1
|
Sasaki-Hamada S, Hara A, Tainaka Y, Satoh S, Oka JI, Ishibashi H. Isoform-specific distribution of 14-3-3 proteins in the hippocampus of streptozotocin-induced diabetic rats. Neurosci Lett 2024; 843:138027. [PMID: 39471885 DOI: 10.1016/j.neulet.2024.138027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Diabetes mellitus is associated with cognitive deficits in humans and animal models. These deficits are paralleled by neurophysiological and structural changes in the central nervous system, particularly in the hippocampus, which plays an important role in memory formation. We previously reported that the magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses was significantly impaired in streptozotocin (STZ)-induced type 1 diabetic rats (STZ rats). The present study investigated the mechanisms underlying morphological changes in the hippocampus of STZ rats. We performed a proteomic analysis of the hippocampus of STZ rats using two-dimensional gel electrophoresis followed by mass spectrometry. The distribution of 14-3-3 proteins identified by the proteomic analysis was then examined using immunohistochemistry. The results obtained revealed that 14-3-3 η immunoreactivity in the dorsal hippocampus was weaker in STZ rats than in age-matched control rats. Moreover, the density of glial fibrillary acidic protein-immunoreactive astrocytes in the dorsal hippocampus of STZ rats was increased, whereas 14-3-3 η immunoreactivity in astrocytes and neurons in the dentate gyrus was significantly decreased. These results suggest that changes in 14-3-3 η expression are involved in hippocampal astrogliosis or/and neurogenesis in STZ rats.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; Regenerative Medicine and Cell Design Research Facility, Kitasato University, School of Allied Health Science, Sagamihara, Kanagawa 252-0373, Japan.
| | - Arisa Hara
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yume Tainaka
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Sho Satoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Regenerative Medicine and Cell Design Research Facility, Kitasato University, School of Allied Health Science, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
2
|
Huang R, Kong Y, Luo Z, Li Q. LncRNA NDUFA6-DT: A Comprehensive Analysis of a Potential LncRNA Biomarker and Its Regulatory Mechanisms in Gliomas. Genes (Basel) 2024; 15:483. [PMID: 38674418 PMCID: PMC11050413 DOI: 10.3390/genes15040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Gliomas are the most prevalent primary malignant tumors affecting the brain, with high recurrence and mortality rates. Accurate diagnoses and effective treatment challenges persist, emphasizing the need for identifying new biomarkers to guide clinical decisions. Long noncoding RNAs (lncRNAs) hold potential as diagnostic and therapeutic biomarkers in cancer. However, only a limited subset of lncRNAs in gliomas have been explored. Therefore, this study aims to identify lncRNA signatures applicable to patients with gliomas across all grades and explore their clinical significance and potential biological mechanisms. Data used in this study were obtained from TCGA, CGGA, and GEO datasets to identify key lncRNA signatures in gliomas through differential and survival analyses and machine learning algorithms. We examined their associations with the clinical characteristics, gene mutations, diagnosis, and prognosis of gliomas. Functional enrichment analysis was employed to elucidate the potential biological mechanisms associated with these significant lncRNA signatures. We explored competing endogenous RNA (ceRNA) regulatory networks. We found that NDUFA6-DT emerged as a significant lncRNA signature in gliomas, with reduced NDUFA6-DT expression associated with a worse prognosis in gliomas. Nomogram analysis incorporating NDUFA6-DT expression levels exhibited excellent prognostic and predictive capabilities. Functional annotation suggested that NDUFA6-DT might influence immunological responses and synaptic transmission, potentially modifying glioma initiation and progression. The associated ceRNA network revealed the possible presence of the NDUFA6-DT-miR-455-3p-YWHAH/YWHAG axis in low-grade glioma (LGG) and glioblastoma multiforme (GBM), regulating the PI3K-AKT signaling pathway and influencing glioma cell survival and apoptosis. We believe that NDUFA6-DT is a novel lncRNA linked to glioma diagnosis and prognosis, potentially becoming a pivotal biomarker for glioma.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| | - Ying Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| | - Zhiqing Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
| | - Quhuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (R.H.); (Y.K.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Interactions between 14-3-3 Proteins and Actin Cytoskeleton and Its Regulation by microRNAs and Long Non-Coding RNAs in Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3s are a family of structurally similar proteins that bind to phosphoserine or phosphothreonine residues, forming the central signaling hub that coordinates or integrates various cellular functions, thereby controlling many pathways important in cancer, cell motility, cell death, cytoskeletal remodeling, neuro-degenerative disorders and many more. Their targets are present in all cellular compartments, and when they bind to proteins they alter their subcellular localization, stability, and molecular interactions with other proteins. Changes in environmental conditions that result in altered homeostasis trigger the interaction between 14-3-3 and other proteins to retrieve or rescue homeostasis. In circumstances where these regulatory proteins are dysregulated, it leads to pathological conditions. Therefore, deeper understanding is needed on how 14-3-3 proteins bind, and how these proteins are regulated or modified. This will help to detect disease in early stages or design inhibitors to block certain pathways. Recently, more research has been devoted to identifying the role of MicroRNAs, and long non-coding RNAs, which play an important role in regulating gene expression. Although there are many reviews on the role of 14-3-3 proteins in cancer, they do not provide a holistic view of the changes in the cell, which is the focus of this review. The unique feature of the review is that it not only focuses on how the 14-3-3 subunits associate and dissociate with their binding and regulatory proteins, but also includes the role of micro-RNAs and long non-coding RNAs and how they regulate 14-3-3 isoforms. The highlight of the review is that it focuses on the role of 14-3-3, actin, actin binding proteins and Rho GTPases in cancer, and how this complex is important for cell migration and invasion. Finally, the reader is provided with super-resolution high-clarity images of each subunit of the 14-3-3 protein family, further depicting their distribution in HeLa cells to illustrate their interactions in a cancer cell.
Collapse
|
4
|
Hong Q, Li B, Cai X, Lv Z, Cai S, Zhong Y, Wen B. Transcriptomic Analyses of the Adenoma-Carcinoma Sequence Identify Hallmarks Associated With the Onset of Colorectal Cancer. Front Oncol 2021; 11:704531. [PMID: 34458146 PMCID: PMC8387103 DOI: 10.3389/fonc.2021.704531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The concept of the adenoma-carcinoma sequence in colorectal cancer (CRC) is widely accepted. However, the relationship between the characteristics of the transcriptome and the adenoma-carcinoma sequence in CRC remains unclear. Here, the transcriptome profiles of 15 tissue samples from five CRC patients were generated by RNAseq. Six specific dynamic expression patterns of differentially expressed genes (DEGs) were generated by mFuzz. Weighted correlation network analysis showed that DEGs in cluster 4 were associated with carcinoma tissues, and those in cluster 6 were associated with non-normal tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified metabolic dysregulation as a consistent finding throughout the transition process, whereas downregulation of the immune response occurred during normal to adenoma transition, and the upregulation of canonical pathways was associated with adenoma to carcinoma transition. Overall survival analysis of patients in cluster 6 identified TPD52L1 as a marker of poor prognosis, and cell proliferation, colony formation, wound healing, and Transwell invasion assays showed that high expression levels of TPD52L1 promoted malignant behaviors. In total, 70 proteins were identified as potential partners of hD53 by mass spectrometry. CRC formation was associated with three cancer hallmarks: dysregulation of metabolism, inactivation of the immune response, and activation of canonical cancer pathways. The TPD52L1 gene was identified as a potential marker to track tumor formation in CRC and as an indicator of poor patient prognosis.
Collapse
Affiliation(s)
- Qin Hong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bing Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiumei Cai
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhengtao Lv
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shilun Cai
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunshi Zhong
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Wen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Li X, Zhang Y, Cheng F, Yu Y, Wang D. Metabolomics and Proteomics Reveal the Variation of Substances in Apheresis Platelets during Storage and Their Effects on Cancer Cell Proliferation. Transfus Med Hemother 2021; 48:79-90. [PMID: 33976608 PMCID: PMC8077496 DOI: 10.1159/000509944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/05/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Apheresis platelets (APs) are clinically and crucially important in the prevention and treatment of bleeding in patients with thrombocytopenia or cancer. However, few researchers have addressed the variation of supernatant metabolites and exosome proteins in APs during storage and their effects on cancer cell proliferation. OBJECTIVE This study was designed to explore the change rules of the metabolites and exosomal proteins of APs during storage and their effects on cancer cell proliferation. METHODS Metabolomics and proteomics were separately applied to analyze the variation of AP supernatant metabolites and exosomal proteins between freshly prepared day-0 and day-5 terminal-stored APs. Cell counting kit (CCK)-8 assay was performed to detect the effects of AP supernatants and exosomes on the proliferation of cancer cells. RESULTS We found that the supernatant metabolites and exosomal proteins in APs were significantly different on day 0 and day 5, and that many differential metabolites and exosomal proteins were associated with cancer characteristics. Furthermore, the day-5 AP supernatants had a greater inhibition of the proliferation of K562, HepG2, and HCT116 cancer cells, but the day-5 AP exosomes had no significant effect on the proliferation of these cancer cells. CONCLUSION The variant terminal-stored AP supernatants may inhibit the proliferation of cancer cells but the variant terminal AP exosomes have no effect on cancer cell proliferation.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fu Cheng
- Department of Blood Transfusion, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Yu
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Liu SY, Yuan D, Sun RJ, Zhu JJ, Shan NN. Significant reductions in apoptosis-related proteins (HSPA6, HSPA8, ITGB3, YWHAH, and PRDX6) are involved in immune thrombocytopenia. J Thromb Thrombolysis 2020; 51:905-914. [PMID: 33047245 DOI: 10.1007/s11239-020-02310-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 01/24/2023]
Abstract
To investigate differences in the expression of plasma proteins in immune thrombocytopenia (ITP) and normal control groups, bone marrow samples were collected from 20 active ITP patients and 20 healthy controls. Quantitative proteomics analysis based on mass spectrometry was used to measure the protein levels and understand the protein networks. We found differentially expressed proteins in ITP patients and healthy controls. Parallel reaction monitoring (PRM), a targeted proteome quantification technique, was used to quantitatively confirm the identified target proteins and verify the proteomics data. In this study, a total of 829 proteins were identified, and the fold-change cut-off was set at 1.5 (patients vs controls); a total of 26 proteins were upregulated, and 69 proteins were downregulated. The bioinformatics analysis indicated that some differentially expressed proteins were associated with apoptosis. KEGG enrichment analysis showed that the apoptosis-related proteins were closely related to the PI3K-Akt signalling pathway. PRM demonstrated that apoptosis-related proteins were significantly decreased in ITP patients, which further confirmed the important effect of apoptosis on ITP pathogenesis. We hypothesised that apoptosis may be closely related to ITP pathogenesis through the PI3K-Akt signalling pathway.
Collapse
Affiliation(s)
- Shu-Yan Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jing-Jing Zhu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China.
| |
Collapse
|
7
|
Differential Subcellular Distribution and Translocation of Seven 14-3-3 Isoforms in Response to EGF and During the Cell Cycle. Int J Mol Sci 2020; 21:ijms21010318. [PMID: 31906564 PMCID: PMC6981507 DOI: 10.3390/ijms21010318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple isoforms of 14-3-3 proteins exist in different organisms. In mammalian cells, 14-3-3 protein has seven isoforms (α/β, ε, η, γ, σ, θ/τ, and δ/ζ), with α and δ representing the phosphorylated versions of β and ζ, respectively. While the existence of multiple isoforms may represent one more level of regulation in 14-3-3 signaling, our knowledge regarding the isoform-specific functions of 14-3-3 proteins is very limited. Determination of the subcellular localization of the different 14-3-3 isoforms could give us important clues of their specific functions. In this study, by using indirect immunofluorescence, subcellular fractionation, and immunoblotting, we studied the subcellular localization of the total 14-3-3 protein and each of the seven 14-3-3 isoforms; their redistribution throughout the cell cycle; and their translocation in response to EGF in Cos-7 cells. We showed that 14-3-3 proteins are broadly distributed throughout the cell and associated with many subcellular structures/organelles, including the plasma membrane (PM), mitochondria, ER, nucleus, microtubules, and actin fibers. This broad distribution underlines the multiple functions identified for 14-3-3 proteins. The different isoforms of 14-3-3 proteins have distinctive subcellular localizations, which suggest their distinctive cellular functions. Most notably, 14-3-3ƞ is almost exclusively localized to the mitochondria, 14-3-3γ is only localized to the nucleus, and 14-3-3σ strongly and specifically associated with the centrosome during mitosis. We also examined the subcellular localization of the seven 14-3-3 isoforms in other cells, including HEK-293, MDA-MB-231, and MCF-7 cells, which largely confirmed our findings with Cos-7 cells.
Collapse
|
8
|
Han YK, Park GY, Bae MJ, Kim JS, Jo WS, Lee CG. Hypoxia induces immunogenic cell death of cancer cells by enhancing the exposure of cell surface calreticulin in an endoplasmic reticulum stress-dependent manner. Oncol Lett 2019; 18:6269-6274. [PMID: 31788104 DOI: 10.3892/ol.2019.10986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/06/2019] [Indexed: 01/13/2023] Open
Abstract
Hypoxia is associated with resistance to anticancer therapies. Additionally, it is involved in the immune evasion of cancer cells by inducing an immunosuppressive microenvironment. However, the role of hypoxia in modulating the immunogenicity of cancer cells remains unknown. Hypoxia is known to induce endoplasmic reticulum (ER) stress, which serves a key role in inducing the cell surface exposure of calreticulin, a marker of immunogenic cell death. The present study investigated whether hypoxia influenced the immunogenicity of cancer cells using FACS, western blot analysis and syngenic mouse tumor model. The results revealed that hypoxia induced the cell surface exposure of calreticulin in human and mouse breast cancer cell lines depending on ER stress. Enhanced cell surface exposure of calreticulin induced by hypoxia resulted in an increase in anticancer immunity in a mouse model, which suggested that hypoxia induced immunogenic cell death. Notably, hypoxia did not significantly modulate the cell surface exposure of CD47, an antagonist of calreticulin function in cancer immunogenicity. These results suggest that hypoxia may enhance the immunogenicity of cancer cells themselves, in addition to its role in inducing an immunosuppressive cancer microenvironment.
Collapse
Affiliation(s)
- Yu Kyeong Han
- Department of Radiation Biology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Ga-Young Park
- Department of Radiation Biology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea.,Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Min Ji Bae
- Department of Radiation Biology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Joong Sun Kim
- K-Herbal Medicinal Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Wol Soon Jo
- Department of Radiation Biology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Chang Geun Lee
- Department of Radiation Biology, Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| |
Collapse
|
9
|
Silva LE, Souza RC, Kitano ES, Monteiro LF, Iwai LK, Forti FL. Proteomic and Interactome Approaches Reveal PAK4, PHB-2, and 14-3-3η as Targets of Overactivated Cdc42 in Cellular Responses to Genomic Instability. J Proteome Res 2019; 18:3597-3614. [DOI: 10.1021/acs.jproteome.9b00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luiz E. Silva
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| | - Renan C. Souza
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| | - Eduardo S. Kitano
- Special Laboratory of Applied Toxicology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo-SP 05503-000, Brazil
| | - Lucas F. Monteiro
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| | - Leo K. Iwai
- Special Laboratory of Applied Toxicology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo-SP 05503-000, Brazil
| | - Fabio L. Forti
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| |
Collapse
|
10
|
Fan X, Cui L, Zeng Y, Song W, Gaur U, Yang M. 14-3-3 Proteins Are on the Crossroads of Cancer, Aging, and Age-Related Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20143518. [PMID: 31323761 PMCID: PMC6678932 DOI: 10.3390/ijms20143518] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are a family of conserved regulatory adaptor molecules which are expressed in all eukaryotic cells. These proteins participate in a variety of intracellular processes by recognizing specific phosphorylation motifs and interacting with hundreds of target proteins. Also, 14-3-3 proteins act as molecular chaperones, preventing the aggregation of unfolded proteins under conditions of cellular stress. Furthermore, 14-3-3 proteins have been shown to have similar expression patterns in tumors, aging, and neurodegenerative diseases. Therefore, we put forward the idea that the adaptor activity and chaperone-like activity of 14-3-3 proteins might play a substantial role in the above-mentioned conditions. Interestingly, 14-3-3 proteins are considered to be standing at the crossroads of cancer, aging, and age-related neurodegenerative diseases. There are great possibilities to improve the above-mentioned diseases and conditions through intervention in the activity of the 14-3-3 protein family.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lang Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
11
|
The Importance of the Right Framework: Mitogen-Activated Protein Kinase Pathway and the Scaffolding Protein PTPIP51. Int J Mol Sci 2018; 19:ijms19103282. [PMID: 30360441 PMCID: PMC6213971 DOI: 10.3390/ijms19103282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
The protein tyrosine phosphatase interacting protein 51 (PTPIP51) regulates and interconnects signaling pathways, such as the mitogen-activated protein kinase (MAPK) pathway and an abundance of different others, e.g., Akt signaling, NF-κB signaling, and the communication between different cell organelles. PTPIP51 acts as a scaffold protein for signaling proteins, e.g., Raf-1, epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (Her2), as well as for other scaffold proteins, e.g., 14-3-3 proteins. These interactions are governed by the phosphorylation of serine and tyrosine residues of PTPIP51. The phosphorylation status is finely tuned by receptor tyrosine kinases (EGFR, Her2), non-receptor tyrosine kinases (c-Src) and the phosphatase protein tyrosine phosphatase 1B (PTP1B). This review addresses various diseases which display at least one alteration in these enzymes regulating PTPIP51-interactions. The objective of this review is to summarize the knowledge of the MAPK-related interactome of PTPIP51 for several tumor entities and metabolic disorders.
Collapse
|
12
|
The role of prostate tumor overexpressed 1 in cancer progression. Oncotarget 2017; 8:12451-12471. [PMID: 28029646 PMCID: PMC5355357 DOI: 10.18632/oncotarget.14104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
|
13
|
Haonon O, Rucksaken R, Pinlaor P, Pairojkul C, Chamgramol Y, Intuyod K, Onsurathum S, Khuntikeo N, Pinlaor S. Upregulation of 14-3-3 eta in chronic liver fluke infection is a potential diagnostic marker of cholangiocarcinoma. Proteomics Clin Appl 2015; 10:248-56. [PMID: 26435198 DOI: 10.1002/prca.201500019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/20/2015] [Accepted: 09/24/2015] [Indexed: 01/16/2023]
Abstract
PURPOSE To discover protein markers in chronic/advanced opisthorchiasis for the early detection of Opisthorchis viverrini (OV)-associated cholangiocarcinoma (CCA). EXPERIMENTAL DESIGN Liver tissues derived from normal hamsters and those with chronic/advanced opisthorchiasis (n = 5 per group) were subjected to 2DE and LC-MS/MS. Candidate protein expression was confirmed in hamster models and human CCA tissue microarray (TMA) using immunohistochemistry and Western blot. RESULT Proteomics analysis detected 14-3-3 eta only in infected hamsters, not in uninfected controls. Immunohistochemistry and Western blot analysis confirmed low expression of 14-3-3 eta in normal hamster livers and demonstrated increased expression through time in infected livers. This protein was also observed in parasite organs, especially during the chronic phase of opisthorchiasis. Moreover, increased expression of 14-3-3 eta, relative to normal hamster livers, was observed during the early stage of CCA induced by OV infection and administration of N-nitrosodimethylamine. Immunohistochemical analysis of human TMA revealed that 14-3-3 eta was highly expressed in CCA (84.23%, 187/222 cases) but was not found in hepatocellular carcinoma or healthy liver tissues. CONCLUSIONS AND CLINICAL RELEVANCE 14-3-3 eta protein has potential as a screening and early diagnostic marker for CCA.
Collapse
Affiliation(s)
- Ornuma Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rucksak Rucksaken
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Pinlaor
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yaovalux Chamgramol
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kitti Intuyod
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Sudarat Onsurathum
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Han JY, Han YK, Park GY, Kim SD, Lee CG. Bub1 is required for maintaining cancer stem cells in breast cancer cell lines. Sci Rep 2015; 5:15993. [PMID: 26522589 PMCID: PMC4629164 DOI: 10.1038/srep15993] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is a leading cause of death among women worldwide due to therapeutic resistance and cancer recurrence. Cancer stem cells are believed to be responsible for resistance and recurrence. Many efforts to overcome resistance and recurrence by regulating cancer stem cells are ongoing. Bub1 (Budding uninhibited by benzimidazoles 1) is a mitotic checkpoint serine/threonine kinase that plays an important role in chromosome segregation. Bub1 expression is correlated with a poor clinical prognosis in patients with breast cancer. We identified that depleting Bub1 using shRNAs reduces cancer stem cell potential of the MDA-MB-231 breast cancer cell line, resulting in inhibited formation of xenografts in immunocompromised mice. These results suggest that Bub1 may be associated with cancer stem cell potential and could be a target for developing anti-breast cancer stem cell therapies.
Collapse
Affiliation(s)
- Jeong Yoon Han
- Research Center, Dongnam Institute of Radiological &Medical Sciences, Busan 619-953, ROK
| | - Yu Kyeong Han
- Research Center, Dongnam Institute of Radiological &Medical Sciences, Busan 619-953, ROK.,Research Center, Dongnam Institute of Radiological &Medical Sciences, Busan 619-953, ROK
| | - Ga-Young Park
- Research Center, Dongnam Institute of Radiological &Medical Sciences, Busan 619-953, ROK.,Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, ROK
| | - Sung Dae Kim
- Research Center, Dongnam Institute of Radiological &Medical Sciences, Busan 619-953, ROK
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological &Medical Sciences, Busan 619-953, ROK
| |
Collapse
|
15
|
Syed P, Gupta S, Choudhary S, Pandala NG, Atak A, Richharia A, K P M, Zhu H, Epari S, Noronha SB, Moiyadi A, Srivastava S. Autoantibody Profiling of Glioma Serum Samples to Identify Biomarkers Using Human Proteome Arrays. Sci Rep 2015; 5:13895. [PMID: 26370624 PMCID: PMC4570193 DOI: 10.1038/srep13895] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
The heterogeneity and poor prognosis associated with gliomas, makes biomarker identification imperative. Here, we report autoantibody signatures across various grades of glioma serum samples and sub-categories of glioblastoma multiforme using Human Proteome chips containing ~17000 full-length human proteins. The deduced sets of classifier proteins helped to distinguish Grade II, III and IV samples from the healthy subjects with 88, 89 and 94% sensitivity and 87, 100 and 73% specificity, respectively. Proteins namely, SNX1, EYA1, PQBP1 and IGHG1 showed dysregulation across various grades. Sub-classes of GBM, based on its proximity to the sub-ventricular zone, have been reported to have different prognostic outcomes. To this end, we identified dysregulation of NEDD9, a protein involved in cell migration, with probable prognostic potential. Another subcategory of patients where the IDH1 gene is mutated, are known to have better prognosis as compared to patients carrying the wild type gene. On a comparison of these two cohorts, we found STUB1 and YWHAH proteins dysregulated in Grade II glioma patients. In addition to common pathways associated with tumourigenesis, we found enrichment of immunoregulatory and cytoskeletal remodelling pathways, emphasizing the need to explore biochemical alterations arising due to autoimmune responses in glioma.
Collapse
Affiliation(s)
- Parvez Syed
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shabarni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Saket Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Narendra Goud Pandala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurva Atak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Annie Richharia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manubhai K P
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai 400 012, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400 012, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|