methods We investigated PC4 expression in 81 PDAC tissue samples using immunohistochemistry and studied the impact of PC4 expression and the molecular mechanisms of this altered expression on PDAC tumorigenesis and proliferation both in vitro and in vivo. Results PC4 overexpression was correlated with a poor outcome in PDAC patients. The RNAi-mediated knockdown of PC4 expression in CFPAC-1 and AsPC-1 cell lines reduced cell proliferation and tumor growth. The loss of PC4 in PDAC inhibits cell growth by inducing cell cycle arrest at the G1/S transition and suppressing the mTOR/p70s6k pathway. Discussion/Conclusion Our findings reveal for the first time that PC4 exerts oncogenic functions by activating mTOR/p70s6k signaling pathway-mediated cell proliferation, implying that PC4 is a promising therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yishi Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Kaicheng Shen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ling Shuai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Zhipeng Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jinshan You
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ke Min
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| |
Collapse
|
7
|
Kumar V, Yadavilli S, Kannan R. A review on RNAi therapy for NSCLC: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1677. [PMID: 33174364 DOI: 10.1002/wnan.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the primary cause of cancer death worldwide. Despite developments in chemotherapy and targeted therapies, the 5-year survival rate has remained at approximately 16% for the last four decades. NSCLC is a heterogeneous group of tumors that, through mutations and drivers, also demonstrate intra-tumor heterogeneity. Thus, current treatment approaches revolve around targeting these oncogenes, often using small molecule inhibitors and chemotherapeutics. However, the efficacy of these therapies has been crippled by acquired and inherent drug-resistance in the tumor, accompanied by increased therapeutic dosages and subsequent devastating off-target effects for patients. Evidently, there is a critical need for developing treatment methodologies more effective than the current standard of care. Fortunately, RNA interference, particularly small interfering RNA (siRNA), presents an alternative of silencing specific oncogenes to control tumor growth. Although siRNA therapy is subject to rapid degradation and poor internalization in vivo, nanoparticles can serve as nontoxic and efficient delivery vehicles, even introducing combinational delivery of multiple therapeutic agents. Indeed, siRNA-nanoconstructs possess extraordinary potential as an innovative modality to address clinical needs. This state-of-the-art review summarizes the recent advancements in the development of novel nanosystems for delivering siRNA to NSCLC tumors and analyzes the efficacy of representative examples. By illuminating the most promising biomarkers for silencing, we hope to streamline current therapeutic efforts and highlight powerful translational opportunities to combat NSCLC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Vignesh Kumar
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Sairam Yadavilli
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Liao F, Chen L, Luo P, Jiang Z, Chen Z, Wang Z, Zhang C, Wang Y, He J, Wang Q, Wang Y, Liu L, Huang Y, Wang H, Jiang Q, Luo M, Gan Y, Liu Y, Wang Y, Wu J, Xie W, Cheng Z, Dai Y, Li J, Liu Z, Yang F, Shi C. PC4 serves as a negative regulator of skin wound healing in mice. BURNS & TRAUMA 2020; 8:tkaa010. [PMID: 32373645 PMCID: PMC7198317 DOI: 10.1093/burnst/tkaa010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 01/13/2023]
Abstract
Background Human positive cofactor 4 (PC4) was initially characterized as a multifunctional transcriptional cofactor, but its role in skin wound healing is still unclear. The purpose of this study was to explore the role of PC4 in skin wound healing through PC4 knock-in mouse model. Methods A PC4 knock-in mouse model (PC4+/+) with a dorsal full-thickness wound was used to investigate the biological functions of PC4 in skin wound healing. Quantitative PCR, Western blot analysis and immunohistochemistry were performed to evaluate the expression of PC4; Sirius red staining and immunofluorescence were performed to explore the change of collagen deposition and angiogenesis. Proliferation and apoptosis were detected using Ki67 staining and TUNEL assay. Primary dermal fibroblasts were isolated from mouse skin to perform cell scratch experiments, cck-8 assay and colony formation assay. Results The PC4+/+ mice were fertile and did not display overt abnormalities but showed an obvious delay in cutaneous healing of dorsal skin. Histological staining showed insufficient re-epithelialization, decreased angiogenesis and collagen deposition, increased apoptosis and decreased cell proliferation in PC4+/+ skin. Our data also showed decreased migration rate and proliferation ability in cultured primary fibroblasts from PC4+/+ mice in vitro. Conclusions This study suggests that PC4 might serve as a negative regulator of skin wound healing in mice.
Collapse
Affiliation(s)
- Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jintao He
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Clinical Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lang Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025 Guiyang, China
| | - Yu Huang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025 Guiyang, China
| | - Huilan Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Clinical Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Clinical Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025 Guiyang, China
| | - Yibo Gan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wentao Xie
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuo Cheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yali Dai
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jialun Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zujuan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fan Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
9
|
Efficacy of a small molecule inhibitor of the transcriptional cofactor PC4 in prevention and treatment of non-small cell lung cancer. PLoS One 2020; 15:e0230670. [PMID: 32231397 PMCID: PMC7108703 DOI: 10.1371/journal.pone.0230670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The human positive coactivator 4 (PC4) was originally identified as a multi-functional cofactor capable of mediating transcription activation by diverse gene- and tissue-specific activators. Recent studies suggest that PC4 might also function as a novel cancer biomarker and therapeutic target for different types of cancers. siRNA knockdown studies indicated that down-regulation of PC4 expression could inhibit tumorigeneicity of A549 non-small cell lung cancer tumor model in nude mice. Here we show that AG-1031, a small molecule identified by high throughput screening, can inhibit the double-stranded DNA binding activity of PC4, more effectively than its single-stranded DNA binding activity. AG-1031 also specifically inhibited PC4-dependent transcriptional activation in vitro using purified transcription factors. AG-1031 inhibited proliferation of several cultured cell lines derived from non-small cell lung cancers (NSCLC) and growth of tumors that formed from A549 cell xenografts in immuno-compromised mice. Moreover, pre-injection of AG-1031 in these mice not only reduced tumor size, but also prevented tumor formation in 20% of the animals. AG-1031 treated A549 cells and tumors from AG-1031 treated animals showed a significant decrease in the levels of both PC4 and VEGFC, a key mediator of angiogenesis in cancer. On the other hand, all tested mice remained constant weight during animal trials. These results demonstrated that AG-1031 could be a potential therapy for PC4-positive NSCLC.
Collapse
|
10
|
Luo P, Tan X, Luo S, Wang Z, Long L, Wang Y, Liao F, Chen L, Zhang C, He J, Huang Y, Liu Z, Gan Y, Chen Z, Wang Y, Liu Y, Wang Y, Shi C. An NIR‐Fluorophore‐Based Inhibitor of SOD1 Induces Apoptosis by Targeting Transcription Cofactor PC4. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Xu Tan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Shenglin Luo
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Ziwen Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Lei Long
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yawei Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Fengying Liao
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Long Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chi Zhang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Jintao He
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yinghui Huang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zujuan Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yibo Gan
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Zelin Chen
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yang Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yunsheng Liu
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Yu Wang
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of TraumaBurns and Combined InjuryThird Military Medical University Chongqing 400038 China
| |
Collapse
|
11
|
Transcriptional positive cofactor 4 promotes breast cancer proliferation and metastasis through c-Myc mediated Warburg effect. Cell Commun Signal 2019; 17:36. [PMID: 30992017 PMCID: PMC6469038 DOI: 10.1186/s12964-019-0348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background The human positive cofactor 4 (PC4) is initially identified as a transcriptional cofactor and has an important role in embryonic development and malignant transformation. However, the clinical significance and the molecular mechanisms of PC4 in breast cancer development and progression are still unknown. Methods We investigated PC4 expression in 114 cases of primary breast cancer and matched normal breast tissue specimens, and studied the impact of PC4 expression as well as the molecular mechanisms of this altered expression on breast cancer growth and metastasis both in vitro and in vivo. Results PC4 was significantly upregulated in breast cancer and high PC4 expression was positively correlated with metastasis and poor prognosis of patients. Gene set enrichment analysis (GSEA) demonstrated that the gene sets of cell proliferation and Epithelial-Mesenchymal Transition (EMT) were positively correlated with elevated PC4 expression. Consistently, loss of PC4 markedly inhibited the growth and metastasis of breast cancer both in vitro and in vivo. Mechanistically, PC4 exerted its oncogenic functions by directly binding to c-Myc promoters and inducing Warburg effect. Conclusions Our study reveals for the first time that PC4 promotes breast cancer progression by directly regulating c-Myc transcription to promote Warburg effect, implying a novel therapeutic target for breast cancer. Electronic supplementary material The online version of this article (10.1186/s12964-019-0348-0) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Hu X, Zhang C, Zhang Y, Hong CS, Chen W, Shen W, Wang H, He J, Chen P, Zhou Y, Shi C, Chu T. Down regulation of human positive coactivator 4 suppress tumorigenesis and lung metastasis of osteosarcoma. Oncotarget 2017; 8:53210-53225. [PMID: 28881805 PMCID: PMC5581104 DOI: 10.18632/oncotarget.18290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a kind of primary malignant bone tumor with the highest incidence and an extraordinarily poor prognosis and early pulmonary metastasis formation as a frequent occurrence. Transcriptional positive coactivator 4 (PC4) has multiple functions in DNA replication, transcription, repair and chromatin organization, even in tumorigenesis. However, the precise function of PC4 in osteosarcoma is still unclear and controversial. In this paper we found PC4 was upregulated in patient-derived osteosarcoma tissues compared to normal. Moreover, higher expression of PC4 was correlated with poorer overall survival and advanced clinicopathological tumor staging. Down regulation of PC4 in the highly metastatic osteosarcoma cells reduced the malignant behaviors in vitro and in vivo. Analyzing the downstream genes affected obviously by shPC4 with RNA sequencing, we found knocking down PC4 will inhibit the propensity for lung metastasis through transcriptional suppression of MMPs pathways. Taken together, PC4 may be an attractive therapeutic strategy for osteosarcoma, especially in preventing lung metastasis formation.
Collapse
Affiliation(s)
- Xu Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ying Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Christopher S Hong
- The Ohio State University, College of Medicine, Columbus, OH, 43210, USA
| | - Wugui Chen
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Weiwei Shen
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hongkai Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jianrong He
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Pei Chen
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
13
|
Griffin WC, Gao J, Byrd AK, Chib S, Raney KD. A biochemical and biophysical model of G-quadruplex DNA recognition by positive coactivator of transcription 4. J Biol Chem 2017; 292:9567-9582. [PMID: 28416612 DOI: 10.1074/jbc.m117.776211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
DNA sequences that are guanine-rich have received considerable attention because of their potential to fold into a secondary, four-stranded DNA structure termed G-quadruplex (G4), which has been implicated in genomic instability and some human diseases. We have previously identified positive coactivator of transcription (PC4), a single-stranded DNA (ssDNA)-binding protein, as a novel G4 interactor. Here, to expand on these previous observations, we biochemically and biophysically characterized the interaction between PC4 and G4DNA. PC4 can bind alternative G4DNA topologies with a low nanomolar Kd value of ∼2 nm, similar to that observed for ssDNA. In consideration of the different structural features between G4DNA and ssDNA, these binding data indicated that PC4 can interact with G4DNA in a manner distinct from ssDNA. The stoichiometry of the PC4-G4 complex was 1:1 for PC4 dimer:G4 substrate. PC4 did not enhance the rate of folding of G4DNA, and formation of the PC4-G4DNA complex did not result in unfolding of the G4DNA structure. We assembled a G4DNA structure flanked by duplex DNA. We find that PC4 can interact with this G4DNA, as well as the complementary C-rich strand. Molecular docking simulations and DNA footprinting experiments suggest a model where a PC4 dimer accommodates the DNA with one monomer on the G4 strand and the second monomer bound to the C-rich strand. Collectively, these data provide a novel mode of PC4 binding to a DNA secondary structure that remains within the framework of the model for binding to ssDNA. Additionally, consideration of the PC4-G4DNA interaction could provide insight into the biological functions of PC4, which remain incompletely understood.
Collapse
Affiliation(s)
- Wezley C Griffin
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Jun Gao
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Shubeena Chib
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7101
| |
Collapse
|
14
|
Chakravarthi BVSK, Goswami MT, Pathi SS, Robinson AD, Cieślik M, Chandrashekar DS, Agarwal S, Siddiqui J, Daignault S, Carskadon SL, Jing X, Chinnaiyan AM, Kunju LP, Palanisamy N, Varambally S. MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer. Oncogene 2016; 35:6330-6340. [PMID: 27270442 PMCID: PMC5140777 DOI: 10.1038/onc.2016.164] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
MicroRNA-101, a tumor suppressor microRNA (miR), is often downregulated in cancer and is known to target multiple oncogenes. Some of the genes that are negatively regulated by miR-101 expression include histone methyltransferase EZH2 (enhancer of zeste homolog 2), COX2 (cyclooxygenase-2), POMP (proteasome maturation protein), CERS6, STMN1, MCL-1 and ROCK2, among others. In the present study, we show that miR-101 targets transcriptional coactivator SUB1 homolog (Saccharomyces cerevisiae)/PC4 (positive cofactor 4) and regulates its expression. SUB1 is known to have diverse role in vital cell processes such as DNA replication, repair and heterochromatinization. SUB1 is known to modulate transcription and acts as a mediator between the upstream activators and general transcription machinery. Expression profiling in several cancers revealed SUB1 overexpression, suggesting a potential role in tumorigenesis. However, detailed regulation and function of SUB1 has not been elucidated. In this study, we show elevated expression of SUB1 in aggressive prostate cancer. Knockdown of SUB1 in prostate cancer cells resulted in reduced cell proliferation, invasion and migration in vitro, and tumor growth and metastasis in vivo. Gene expression analyses coupled with chromatin immunoprecipitation revealed that SUB1 binds to the promoter regions of several oncogenes such as PLK1 (Polo-like kinase 1), C-MYC, serine-threonine kinase BUB1B and regulates their expression. Additionally, we observed SUB1 downregulated CDKN1B expression. PLK1 knockdown or use of PLK1 inhibitor can mitigate oncogenic function of SUB1 in benign prostate cancer cells. Thus, our study suggests that miR-101 loss results in increased SUB1 expression and subsequent activation of known oncogenes driving prostate cancer progression and metastasis. This study therefore demonstrates functional role of SUB1 in prostate cancer, and identifies its regulation and potential downstream therapeutic targets of SUB1 in prostate cancer.
Collapse
Affiliation(s)
- B V S K Chakravarthi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M T Goswami
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - S S Pathi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - A D Robinson
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Cieślik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - D S Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Agarwal
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Siddiqui
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - S Daignault
- Center for Cancer Biostatistics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - S L Carskadon
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - X Jing
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - A M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - L P Kunju
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - N Palanisamy
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - S Varambally
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Dai T, Chen Z, Tan L, Shi C. Radioresistance of granulation tissue-derived cells from skin wounds combined with total body irradiation. Mol Med Rep 2016; 13:3377-83. [PMID: 26936439 DOI: 10.3892/mmr.2016.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 02/02/2016] [Indexed: 11/06/2022] Open
Abstract
Combined radiation and wound injury (CRWI) occurs following nuclear explosions and accidents, radiological or nuclear terrorism, and radiation therapy combined with surgery. CRWI is complicated and more difficult to heal than single injuries. Stem cell‑based therapy is a promising treatment strategy for CRWI, however, sourcing stem cells remains a challenge. In the present study, the granulation tissue-derived cells (GTCs) from the skin wounds (SWs) of CRWI mice (C‑GTCs) demonstrated a higher radioresistance to the damage caused by combined injury, and were easier to isolate and harvest when compared with bone marrow‑derived mesenchymal stromal cells (BMSCs). Furthermore, the C-GTCs exhibited similar stem cell-associated properties, such as self-renewal and multilineage differentiation capacity, when compared with neonatal dermal stromal cells (DSCs) and GTCs from unirradiated SWs. Granulation tissue, which is easy to access, may present as an optimal autologous source of stem/progenitor cells for therapeutic applications in CRWI.
Collapse
Affiliation(s)
- Tingyu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
16
|
Kim JM, Kim K, Schmidt T, Punj V, Tucker H, Rice JC, Ulmer TS, An W. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res 2015; 43:8868-83. [PMID: 26350217 PMCID: PMC4605318 DOI: 10.1093/nar/gkv874] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/19/2015] [Indexed: 01/17/2023] Open
Abstract
SET and MYND domain containing protein 3 (SMYD3) is a histone methyltransferase, which has been implicated in cell growth and cancer pathogenesis. Increasing evidence suggests that SMYD3 can influence distinct oncogenic processes by acting as a gene-specific transcriptional regulator. However, the mechanistic aspects of SMYD3 transactivation and whether SMYD3 acts in concert with other transcription modulators remain unclear. Here, we show that SMYD3 interacts with the human positive coactivator 4 (PC4) and that such interaction potentiates a group of genes whose expression is linked to cell proliferation and invasion. SMYD3 cooperates functionally with PC4, because PC4 depletion results in the loss of SMYD3-mediated H3K4me3 and target gene expression. Individual depletion of SMYD3 and PC4 diminishes the recruitment of both SMYD3 and PC4, indicating that SMYD3 and PC4 localize at target genes in a mutually dependent manner. Artificial tethering of a SMYD3 mutant incapable of binding to its cognate elements and interacting with PC4 to target genes is sufficient for achieving an active transcriptional state in SMYD3-deficient cells. These observations suggest that PC4 contributes to SMYD3-mediated transactivation primarily by stabilizing SMYD3 occupancy at target genes. Together, these studies define expanded roles for SMYD3 and PC4 in gene regulation and provide an unprecedented documentation of their cooperative functions in stimulating oncogenic transcription.
Collapse
Affiliation(s)
- Jin-Man Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Kyunghwan Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Thomas Schmidt
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Vasu Punj
- Department of Medicine, Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Haley Tucker
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Judd C Rice
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Tobias S Ulmer
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Woojin An
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Aubry A, Galiacy S, Ceccato L, Marchand C, Tricoire C, Lopez F, Bremner R, Racaud-Sultan C, Monsarrat B, Malecaze F, Allouche M. Peptides derived from the dependence receptor ALK are proapoptotic for ALK-positive tumors. Cell Death Dis 2015; 6:e1736. [PMID: 25950466 PMCID: PMC4669685 DOI: 10.1038/cddis.2015.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
Abstract
ALK is a receptor tyrosine kinase with an oncogenic role in various types of human malignancies. Despite constitutive activation of the kinase through gene alterations, such as chromosomal translocation, gene amplification or mutation, treatments with kinase inhibitors invariably lead to the development of resistance. Aiming to develop new tools for ALK targeting, we took advantage of our previous demonstration identifying ALK as a dependence receptor, implying that in the absence of ligand the kinase-inactive ALK triggers or enhances apoptosis. Here, we synthesized peptides mimicking the proapoptotic domain of ALK and investigated their biological effects on tumor cells. We found that an ALK-derived peptide of 36 amino acids (P36) was cytotoxic for ALK-positive anaplastic large-cell lymphoma and neuroblastoma cell lines. In contrast, ALK-negative tumor cells and normal peripheral blood mononuclear cells were insensitive to P36. The cytotoxic effect was due to caspase-dependent apoptosis and required N-myristoylation of the peptide. Two P36-derived shorter peptides as well as a cyclic peptide also induced apoptosis. Surface plasmon resonance and mass spectrometry analysis of P36-interacting proteins from two responsive cell lines, Cost lymphoma and SH-SY5Y neuroblastoma, uncovered partners that could involve p53-dependent signaling and pre-mRNA splicing. Furthermore, siRNA-mediated knockdown of p53 rescued these cells from P36-induced apoptosis. Finally, we observed that a treatment combining P36 with the ALK-specific inhibitor crizotinib resulted in additive cytotoxicity. Therefore, ALK-derived peptides could represent a novel targeted therapy for ALK-positive tumors.
Collapse
Affiliation(s)
- A Aubry
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada [3] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - S Galiacy
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] CHU Purpan, Toulouse F-31300, France
| | - L Ceccato
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - C Marchand
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - C Tricoire
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - F Lopez
- INSERM, UMR1037, CRCT, Toulouse F-31000, France
| | - R Bremner
- 1] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - C Racaud-Sultan
- 1] INSERM, UMR 1043, CPTP, Toulouse F-31300, France [2] CNRS, UMR 5282, CPTP, Toulouse F-31300, France
| | - B Monsarrat
- CNRS, UMR 5089, IPBS, Toulouse F-31077, France
| | - F Malecaze
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] CHU Purpan, Toulouse F-31300, France
| | - M Allouche
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| |
Collapse
|
18
|
Rowther FB, Wei W, Dawson TP, Ashton K, Singh A, Madiesse-Timchou MP, Thomas DGT, Darling JL, Warr T. Cyclic nucleotide phosphodiesterase-1C (PDE1C) drives cell proliferation, migration and invasion in glioblastoma multiforme cells in vitro. Mol Carcinog 2015; 55:268-79. [PMID: 25620587 DOI: 10.1002/mc.22276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 12/17/2022]
Abstract
Cyclic nucleotides (cAMP & cGMP) are critical intracellular second messengers involved in the transduction of a diverse array of stimuli and their catabolism is mediated by phosphodiesterases (PDEs). We previously detected focal genomic amplification of PDE1C in >90 glioblastoma multiforme (GBM) cells suggesting a potential as a novel therapeutic target in these cells. In this report, we show that genomic gain of PDE1C was associated with increased expression in low passage GBM-derived cell cultures. We demonstrate that PDE1C is essential in driving cell proliferation, migration and invasion in GBM cultures since silencing of this gene significantly mitigates these functions. We also define the mechanistic basis of this functional effect through whole genome expression analysis by identifying down-stream gene effectors of PDE1C which are involved in cell cycle and cell adhesion regulation. In addition, we also demonstrate that Vinpocetine, a general PDE1 inhibitor, can also attenuate proliferation with no effect on invasion/migration. Up-regulation of at least one of this gene set (IL8, CXCL2, FOSB, NFE2L3, SUB1, SORBS2, WNT5A, and MMP1) in TCGA GBM cohorts is associated with worse outcome and PDE1C silencing down-regulated their expression, thus also indicating potential to influence patient survival. Therefore we conclude that proliferation, migration, and invasion of GBM cells could also be regulated downstream of PDE1C.
Collapse
Affiliation(s)
- Farjana B Rowther
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| | - Weinbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Timothy P Dawson
- Lancashire Teaching Hospitals, Royal Preston Hospital, Preston, UK
| | - Katherine Ashton
- Lancashire Teaching Hospitals, Royal Preston Hospital, Preston, UK
| | - Anushree Singh
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| | | | - D G T Thomas
- National Hospital for Neurology and Neurosurgery, London
| | - John L Darling
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| | - Tracy Warr
- Brain Tumour Research Centre, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
19
|
Chen L, Du C, Wang L, Yang C, Zhang JR, Li N, Li Y, Xie XD, Gao GD. Human positive coactivator 4 (PC4) is involved in the progression and prognosis of astrocytoma. J Neurol Sci 2014; 346:293-8. [DOI: 10.1016/j.jns.2014.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/17/2014] [Accepted: 09/12/2014] [Indexed: 02/02/2023]
|
20
|
Qian D, Zhang B, Zeng XL, Le Blanc JM, Guo YH, Xue C, Jiang C, Wang HH, Zhao TS, Meng MB, Zhao LJ, Hao JH, Wang P, Xie D, Lu B, Yuan ZY. Inhibition of human positive cofactor 4 radiosensitizes human esophageal squmaous cell carcinoma cells by suppressing XLF-mediated nonhomologous end joining. Cell Death Dis 2014; 5:e1461. [PMID: 25321468 PMCID: PMC4649520 DOI: 10.1038/cddis.2014.416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 12/24/2022]
Abstract
Radiotherapy has the widest application to esophageal squamous cell carcinoma (ESCC) patients. Factors associated with DNA damage repair have been shown to function in cell radiosensitivity. Human positive cofactor 4 (PC4) has a role in nonhomologous end joining (NHEJ) and is involved in DNA damage repair. However, the clinical significance and biological role of PC4 in cancer progression and cancer cellular responses to chemoradiotherapy (CRT) remain largely unknown. The aim of the present study was to investigate the potential roles of PC4 in the radiosensitivity of ESCC. In this study, we showed that knockdown of PC4 substantially increased ESCC cell sensitivity to ionizing radiation (IR) both in vitro and in vivo and enhanced radiation-induced apoptosis and mitotic catastrophe (MC). Importantly, we demonstrated that silencing of PC4 suppressed NHEJ by downregulating the expression of XLF in ESCC cells, whereas reconstituting the expression of XLF protein in the PC4-knockdown ESCC cells restored NHEJ activity and radioresistance. Moreover, high expression of PC4 positively correlated with ESCC resistance to CRT and was an independent predictor for short disease-specific survival of ESCC patients in both of our cohorts. These findings suggest that PC4 protects ESCC cells from IR-induced death by enhancing the NHEJ-promoting activity of XLF and could be used as a novel radiosensitivity predictor and a promising therapeutic target for ESCCs.
Collapse
Affiliation(s)
- D Qian
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - B Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - X-L Zeng
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - J M Le Blanc
- Department of Radiation Oncology, Bodine Cancer Center, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Y-H Guo
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - C Xue
- Department of Radiation Oncology, Bodine Cancer Center, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - C Jiang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - H-H Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - T-S Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - M-B Meng
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - L-J Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - J-H Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - P Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - D Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - B Lu
- 1] Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China [2] Department of Radiation Oncology, Bodine Cancer Center, Thomas Jefferson University School of Medicine, Philadelphia, PA, USA
| | - Z-Y Yuan
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
21
|
Current World Literature. Curr Opin Oncol 2013; 25:325-30. [DOI: 10.1097/cco.0b013e328360f591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|