1
|
Bourdier S, Fisch AS, Alp KM, Das R, Mertins P, Tinhofer I. High Ano1 expression as key driver of resistance to radiation and cisplatin in HPV-negative head and neck squamous cell carcinoma. Sci Rep 2025; 15:1555. [PMID: 39789065 PMCID: PMC11718065 DOI: 10.1038/s41598-025-85214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Human papilloma virus-negative head and neck squamous cell carcinoma (HNSCC) frequently harbors 11q13 amplifications. Among the oncogenes at this locus, CCND1 and ANO1 are linked to poor prognosis; however, their individual roles in treatment resistance remain unclear. The impact of Cyclin D1 and Ano1 overexpression on survival was analyzed using the TCGA HNSCC dataset and a Charité cohort treated with cisplatin (CDDP)-based radiochemotherapy. High Ano1 expression was primarily associated with poor overall survival in both datasets. The effects of CCND1 and ANO1 knockdown (KD) on radio- and drug sensitivity, along with changes in global protein expression, cell viability, growth, and DNA repair, were studied in an 11q13-amplified HNSCC cell line model of primary cisplatin resistance. Unique pathway alterations- VEGF in CCND1 KD and the Rho GTPase cycle in ANO1 KD- were observed, along with shared changes like DNA damage and cell cycle dysregulation. Silencing CCND1 or ANO1 increased CDDP sensitivity, while only ANO1 silencing increased radiosensitivity. Copanlisib and afatinib were identified as promising candidates for combination therapy of 11q13-amplified HNSCC tumors. We demonstrated a predominant role for Ano1 in treatment resistance in Cyclin D1highAno1high HNSCC tumors and identified novel potential treatment combinations for this high-risk patient group.
Collapse
Affiliation(s)
- Solenne Bourdier
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Keziban Merve Alp
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ridhima Das
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Berlin, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Avril D, Foy JP, Bouaoud J, Grégoire V, Saintigny P. Biomarkers of radioresistance in head and neck squamous cell carcinomas. Int J Radiat Biol 2023; 99:583-593. [PMID: 35930497 DOI: 10.1080/09553002.2022.2110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a major cause of morbidity and mortality. Although HNSCC is mainly caused by tobacco and alcohol consumption, infection by Human Papilloma Virus (HPV) has been also associated with the increasing incidence of oropharyngeal squamous cell carcinomas (OPSCC) during the past decades. HPV-positive HNSCC is characterized by a higher radiosensitivity compared to HPV-negative tumor. While several clinical trials are evaluating de-escaladed radiation doses strategies in HPV-positive HNSCC, molecular mechanisms associated with relative radioresistance in HPV-negative HNSCC are still broadly unknown. Our goal was to review recently proposed biomarkers of radioresistance in this setting, which may be useful for stratifying tumor's patient according to predicted level of radioresistance. CONCLUSIONS most of biomarkers of radioresistance in HPV-negative HNSCC are identified using a hypothesis-driven approach, based on molecular mechanisms known to play a key role during carcinogenesis, compared to an unsupervised data-driven approach regardless the biological rational. DNA repair and hypoxia are the two most widely investigated biological and targetable pathways related to radioresistance in HNSCC. The better understanding of molecular mechanisms and biomarkers of radioresistance in HPV-negative HNSCC could help for the development of radiosensitization strategies, based on targetable biomarkers, in radioresistant tumors as well as de-escalation radiation dose strategies, based on biological level of radioresistance, in radiosensitive tumors.
Collapse
Affiliation(s)
- Delphine Avril
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jean-Philippe Foy
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
3
|
Komatsuda H, Wakisaka R, Kono M, Kumai T, Hayashi R, Yamaki H, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Takahara M, Katada A, Kobayashi H. Mitogen-activated protein kinase inhibition augments the T cell response against HOXB7-expressing tumor through human leukocyte antigen upregulation. Cancer Sci 2022; 114:399-409. [PMID: 36285482 PMCID: PMC9899601 DOI: 10.1111/cas.15619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Homeobox B7 (HOXB7) is a master regulatory gene that regulates cell proliferation and activates oncogenic pathways. Overexpression of HOXB7 correlates with aggressive behavior and poor prognosis in patients with cancer. However, the expression and role of HOXB7 in head and neck squamous cell carcinoma (HNSCC) remain unclear. In this study, we observed that most samples from patients with oropharyngeal cancer and HNSCC expressed HOXB7. As no direct inhibitor has been reported, we identified a potent peptide epitope to target HOXB7-expressing tumors through immune cells. A novel HOXB7-derived peptide epitope (HOXB78-25 ) elicited antigen-specific and tumor-reactive promiscuous CD4+ T cell responses. These CD4+ T cells produced γ-interferon (IFN-γ) and had the direct ability to kill tumors through granzyme B. Notably, downregulation of HOXB7 using siRNA enhanced human leukocyte antigen class II expression on tumor cells by decreasing the phosphorylation of MAPK. Mitogen-activated protein kinase inhibition augmented IFN-γ production by HOXB7-reactive CD4+ T cell responses without decreasing the expression of HOXB7. These results suggest that combining HOXB7 peptide-based vaccine with MAPK inhibitors could be an effective immunological strategy for cancer treatment.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Risa Wakisaka
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Michihisa Kono
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Takumi Kumai
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan,Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Ryusuke Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hidekiyo Yamaki
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Sato
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Toshihiro Nagato
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Takayuki Ohkuri
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Akemi Kosaka
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Kenzo Ohara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Miki Takahara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan,Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Akihiro Katada
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroya Kobayashi
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
4
|
Naghsh-Nilchi A, Ebrahimi Ghahnavieh L, Dehghanian F. Construction of miRNA-lncRNA-mRNA co-expression network affecting EMT-mediated cisplatin resistance in ovarian cancer. J Cell Mol Med 2022; 26:4530-4547. [PMID: 35810383 PMCID: PMC9357632 DOI: 10.1111/jcmm.17477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 12/22/2022] Open
Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial-mesenchymal transition (EMT) in this resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial-like and mesenchymal-like cells, the module identification analysis was performed using weighted gene co-expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein-protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co-expression of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non-preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co-expression pattern of the brown module's hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.
Collapse
Affiliation(s)
- Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Morgan R, Hunter K, Pandha HS. Downstream of the HOX genes: explaining conflicting tumour suppressor and oncogenic functions in cancer. Int J Cancer 2022; 150:1919-1932. [PMID: 35080776 PMCID: PMC9304284 DOI: 10.1002/ijc.33949] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 11/07/2022]
Abstract
The HOX genes are a highly conserved group of transcription factors that have key roles in early development, but which are also highly expressed in most cancers. Many studies have found strong associative relationships between the expression of individual HOX genes in tumours and clinical parameters including survival. For the majority of HOX genes, high tumour expression levels seem to be associated with a worse outcome for patients, and in some cases this has been shown to result from the activation of pro-oncogenic genes and pathways. However, there are also many studies that indicate a tumour suppressor role for some HOX genes, sometimes with conclusions that contradict earlier work. In this review, we have attempted to clarify the role of HOX genes in cancer by focusing on their downstream targets as identified in studies that provide experimental evidence for their activation or repression. On this basis, the majority of HOX genes would appear to have a pro-oncogenic function, with the notable exception of HOXD10, which acts exclusively as a tumour suppressor. HOX proteins regulate a wide range of target genes involved in metastasis, cell death, proliferation, and angiogenesis, and activate key cell signalling pathways. Furthermore, for some functionally related targets, this regulation is achieved by a relatively small subgroup of HOX genes.
Collapse
Affiliation(s)
- Richard Morgan
- School of Biomedical SciencesUniversity of West LondonLondonUK
| | - Keith Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Hardev S. Pandha
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
6
|
Cheng W, Shi X, Lin M, Yao Q, Ma J, Li J. LncRNA MAGI2-AS3 Overexpression Sensitizes Esophageal Cancer Cells to Irradiation Through Down-Regulation of HOXB7 via EZH2. Front Cell Dev Biol 2020; 8:552822. [PMID: 33330444 PMCID: PMC7732634 DOI: 10.3389/fcell.2020.552822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background Accumulating evidence has suggested that aberrant expression of long non-coding RNAs (lncRNAs) may contribute to cancer progression in association with radioresistance. The current study aimed to identify the potential role of lncRNA MAGI2-AS3 and the underlying mechanism in its regulation of the radio-sensitivity of esophageal cancer cells. Methods and Results Initially, we detected high expression of HOXB7 from microarray-based gene expression profiling of esophageal cancer. Then, we identified the interactions among MAGI2-AS3, HOXB7, and EZH2 by dual-luciferase reporter gene assay, RNA pull-down assay, RIP assay and ChIP assay. HOXB7 was highly-expressed, while MAGI2-AS3 was poorly-expressed in esophageal cancer tissues and cells. The effect of MAGI2-AS3 and HOXB7 on esophageal cancer cell proliferation and apoptosis as well as tumorigenicity of radioresistant cells was examined by gain- and loss-of-function experiments. Interestingly, MAGI2-AS3 down-regulated HOXB7 through interaction with EZH2, which promoted cell apoptosis and inhibited proliferation and radio-resistance. Besides, down-regulation of MAGI2-AS3 exerted a promoting effect on these malignant phenotypes. Conclusion Taken together, our results reveal the potential role of MAGI2-AS3 over-expression in controlling esophageal cancer resistance to radiotherapy by down-regulating HOXB7, this providing a candidate biomarker for resistance to radiotherapy.
Collapse
Affiliation(s)
- Wenfang Cheng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xiuling Shi
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Mingqiang Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Qiwei Yao
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jiayu Ma
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
7
|
Zhang Y, Le Y, Bu P, Cheng X. Regulation of Hox and ParaHox genes by perfluorochemicals in mouse liver. Toxicology 2020; 441:152521. [PMID: 32534105 DOI: 10.1016/j.tox.2020.152521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Abstract
Homeobox (Hox) genes encode homeodomain proteins, which play important roles in the development and morphological diversification of organisms including plants and animals. Perfluorinated chemicals (PFCs), which are well recognized industrial pollutants and universally detected in human and wildlife, interfere with animal development. In addition, PFCs produce a number of hepatic adverse effects, such as hepatomegaly and dyslipidemia. Homeodomain proteins profoundly contribute to liver regeneration. Hox genes serve as either oncogenes or tumor suppressor genes during target organ carcinogenesis. However, to date, no study investigated whether PFCs regulate expression of Hox genes. This study was designed to determine the regulation of Hox (including Hox-a to -d subfamily members) and paraHox [including GS homeobox (Gsx), pancreatic and duodenal homeobox (Pdx), and caudal-related homeobox (Cdx) family members] genes by PFCs including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in mouse liver. 46.4 mg/kg PFNA induced mRNA expression of Hoxa5, b7, c5, d10 and Pdx1 in wild-type and CAR-null mouse livers, but not in PPARα-null mouse livers, indicating a PPARα-dependent manner. PFOA, PFNA, and PFDA all induced mRNA expression of Hoxa5, b7, c5, d10, Pdx1 and Zeb2 in wild-type but not PPARα-null mouse livers. In addition, in Nrf2-null mouse livers, PFNA continued to increase mRNA expression of Hoxa5 and Pdx1, but not Hoxb7, c5 or d10. Furthermore, Wy14643, a classical PPARα agonist, induced mRNA expression of Hoxb7 and c5 in wild-type but not PPARα-null mouse livers. However, Wy14643 did not induce mRNA expression of Hoxa5, d10 or Pdx1 in either wild-type or PPARα-null mouse livers. TCPOBOP, a classical mouse CAR agonist, increased mRNA expression of Hoxb7, c5 and d10 but not Hoxa5 or Pdx1 in mouse livers. Moreover, PFNA decreased cytoplasmic and nuclear Hoxb7 protein levels in mouse livers. However, PFNA increased cytoplasmic Hoxc5 protein level but decreased nuclear Hoxc5 protein level in mouse livers. In conclusion, PFCs induced mRNA expression of several Hox genes such as Hoxb7, c5 and d10, mostly through the activation of PPARα and/or Nrf2 signaling.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, United States
| | - Yuan Le
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, United States
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, Chicago, IL, 60064, United States
| | - Xingguo Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, United States.
| |
Collapse
|
8
|
Zhou T, Fu H, Dong B, Dai L, Yang Y, Yan W, Shen L. HOXB7 mediates cisplatin resistance in esophageal squamous cell carcinoma through involvement of DNA damage repair. Thorac Cancer 2019; 11:3071-3085. [PMID: 31568655 PMCID: PMC7606015 DOI: 10.1111/1759-7714.13142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background DNA damage repair is an important mechanism of platinum resistance. HOXB7 is one member of HOX family genes, which are essential developmental regulators and frequently dysregulated in cancer. Recently, its relevance in chemotherapy resistance and DNA damage repair has also been addressed. However, little is known regarding the association between HOXB7 and chemotherapy resistance in esophageal squamous cell carcinoma (ESCC). Methods The association between HOXB7 expression detected by immunohistochemisty and tumor regression grade (TRG) and long‐term survival was analyzed in 143 ESCC patients who underwent neoadjuvant chemotherapy. CCK8 assay was used to examine the effect of cisplatin in a panel of four ESCC cell lines. A stable cell strain with HOXB7 knockdown of KYSE150 and KYSE450 was established to explore the effect on cisplatin sensitivity. The interaction of HOXB7 with Ku70, Ku80 and DNA‐PKcs was determined by GST‐pull down, coimmunoprecipitation and immunofluorescent colocalization. Finally, we investigated whether disrupting HOXB7 function by a synthetic peptide HXR9 blocking the formation of HOXB7/PBX could enhance cisplatin sensitivity in vitro and in vivo. Results High expression of HOXB7 was associated with cisplatin resistance and worse chemotherapy efficacy. HOXB7 knockdown reinforced cisplatin sensitivity. It was identified that HOXB7 interacts with Ku70, Ku80 and DNA‐PKcs. HOXB7 knockdown was related to the downregulation of Ku70, Ku80 and DNA‐PKcs as well as arrested cell cycle in S phase. HOXB7 inhibition by HXR9 had a synergistic effect to improve cisplatin sensitivity. Conclusion HOXB7 may be a biomarker for the prediction of chemoresistance of ESCC and serves as a promising therapeutic target.
Collapse
Affiliation(s)
- Ting Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongbo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wanpu Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital & Institute, Beijing, China
| | - Luyan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
9
|
Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, Zhou L, Xie H, Wu J, Zheng S. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. J Transl Med 2019; 99:736-748. [PMID: 30664713 PMCID: PMC6760572 DOI: 10.1038/s41374-018-0150-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Homeobox B7 (HOXB7) protein is reported to be aberrantly expressed in a variety of cancers and to play an important role in multiple cellular processes. However, the specific mechanism by which HOXB7 promotes the malignant progression of intrahepatic cholangiocarcinoma (ICC) remains unclear. Therefore, we used quantitative real-time polymerase chain reaction (PCR) to detect the expression level of HOXB7 in 38 paired ICC tissue samples. Additionally, to assess correlation between HOXB7 and ICC prognosis, we performed immunohistochemistry (IHC) using 122 ICC tissues to detect HOXB7 expression. Cell Counting Kit-8 (CCK-8) and colony formation assays were employed to assess ICC cell proliferation, and Transwell assays were performed to estimate the invasion and migration abilities of ICC cells. The capillary tube formation assay was applied to explore the angiogenic effects of HOXB7. A xenograft tumor model was established in nude mice to assess the role of HOXB7 in tumor growth and lung metastasis. The results showed higher expression of HOXB7 in ICC tissues than in noncancerous tissues, and this increased expression was significantly associated with a poor prognosis. In addition, HOXB7 overexpression enhanced capillary tube formation, invasion and migration of ICC cells in vitro, whereas HOXB7 knockdown produced the opposite results in vitro. Moreover, the role of HOXB7 in promoting tumor growth and metastasis was verified in vivo. Further investigation revealed that the expression levels of MMP2, MMP9, VEGFa, and IL8 were elevated by HOXB7 and that the ERK pathway was activated. Our results demonstrate the prognostic value of HOXB7 and its role in metastasis and angiogenesis in ICC. HOXB7 upregulated MMP2, MMP9, VEGFa, and IL8 expression via the ERK pathway to accelerate the malignant progression of ICC.
Collapse
Affiliation(s)
- Longfei Dai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Zhenjie Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Yunhao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, 310000, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, 310000, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, 310000, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, 310000, China.
| |
Collapse
|
10
|
Song Z, Liao Z, Cui Y, Yang C. The relationship between homeobox B7 expression and the clinical characteristics of patient with prostate cancer. J Cell Biochem 2019; 120:6395-6401. [PMID: 30317675 DOI: 10.1002/jcb.27926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The prognosis of patients with prostate cancer (PCa) remains poor. METHODS GSE16560, GSE32448, GSE79957, GSE17951, and TCGA-PRAD were reanalyzed to evaluate the expression of homeobox B7 (HOXB7) between PCa tissues and normal prostate tissues and to characterize the correlation between the expression of HOXB7 and the clinicopathological features of patients with PCa. Gene set enrichment analysis was conducted to investigate the mechanisms. RESULTS HOXB7 was upregulated in PCa tissues (P = 0.0005). Both the univariate and multivariate analyses demonstrated that the expression of HOXB7 was correlated with the Gleason score and TNM staging of patients with PCa. The Gleason score and TNM staging were higher in the HOXB7 high expression group. The overall survival (hazard ratio [HR] = 0.632; 95% confidence interval [CI]: 0.4773-0.8369; P = 0.0014) and progression-free survival (HR = 0.544; 95% CI: 0.3157-0.9373; P = 0.0283) favored patients with PCa in HOXB7 low expression group over those in HOXB7 high expression group. PCa samples in HOXB7 low expression group were enriched in gene sets associated with the epithelial mesenchymal transition, apical junction, angiogenesis, ultraviolet response, and hypoxia. CONCLUSIONS HOXB7 might be an independent prognostic factor of patients with PCa.
Collapse
Affiliation(s)
- Zhangxing Song
- Department of Urology, The National Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Zhaolin Liao
- Department of Urology, The National Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Yingdong Cui
- Department of Urology, The National Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| | - Chao Yang
- Department of Urology, The National Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, China
| |
Collapse
|
11
|
Gao D, Chen HQ. Specific knockdown of HOXB7 inhibits cutaneous squamous cell carcinoma cell migration and invasion while inducing apoptosis via the Wnt/β-catenin signaling pathway. Am J Physiol Cell Physiol 2018; 315:C675-C686. [PMID: 30067384 DOI: 10.1152/ajpcell.00291.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic cutaneous squamous cell carcinoma (CSCC) is a major cause of death associated with nonmelanoma skin cancer. The involvement of homeobox B7 ( HOXB7) in cancers has been reported. Thus, the current study intends to explore the effect of HOXB7 on CSCC and its relationship with the Wnt/β-catenin signaling pathway. Initially, microarray-based gene expression profiling of CSCC was performed, and HOXB7 was identified as an upregulated gene based on the microarray data of GSE66359 . Following this, the experimental results indicated that HOXB7 and β-catenin formed a composite, demonstrating that endogenous HOXB7 binds to β-catenin. Subsequently, CSCC cells were treated with siRNA against HOXB7 or an inhibitor of the Wnt/β-catenin signaling pathway to analyze any underlying regulatory mechanism of HOXB7 on the CSCC cells. Tumor growth involving xenografts in nude mice was also observed so as to explore whether or not HOXB7 could regulate subcutaneous tumor growth through in vivo culturing. To investigate the potential effects of HOXB7 on the Wnt/β-catenin signaling pathway, we determined the expression of HOXB7 and downstream genes of the Wnt/β-catenin signaling pathway. Notably, siRNA-mediated knockdown of HOXB7 inhibited the activation of the Wnt/β-catenin signaling pathway, thereby impeding the progression of cell viability, migration, and invasion as well as of the tumor growth, although contrarily facilitating cell apoptosis. Taken together, silencing of the HOXB7 has the mechanism of inactivating the Wnt/β-catenin signaling pathway, thereby accelerating cell apoptosis and suppressing cell migration and invasion in CSCC, which could provide a candidate target for the CSCC treatment.
Collapse
Affiliation(s)
- Dong Gao
- Department of Dermatology, Yantai Yu Huang Ding Hospital, Yantai, People’s Republic of China
| | - Hong-Quan Chen
- Department of Dermatology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
13
|
Liu FT, Chen HM, Xiong Y, Zhu ZM. Deregulated HOXB7 expression predicts poor prognosis of patients with malignancies of digestive system. MINERVA CHIR 2017; 74:422-430. [PMID: 28749115 DOI: 10.23736/s0026-4733.17.07325-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Numerous studies have investigated the relationship between deregulated HOXB7 expression with the clinical outcome in patients with digestive stem cancers, HOXB7 has showed negative impacts but with varying levels. We aimed to comprehensively evaluate the prediction and prognostic value of HOXB7 in digestive stem cancers. EVIDENCE ACQUISITION Electronic databases updated to December 1st, 2016 were retrieved to collect relevant eligible studies to quantitatively explore the potential roles of HOXB7 as a prognostic indicator in digestive system cancers. EVIDENCE SYNTHESIS A total of 9 studies (N.=1298) was included in this synthetical meta-analysis. The pooled hazard ratios suggested that high expression of HOXB7 protein was associated with poor prognosis of OS in patients with digestive system cancers (HR=1.97, 95% CI: 1.65-2.28, P=0.000), and HOXB7 protein could act as an independent prognostic factor for predicting OS of patients with digestive system cancers (HR=2.02, 95% CI: 1.69-2.36, P=0.000). Statistical significance was also observed in subgroup meta-analysis based on the cancer type, histology type, country, sample size and publication date. Furthermore, we examined the correlations between HOXB7 protein and clinicopathological features. It showed that altered expression of HOXB7 protein was correlated with tumor invasion (P=0.000), lymph node status (P=0.000), distant metastasis (P=0.001) and TNM stage (P=0.000). However, the expression of HOXB7 protein was not associated with age (P=0.64), gender (P=0.40) or levels of differentiation (P=0.19). CONCLUSIONS High expression of HOXB7 protein was associated with poor prognosis of patients with digestive system cancers, as well as clinicopathologic characteristics, including the tumor invasion, lymph node status, distant metastasis and TNM stage. The expression of HOXB7 protein was not associated with age, gender or levels of differentiation. HOXB7 protein expression level in tumor tissue might serve as a novel prognostic marker for digestive system cancers.
Collapse
Affiliation(s)
- Fang-Teng Liu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Han-Min Chen
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ying Xiong
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zheng-Ming Zhu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China -
| |
Collapse
|