1
|
Kim NY, Hwang SH, Yang Y, Kim Y. Temozolomide abrogates the aggressiveness of urothelial carcinoma cells by enhancing senescence and depleting the side population. Oncol Lett 2021; 22:845. [PMID: 34733363 PMCID: PMC8561215 DOI: 10.3892/ol.2021.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with advanced urothelial carcinoma (UC) generally have poor prognoses due to therapeutic resistance. Furthermore, there are limited treatment options for advanced UC. Therefore, novel or effective chemotherapeutic agents are needed to improve patient survival. The present study was conducted to investigate the effect of temozolomide (TMZ) on UC cells so as to identify a potential method to overcome therapeutic resistance. TMZ is an alkylating agent with a target different from that of other anticancer drugs used to treat UC, such as cisplatin. TMZ enhanced the autophagic response and senescence, which was mediated via the p53 and p21 pathways. Inhibiting the autophagic response using chloroquine synergistically augmented the cytotoxic effect of TMZ on UC cells. TMZ significantly reduced the invasiveness of UC cells. Notably, the abundance of side population fraction was also significantly reduced following TMZ treatment. Considering that side population fraction is known to confer therapeutic resistance, it is noteworthy that the TMZ treatment markedly decreased side population fraction. Altogether, TMZ may have the potential to be applied as a part of an alternative treatment strategy to reduce the malignancy of UC cells.
Collapse
Affiliation(s)
- Na-Yon Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyun Hwang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeseul Yang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Yoshida K, Uehara O, Kurashige Y, Paudel D, Onishi A, Neopane P, Hiraki D, Morikawa T, Harada F, Takai R, Sato J, Saitoh M, Abiko Y. Direct reprogramming of epithelial cell rests of malassez into mesenchymal-like cells by epigenetic agents. Sci Rep 2021; 11:1852. [PMID: 33473142 PMCID: PMC7817677 DOI: 10.1038/s41598-020-79426-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
The DNA demethylating agent, 5-Azacytidine (5Aza), and histone deacetylase inhibitor, valproic acid (Vpa), can improve the reprogramming efficiencies of pluripotent cells. This study aimed to examine the roles of 5Aza and Vpa in the dedifferentiation of epithelial cell rests of Malassez (ERM) into stem-like cells. Additionally, the ability of stem-like cells to differentiate into mesenchymal cells was evaluated. ERM was cultured in embryonic stem cell medium (ESCM) with 1 µM of 5Aza, or 2 mM of Vpa, or a combination of 5Aza and Vpa. The cells stimulated with both 5Aza and Vpa were named as progenitor-dedifferentiated into stem-like cells (Pro-DSLCs). The Pro-DSLCs cultured in ESCM alone for another week were named as DSLCs. The stem cell markers were significantly higher in the DSLCs than the controls (no additions). The mRNA and protein levels of the endothelial, mesenchymal stem, and osteogenic cell markers were significantly higher in the Pro-DSLCs and DSLCs than the controls. The combination of a demethylating agent and a deacetylated inhibitor induced the dedifferentiation of ERM into DSLCs. The Pro-DSLCs derived from ERM can be directly reprogrammed into mesenchymal-like cells without dedifferentiation into stem-like cells. Isolated ERM treated with epigenetic agents may be used for periodontal regeneration.
Collapse
Affiliation(s)
- Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yoshihito Kurashige
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Durga Paudel
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Aya Onishi
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Puja Neopane
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Daichi Hiraki
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Fumiya Harada
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Rie Takai
- Research Institute of Health Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Jun Sato
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Masato Saitoh
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
3
|
Hwang SH, Kim MC, Ji S, Yang Y, Jeong Y, Kim Y. Glucose starvation induces resistance to metformin through the elevation of mitochondrial multidrug resistance protein 1. Cancer Sci 2019; 110:1256-1267. [PMID: 30689265 PMCID: PMC6447852 DOI: 10.1111/cas.13952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Metformin, a drug for type 2 diabetes mellitus, has shown therapeutic effects for various cancers. However, it had no beneficial effects on the survival rate of human malignant mesothelioma (HMM) patients. The present study was performed to elucidate the underlying mechanism of metformin resistance in HMM cells. Glucose‐starved HMM cells had enhanced resistance to metformin, demonstrated by decreased apoptosis and autophagy and increased cell survival. These cells showed abnormalities in mitochondria, such as decreased ATP synthesis, morphological elongation, altered mitochondrial permeability transition pore and hyperpolarization of mitochondrial membrane potential (MMP). Intriguingly, Mdr1 was significantly upregulated in mitochondria but not in cell membrane. The upregulated mitochondrial Mdr1 was reversed by treatment with carbonyl cyanide m‐chlorophenyl hydrazone, an MMP depolarization inducer. Furthermore, apoptosis and autophagy were increased in multidrug resistance protein 1 knockout HMM cells cultured under glucose starvation with metformin treatment. The data suggest that mitochondrial Mdr1 plays a critical role in the chemoresistance to metformin in HMM cells, which could be a potential target for improving its therapeutic efficacy.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Myung-Chul Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sumin Ji
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeseul Yang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeji Jeong
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Sato A, Ueno H, Fusegi M, Kaneko S, Kohno K, Virgona N, Ando A, Sekine Y, Yano T. A Succinate Ether Derivative of Tocotrienol Enhances Dickkopf-1 Gene Expression through Epigenetic Alterations in Malignant Mesothelioma Cells. Pharmacology 2018; 102:26-36. [PMID: 29763912 DOI: 10.1159/000489128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Wnt signaling plays an essential role in tumor cell growth, including the development of malignant mesothelioma (MM). Epigenetic silencing of negative Wnt regulators leading to constitutive Wnt signaling has been observed in various cancers and warrants further attention. We have reported that a succinate ether derivative of α-tocotrienol (T3E) has potent cytotoxic effects in MM cells. Thus, in this study, we investigated whether the anti-MM effect of T3E could be mediated via the epigenetic alteration of the Wnt antagonist gene, Dickkopf-1 (DKK1). METHODS WST-1 and cell analyzers were employed to analyze the effects of T3E on cell viability and apoptosis of human MM cell lines (H2452, H28). Real-time PCR and Western blot were performed to evaluate the expression at mRNA and protein levels. Methylation status and epigenetic modifications of DKK1's promoter regions after T3E treatment in MM cells were studied using methylation-specific PCR and Chromatin immunoprecipitation. Small interfering RNA-mediated knockdown -(siRNA), and specific inhibitors, were used to validate DKK1 as a target of T3E. RESULTS T3E markedly impaired MM cell viability, increased the expression of phosphorylated-JNK and DKK1 and suppressed cyclin D, a downstream target gene of Wnt signaling. Knockdown of DKK1 expression by siRNA or a specific JNK inhibitor confirmed the contribution of DKK1 and JNK to T3E-induced cytotoxicity in MM cells. On the other hand, cytoskeleton-associated protein 4 (CKAP4) expression, which promotes cell proliferation as a Wnt-independent DKK1 receptor was inhibited by T3E. Silencing CKAP4 by -siRNA did not appear to directly affect MM cell viability, thereby indicating that expression of both DKK1 and CKAP4 is required. Furthermore, T3E-mediated inhibition of both DNA methyltransferases (DNMT1, 3A, and 3B) and histone deacetylases (HDAC1, 2, 3, and 8) in MM cells leads to increased DKK1 expression, thereby promoting tumor growth inhibition. MM cells treated with Zebularine (a DNMT inhibitor) and sodium butyrate (an HDAC inhibitor) exhibited cytotoxic effects, which may explain the inhibitory action of T3E on MM cells. In addition, an enhanced expression of DKK1 in MM cells following T3E treatment is positively correlated with the methylation status of its promoter; T3E decreased DNA methylation and increased histone acetylation. Moreover, T3E specifically increased histone H3 lysine 4 (H3K4) methylation activity, whereas no effects were observed on histone H3K9 and H3K27. CONCLUSIONS Targeting the epigenetic induction of DKK1 may lead to effective treatment of MM, and T3E has great potential to induce anti-MM activity.
Collapse
Affiliation(s)
- Ayami Sato
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Research Institute of Life Innovation, Toyo University, Gunma, Japan
| | - Haruka Ueno
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Momoka Fusegi
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Saki Kaneko
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Kakeru Kohno
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Nantiga Virgona
- Research Institute of Life Innovation, Toyo University, Gunma, Japan
| | - Akira Ando
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Yuko Sekine
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Yano
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan.,Research Institute of Life Innovation, Toyo University, Gunma, Japan
| |
Collapse
|